
A Component-based Construction Kit for Algorithmic Visualizations http:llwww.kom.e-technik.tu-darmstadt.delpublications/abstracts/SSS+99- I .html

In Proceedings of the INTEGRATED DESIGN & PROCESS TECHNOLOGY
"IDPT'99", June 1999.

A Component-based Construction Kit for
Algorithmic Visualizations

Abdulmotaleb E1 Saddik and Cornelia Seeberg and Achim Steinacker and Klaus Reichenberger
and Stephan Fisher and Ralf Steinmetz

In this Paper, we describe a component-based architecture which allows to create inter-active teaching
applets simplifying the understanding of complex technical processes. In contrast to existing
approaches the User can experiment interactively with components thus influencing the presentation
and the results of the algorithms being illustrated. We explain how applets can be created using
modular units (ItBeans), how the User can combine these using the Interactive Teaching Bean
construction Kit (ItBeanKit), which allows Users to create Interactive Visualization Artifacts (IVAs),
according to a desired level of functionality and appearance, suitable for their specific needs.

BibTeX entry

Important Copyright Notice:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted without the explicit perrnission of the copyright holder.

In Proceedings of the INTEGRATED DESIGN & PROCESS TECHNOLOGY "IDPT'99",
June 1999. will appear in the IDPT 2000 proceedings.

A Component-based Construction Kit for Algorithmic Visualizations

Abdulmotaleb EI saddikl, Cornelia seebergl) Achim steinackerl, Klaus ~ e i c h e n b e r ~ e r l ,

Stephan ~ischer l and Ralf steinmetz12

1 2
lndustrial Process and System Communications GMD IPSl
Dept. of Electrical Eng. & Information Technology German National Research Center
Darmstadt University of Technology for Information Technology
Merckstr. 25 D-64283 Darmstadt Germany Dolivostr. 15 D-64293 Darmstadt Germany

{abed, cornelia, stein, reichen, fisch, rst } @kom.tu-darmstadt.de

ABSTRACT

In this Paper, we describe a component-based
architecture which allows to create interactive teaching
applets simplifying the understanding of complex
technical processes. In contrast to existing approaches the
User can experiment interactively with components thus
influencing the presentation and the results of the
algorithms being illustrated. We explain how applets can
be created using modular units (ItBeans), how the User
can combine these using the Interactive Teaching Bean
construction &t (ItBeanKit), which allows Users to create
Interactive Visualization Artifacts (IVAs), according to a
desired level of functionality and appearance, suitable for
their specific needs.

1. INTRODUCTION

In the past a lot of electronic teaching material
including electronic books, intelligent tutorial systems and
web-based Courses emerged. Most of these also
commercially available products use a variety of different
media such as video, audio, images, animations and
hypertext to exploit the nature of hypermedia at its best in
order to yield some sort of optimal learning success.

In addition, a vast amount of animations has been
generated, caused by the rapid growth of the WWW in
combination with languages like Java and VRML.
However, these animations often show some major
drawbacks, such as

> Video-like nature of animations. Most of the
animations being used to visualize complex algo-
rithms and techniques cannot be influenced by the
user. A User can only observe the ongoing animation
and try to understand the underlying theory. As the
only available form of interaction most animations
use Parameters to change the output.

9 Experiments. The User cannot change the behavior of
applets by omitting certain steps or by adding or
exchanging components.

P Connection of anirnations. Most applets available
nowadays are running in a stand-alone mode. The
user, e.g. cannot connect an animation of a video
decoder to that of a network and study the resulting
effects.

Reusability. Many animations have been developed
without regard to software engineering in terms of
reusability. The animation of JPEG [l] or MPEG [2]
serves as a good example: Even though both
compression schemes use the Discrete Cosine
Transform (DCT), and the Huffman encoding, a reuse
of a component coming from an already finished
animation of JPEG can in most cases not be used to
visualize a step of the MPEG-compression process.

9 Hierarchical structure. Most applets do not deal with
changing User requirements. Beginners, as well as
intermediate students and experts can nowadays only
use the Same animation.

It is the goal of the interactive Teaching project
(iTeach) of the Darmstadt University of Technology to
create a system with an optimal support for the learner,
integrating a variety of different learning styles and a
component-based applet architecture which can be used to
experiment with complex alnorithms. As the research area
of'adaptive hypermedia sysjems is being explored for a
long time now it is the particular goal of iTeach to
examine how rnultimedia can be used best to support the
learning process thus extending the focus from systems
most often based exclusively on text and images to real
multimedia systems integrating text, images, audio, video,
and animations. This also implies the knowledge which of
these media has to be used with respect to the particular
content to be explained. Especially the meaningful use of

different media is being neglected in many commercial
Systems following the paradigm "the more - the better".

In this paper we concentrate on the description of an
effective way to create interactive teaching animarions.
Unlike other work, our model takes a user-centered view
(wlzat does the user need to see?) rather than a designer-
centered view (wlzat can we show him?), and employs a
multilayered presentation to improve the effectiveness of
learning. Our approach enables the developer to employ
reusable components which can be combined to create a
complete animation for a given problem. To simplify this
process we use a visual builder tool to create a complete
animation from predefined components. We call this
framework, which contains images, text, audio, and
animation the jnteractive ~ a c h i n g component-based
(m s) toolKJi ("ItBeanKit").

This paper is structured as follows: In Section 2 we
describe the iTeach-project to explain the background of
our work. Section 3 examines the interaction aspects we
identifiecl. In Section 4 we explain the architecture of our
visualization construction kit. Section 5 shows the
application of our concept being applied to the
compression scjheme JPEG. Section 6 reviews related
work. Section 7 concludes the paper and gives an outlook.

2. ITEACH-SYSTEM

The iTeach-System (interactive M i n g - S y s t e m) strives
for an efficient learner-support in the process of teaching
multimedia and network technology. The system consists
of an electronic textbook explaining the topics to be learnt
[I] . The book is extended by a didactic component which
orders the content with regard to specific learning
strategies, based on a User profile which guides the User
by tracking the actions he is performing when reading the
electronic book. The individual chapters of the book are
generated on the fly on the basis of the learning style
which has been chosen. We currently support hierarchical
and constructivistic learning as well as learning based on
examples. Hierarchical learning explains the theory of a
topic followed by examples and applications.
Constructivistic learning starts with applications followed
by the theoretical background. Learning by example first
presents examples which are then generalized to explain
theories in a comprehensive manner. Using an explorative
style (learning by example), a User first has to learn a
specific subject by using an applet which is not of a static
nature in a sense that parameters can be modified and
components can be exchanged.

Applets serve as an important concept to illustrate
complex algorithms. The iTeach-system uses animations
both in the textbook and in a specific learning
environment which allows for experimenting with
component-based animation of algorithms. The
integration into the textbook is done on the basis of a
script: the teacher (or author) specifies the components

and their order to generate an applet which is then
included in the book as a guided-tour-applet. If the User
wishes to experiment with the algorithm, the applet-toolkit
can be invoked which allows for exchanging components,
setting parameters or in the case of mathematical
animations specify new functions which are then
animated. As we use a generic representation of the
components, new components can be included by an
insertion into the component-chain. The User could e.g.
decide to run a Huffman-encoding followed by an
arithmetic encoding which would not be available in a
standard applet animating a compression scheme. The
main difference between the textbook and the toolkit is
that the nature of the applets is static for the guided tour in
a sense that the composition as well as the functions of an
applet cannot be changed. As applets in the textbook are
used to explain exactly the theory described in the text,
modifications are only distracting the learner. However, it
is always possible to switch between the textbook and the
toolkit.

In the next Section the necessary conditions to develop
an efficient interactive toolkit are reviewed.

3. ACQUISITION OF INSIGHT

The ability of the human being to acquire insight into
multivariate data can be enhanced by the opportunity to
view that data in a visualized form. Such a process of
visualization can be even more effective if interaction
with the data's presentation is supported. When
developing a visualization scheme to support a wide
variety of users, it becomes apparent that there are a
number of facets which should be taken into
consideration:
9 Identifying the needs of the user.

What do users Want to see?
9 Establishing useful and meaningful representations

What is the besr representation to convey the
information clearly, concisely and eflciently ?

9 Investigating the problems of scale.
MeaninRful visualization of both single components
and variable sized collections of components are
needed.

9 Introducing flexibility.
Techniques enabling the user to customize and
control the visualization should be investigared.

Our aim is to provide a useful and meaningful
visualization to assist in the learning process of
algorithms. The effectiveness of visualizations can be
enhanced if a collection of components are provided from
which applications can flexibly and fluently be created.
Such a proposition, which is the subject of this paper,
immediately identifies the issues interaction and support
of the learner.

Interaction implies that the learner is guided in the
sense that he can get feedback if problems emerge.
Assuming that the handling of the toolkit itself is intuitive
such problems can only result from the difficulty of the
topics to be learned. The difSiculty of an algorithm to be
animated can result either from the knowledge of the
learner which rnight not be sufficient to understand the
topic or from the amount of information presented by the
animation. If the user's knowledge is not sufficient to
understand parts of an algorithm we offer two possibilities
to acquire the corresponding knowledge: a User can read a
short explanation of the part of the algorithm he currently
executes or he can invoke the chapter of the textbook
explaining the underlying theory in depth. The latter
includes search functions to get a more specific way of
explanation.

The processing of an insufficient knowledge of a learner
is performed in a traditional way by using hyperlinked
multimedia documents. The second problem however, the
density of the presented information has to be dealt with
by another approach, the use of levels of complexity. The
idea behind a level of complexity is that a User can reduce
the information density of a part of an algorithm by
splitting the part of an animation helshe is currently using
into a number of steps which can be understood easier
equivalent to a smaller information density. This process
is shown in Figure 1. While C stands for complexity, the
upper index denotes the level, the lower the number of a
com~onent. n

ICJI Level]

- = i b ~ k ba Level2
-, 'Y-

~ & 1 I * 1 bve1.3

f
Fig.1: Levels of complexity

+ +
The particular components of the levels can be

implemented as JavaBeans [3] [4] [15]. Looking at the
animation of JPEG (section 5.2) there might be one
component in the first level only showing the resulting
image and data like the file size of the compressed as well
as the uncornpressed image. In the second level there
could be the four steps: preparation - DCT - quantization
- entropy encoding. The third level could explain the DCT
as well as the different algorithms available to perform the
entropy encoding. We distinguish between three kinds of
interaction the User is provided with:

1. Variation of parameters of a running itBean
P Visualization (level of complexity)
P Animation (speed, background color, foreground

color,..)
> Simulation (interaction by the User interface)

2. Composition and substitution of itBeans
> Example: Substitute DCT (Discrete Cosine

Transformation) by FFT (Fast Fourier Trans-
formation) to modify the existing JPEG
processing.

3. User guidance
Help function

P Guided tour
> Step function

4. VISUALIZATION CONSTRUCTION KIT

A major advantage of a visualization construction kit is
that the composition and function of the eventual
interactive visualization artifact is under the control of the
User who is thus free to select and combine components
such as data producer and encoding blocks according to
his needs. Fischer and Lemke [5] describe such a
construction kit as "a Set of building blocks that model a
problem domain. The building blocks define a design
space, that is, the Set of all possible designs that can be
created".

The ItBeanKit currently being developed provides the
User with a workspace where visualization components
can be introduced, linked and where interaction can take
place [See figure 51. When executed, all the components
are contained within windows, thereby facilitating their
easy resizing, placement and closure. An important aspect
in our framework is substitution, which means that an
end-user can exchange an ItBean with another. In the
context of JPEG the exchange of DCT with FFT may be
an appropriate substitution.

ARCHITECTURE OF THE TOOLKIT

The architecture of the itBeankit is shown in Figure 2. To
be able to coordinate different itBeans (Interactive
Teaching Beans) we use a main controller called the it- -
Main-Controller. the itBeans themselves are developed
according to the model-view-controller model (MVC-
model) [6] which is responsible to provide a unified
environment of the itBeans, which do not have to care
about the graphical presentation of their input and output.
We now explain the components of our architecture in
detail. ilBo\. i I Bean i 1 Senn

. .

Fig. 2: Architecture of itBeankit

ITBEANS

ItBeans are the rnajor coinponents responsible for the
animation of parts, or of the whole of the algorithrn to be
explained. ItBeans consist of a set of state and shared
attributes, a set of elernents responsible for the creation of
the User interface and also of a set of methods to define
relationsliips and interdependencies arnong statelshared
variables and events. The external control over an itBean
is perforrned by the controller which is explained below.
An itBean itself can therefore only work in a single level
of complexity. The switching between these levels is done
by the controller unit.

An irnportant property of the itBeans is that the User can
forgo a graphical presentation of the results of the
calculations an applet executes. The visual representation
can thus be turned off at runtirne but still be executed
inside the framework. Looking at the JPEG-cornpression
this feature can be used if a User is particularly interested
in the effects and in the function of the quantization step.
He then turns off the graphical representation of the image
preparation and of the transformation (DCT). While these
steps are still executed and thus the content of an irnage is
modified, all the User will see is the animation of the
quantization. In our toolkit we provide buttons to turn
onloff the representation of certain steps of the algorithrns
to be animated.

Another main aspect in our implernentation is the
internationalization [7]. Each of our ItBeans Supports
English, German and Spanish. The support of new
optional languages is guaranteed due to the Java
Internationalization API [8].

Explanaiiun berman

i r
Fig.3: ItBean Internationalization support

IT-MAIN-CONTROLLER

The main controller is responsible for the invocation of
the proper itBean corresponding to an event. Our
controller currently reacts on the following events: play,
stop, hide, next, previous, level down and level up. Next
and previous could also be implernented without a
controller as these events specify the itBean which the
User wants to be executed after the one being currently
active. This could also be controlled within the respective
bean. The Level-cornrnands are responsible to traverse
upwards or downwards the hierarchical tree of parts of the
algorithrn to be shown. To simplify the interaction with
the User interface only those buttons which are applicable

are highlighted. Using the components at the lowest level
of the hierarchy only the level up-button is highlighted.
An example of the User interface of the components is
shown in Figure 4.

OtWIHLL WAGE K I COEFFKXllrS

B I I O R L Q"*"nz*T,O" I I I C Q DED"U<>I*.m*

Fig.4: User interface of component beans. Buttons fire events
which are passed to the controller

COMBINATION OF ITBEAN-COMPONENTS

The cornbination of itBeans can be accomplished in two
different ways: itBeans can be cornbined a) using the
visual builder tool or b) writing a script specifying the
components and their respective order for the purpose of
creating an applet. Figure 5 shows the prototype of the
visual builder tool, which allows a simple wiring of the
components to be tested. The visual builder tool also
allows to generate an applet autornatically with its
corresponding web Page (HTML-File).

Ib.b rrr.r*n<..

~ .~~o; ia r iv .n~ ; . rs i ri+nnoar

' r u r r i r r l r ~ l o n m u a r i a . " WP.0.i.l
mr.ai, wn*,ri*o*n

"U"*Cl~l?aPO*,""m.?*** mm.*

LU 3iliripd holr mu ln ia . nimC?%
iiri!m. nn*ic-n

vnu ."i.',.d r o n ,nimm+,. mm.."

,au i.ia<:nnornnmm.c4= K a r n s .
nierni., Ui'mU*ns.xi

Fig.5: The prototype of the ItBeans visual builder tool

5. CASE STUDY: ANIMATION OF JPEG

In this section we demonstrate the use of our toolkit. As
an example we present the visualization of the different
steps of the JPEG compression, including the procedures
being executed at the encoder as well as those of the
decoder [I]. A JPEG encoder performs a series of
transformations on raw image data to produce a
compressed output stream, which is then transmitted to a
JPEG decoder that executes these transformations in the
inverse order to decompress the image. Figure 6 outlines
the steps of the JPEG compression/decompression
process.

="-c +- (FbFbFbFb FNI~ n,vtw "'U" O~ C.3v

 in^ Fwl
inng

Fig. 6: The JPEG compression/decompression process

JPEG deals with colors in the YUV color space. For
each separate color component (Y, U and V), the image is
divided into 8x8 pixel blocks of picture elements. Each
block is then transformed into a two dimensional DCT
matrix. Figure 7 shows an 8x8 coefficient matrix
generated by the DCT step. Coefficients with lower
frequencies (typically higher values) are encoded first,
followed by higher frequencies (with typically small
values, near to zero).

The coefficients of the DCT matrix are then quantized.
The final step of the JPEG compression consists of an
entropy coding.

Fig. 7: DCT processing order

To develop an applet explaining the JPEG encoding and
decoding process, a Set of reusable itBeans that perform
these transformations are composed as illustrated in
Figure 8. The ItBeanKit library uses a fine grained
modular decomposition to effectively de-couple the visu-
alization of each step of the algorithm. This concept

allows for a significant reuse of code when developing
new components, and moreover some of these can directly
be reused to compose other software components.
Although, the identification of the components necessary
to visualize a complex algorithm is performed applying a
top-down technique, the development of these
components (ItBeans) follows a bottom-up design. The
development of the ItEncodingBean serves as a good
example how this is achieved: no new code visualizing the
encoding process has to be developed. Instead of
implementing a new component, the functionality of one
of the different encoding algorithms can be reused.

Fig. 8: Bean components of JPEG compression process

Each of our itBeans can have more than one view with
respect to the specific needs of the User. An end-user who
does not need to be concerned with the details of the DCT
transformation algorithm or the Huffman encoding, but
who is only interested in the general functionality of
JPEG, will get the ItJPEG-Bean presenting the input and
the output image with some additional information like
the file size before and after the compression. Another
end-user who might be interested in the execution of the
DCT transformation algorithm will get the ItBeans which
are located at the second level with regard to our
hierarchy.

JPEG IMPLEMENTATION

In the following we will explain our JPEG
implementation with all the necessary steps according to
our framework. In order to develop an applet explaining
the JPEG encoding and decoding process, a set of reusable
ItBeans that perform these transformations are composed
as illustrated in Figure 6.

As mentioned earlier the ItBeanKit library uses a Fine
grained modular decomposition to effectively decouple
the visualization of each algorithm. This allows a
significant reuse of code when developing new
components, and moreover some of these components can
directly be reused to compose other software components.

3D-View Bean RGB-Bcan

Fig. 9: 3D view-Bean and RGB-Bean

The 3D view-Bean which shows the values of the
Discrete Cosine Transformation, as well as the RGB-
Bean, which is shown in Figure 9 are used in different
applets (for example JPEG, DCT and the preparation unit
applet).

As shown in Figure4, (JPEG applet) the User can
choose an image block and See the composition of the
block in RGB (Red-Green-Blue) colors. The User can also
explore lhe quality of the picture by choosing a higher
quantization value which then decreases the quality of the
picture by increasing the compression factor and
decreasing the file size of the picture. If the User presses
the forward button, an illustration of the steps of JPEG
will be provided. By clicking on such a component a new
applet window is opened and the detailed step is
explained. Figure 10 illustrates the DCT visualization,
having clicked on the DCT Button. As illustrated the User
can switch between FDCT (Fast Discrete Cosine
Transformation) and DCT (Discrete Cosine
Transformation), to explore the time differences necessary
to calculate the output values (DCT is outperformed by
FDCT). The User can also change the Parameters of the
formula, and define his own cosine function to be
executed. In DCT level 2 the User can explore the effect of
the 64 basic frequencies. He 1 She can interact with the
system and examine the processing order of the AC-
coefficients using the zig-zag sequence described above.
Furthermore Figure 10 illustrate how also how a
visualization of the RGB-Bean is reused.

Li.1 Lid L L J rn m H

Fig. 10: iilustration of the DCT applet in level2

6. RELATED WORK

The work described in literature shows that the use of
component based architecture can significantly increase
the learner's efficiency. Stasko et al. [9] studied how
students learnt from an animation of computer algorithms,
and concluded that they only learnt from the animation if
they constructed it themselves. Similarly, Nardi and
Zarmer [I01 carried out a study of spreadsheet users and
observed that these users tended to "incrementally develop
external, physical models of their problems".

Klein and Hanisch describe a system to realize an
interactive computer graphics Course [I I]. Their system
employs a similar concept to use Beans to visualize differ-
ent steps of a complex algorithm. However, no control
structure is provided to group modules and to switch
between different complexities.

Wernert chooses a similar approach for a unified
environment for the presentation, development and
analysis of graphics algorithms [12]. His system also does
not use the concept of complexity. Furthermore it only
works on the IRIS explorer.

Mecklenburg and Burger describe a system to create
component-based applets automatically from Estelle-
specifications [13]. They also plan to use complexities to
Support the learner. Their approach is somewhat different
as the order of the components is bounded by the Estelle-
specification.

Land [I41 describes a similar approach as [12] allowing
for high-level programming (network wiring). As in [12],
his system cannot be interlinked with a WWW-based
environment.

7. CONCLUSION AND OUTLOOK

In this paper we described a component-based
architecture for animations using JavaBeans. Our
approach extends other concepts by the use of hierarchies
thus supporting the learner in an efficient way. Instead of
merely wiring components we propose to use a controller
unit to switch between aggregated and detailed views of
the steps of an algorithm to be animated. The different
steps of an algorithm are animated by particular itBeans.
To achieve a common look-and-feel we separate the
graphical output from the itBean itself.

Our experience suggests that the ItBeanKit may well
provide an environment in which a User without
conventional programming skills can build a useful
interactive visual algorithm relevant to a particular task.
The ItBeanKit will therefore continue to be extended,
particularly by increasing the available choice of
components.

At the moment we study the extent, by which
algorithms can be modified. In this paper we looked at the
animation of JPEG. In the near future we will examine
how routing in the Internet can be animated. We will try
to build up a hierarchy which has routers, links and end-
Systems at its lowest level.

Furthermore we will study how the itBeankit can be
integrated in a distributed learning environment enabling
students who work in a distributed environment to discuss
the functionality of algorithms. In addition we examine
new forms of tests. Instead of using multiple choice
students can experiment with components. If these are
given the student has to prove his knowledge by finding
the right order in which the components have to be placed.
It is thus immediately possible to observe if the answer is
correct or not because the result is presented graphically.
If a learner places the entropy encoding of the JPEG-
compression in front of the DCT, the result will change
significantly.

8. ACKNOWLEDGEMENT

The authors would like to thank the Bundesministerium
für Bildung, Wissenschaft, Forschung und Technologie
(BMBF) which partially funded the research project and
the Volkswagen Stiftung. We owe also thank to our
colleague Lilo Kolb and Moni Jayme for their constant
Support.

9. REFERENCES

[I] Steinmetz Ralf, and Nahrstedt Klara: Multimedia
computing, communications, und applications.
ISBN 0- 13-324435-0, Prentice Hall 1995.

[2] Joan L.Mitchell, William B. Pennebaker, Chad E.
Fogg, and Didier J. LeGall: MPEG video
compression standard. ISBN 0-4 12-0877 1-5,
Chapman &Hall 1997.

[3] Hamilton, G.: The JavaBeans API specification.
Sun Microsystems, 1997.

[4] M. Morrison, "JavaBeans", Sams net, ISBN: 1-
5752 1-287-0, 1997

[5] Fischer G. and Lemke A., "Construction Kits und
Design Environments: Step Toward Human
Problem-Domain Communication", Human
Computer Interaction, Volume 3, 1987

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides:
"Design Patterns - Elements of reltsable Object-
Oriented Software", Addison Wesley ISBN O-
20 1-6336 1-2, 1995

[7] John O'Conner: Java Internationalization: An
Overview,
http://developer.java.sun.com/developer/technica
IArticles/intl.html

[8] Flanagan, David: "JA VA IN A NUTSHELL", 2nd
Edition, O'Reilly, ISBN 1-56592-262-X, 1997

[9] Stasko J., Badre A. and Lewis C., "Do Algorithm
Animations Assist Learning? An Empirical Study
und Analysis", ACM Interchi Conference
Proceedings, 1993.

[I01 Nardi B.A. and Zarmer C.L., "Be~lond Models
und Metaphors: Visual Formalisms in User
Interface Design", Journal of Visual Languages
and Computing 4 , 1993.

[I I] Klein, R. and Hanisch, F.: Using a modular
construction kit for the realization of an
interactive Computer Graphics Course. In
proceedings of EdMedia, 1997.

[I21 Wernert, E.: A unified environment for
presenting, developing and analyzing graphics
algorithms. Computer Graphics, 3 1 (3), 1997

[13] Burger, C., Rothermel, K. and Mecklenburg, R.:
Interactive Protocol Simulation Applets for

Distance Education. To app. in proceedings of
IDMS98, Oslo, 1998. [I51 Joseph O'Neil: “JavaBeans Programming from

the GROUND UP", Osborne, ISBN: 0-07-
[I41 Land, B. R.: "Teaching Computer graphics und 882477-X, 1998

scienrific visualization using the dataflow, block
diagram language Data Explorer". In [16] David M. Gery, Alan L. McClellan: "Graphie
proceedings of the IFIP WG 3.2 Working Java - Mastering the A WT", Prentice, Hall ISBN
Conference on Visualization in Scientific 0- 13-565847-0, 1997
Computing, Uses in University Education, Irvine,
USA, 1994.

