
                            Abstract 

In this paper we focus on systematic enrichment
of ontologies by candidate concepts.   To achieve
this goal we compare semantic distance meas-
ures between concepts in an ontology with simi-
larity and dissimilarity information introduced
by statistical analysis of text corpora. Moreover
we present methods, how the corpus extraction
and the processing of the statistical information
is also enhanced by a given ontology. Summing
up these ontological methods we state the enrich-
ment problem as an optimization problem. Its so-
lution will yield two results: the best candidate
concepts for the enrichment and the position of
these candidates relative to the existing concepts
of the ontology.
          
1. Introduction

Investigating the contemporary techniques of
textual knowledge acquisition and formalisation,
we identify two tendencies, an old one and a
rather new one: on the one hand people preserve
and interchange their knowledge creating natural
language texts - a fundamental cultural technique
of the civilized human being. On the other hand
formal knowledge representation tries to find
mappings of the real world or parts of the real
world to a machine-readable and simplified
model of the real world. 
If we wish to share such a model of reality, it has
to fulfil preliminary design principles [Gr]. The

design principles have to hold while editing the
knowledge representation. They prescribe for-
mal rules, which are the basis of understanding,
what the encoding of knowledge in the formal
knowledge representation actually means. 
The way we express our knowledge every day is
completely different from formal knowledge en-
gineering: we write it down in natural language.
We observe a worldwide growth of the number
of text documents, messages, textual archives
and hypertextual informations, which are not
formalised. All these ’uncontrolled’ archives of
knowledge grow  significantly faster than the
formal knowledge representations in any domain
- and use natural language.
The question arises, if there exists an alternative
to the strict formalisation of knowledge - an al-
ternative, which benefits from the high quantity
of textual information. In this paper we examine
this question concerning the following situation:
imagine there already exists a domain ontology,
that is the conceptualisation of a knowledge do-
main [Gr]. Additionally there are large collec-
tions of text documents available, among them
documents, which could form a basis for enrich-
ing a given ontology The question of opening
formal knowledge representations for knowl-
edge expressed in natural language transforms to
two rather concrete ones:
• how can we extract concepts from the large 

collection of documents, which fit semanti-
cally to the knowledge, i.e. to the concepts, 
represented by the ontology?
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• how do we group the concepts identified in 
such a manner to the concepts in the ontol-
ogy? 

In this paper we envisage an approach, which
tries answer these questions of ontological en-
richment: we extract concepts from very large
collections of texts and insert them as candidate
concepts of an ontology. 

2. Overview
 
In this paper we exploit the comparison of se-
mantic distance measures between concepts in
an ontology and similarity introduced by statisti-
cal information about the usage and especially
the collocated usage of words in text corpora.
From the comparison we develop candidate con-
cepts, which can for instance be presented to a
knowledge engineer as a possible enrichment of
the ontology.

The paper is organised as follows: in section 3.1
we characterise the formal knowledge we want
to enrich. We introduce the notion of ontologies
and define heuristics for a computation of con-
ceptual distance in 3.2. Afterwards we character-
ise the less formally structured resources of
natural language we want to use for an enrich-
ment of the ontology (4.1 and 4.2). We are in
need of  an  identification and an isolation of con-
cepts from the textual resources. Founding on
statistical information in section 4.3 we explain a
generic and configurable approach, which origi-
nally was applied to automatic ontology genera-
tion [BiNeCa]. Since our goal is ontology
enrichment we undertake a further development
of the approach which is twofold: we refer to the
generic features (the so called rule-base) of the
approach inserting attributes, which can only be
defined with an ontology at hand.  

Secondly referring to the configurable features
of the approach in section 4.4 we derive an opti-
mization problem. 
The solution of the optimization problem is able
to fill a given ontology with proposals of new
concepts, as shown in 4.5. The solution leads to
the least possible numerical contradiction be-
tween ’similarities’ in our textual and ’similari-
ties’ in our ontological world. Our vision is
depicted in figure 1, where nodes indicating giv-

en concepts and arcs indicating ’is_a’ relations
among the given concepts attract further nodes,
which means further concepts.  
In section 5 we present our conclusions and fu-
ture work to be done. 
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3. Ontologies

3.1 Definition and characterisation

Throughout this paper  will always denote an
ontology.
In the literature about knowledge representation
there exist many different definitions of ontolo-
gies. One of the most common definitions is due
to Gruber [Gr], who defines an ontology to be “a
conceptualisation of a knowledge domain”. Gua-
rino [Gu] put efforts into an at least uniform
characterisation of the components an ontology
necessarily holds. Together with [Gu] we state,
that an ontology has the following parts:  con-
cepts, which represent the things existing in our
knowledge domain, relations  connecting the
concepts semantically and axioms as formal laws
for the ontology. Throughout this paper we as-
sume that a concept has a name existing in a dic-
tionary. This assumption is not natural for
arbitrary ontologies, because for example in de-
scription logics [Ho] one could define concepts
like ’all countries with the same number of in-
habitants as Malta’. Clearly there does not exist
a name from a dictionary for this concept. More-
over we do not want to consider ontologies con-
taining constructed names like for example the
medical ontology GALEN does [OG]. GALEN
distinguishes ’skin-as-organ’ and ’skin-as-tis-
sue’, contrary to that we would refer to ’skin’.
Throughout this paper we assume the identity of
a concept and its name. 
The second ingredient of an ontology is a set of
relations. A relation r in our case is binary and
establishes statements about concepts x, y : we
write r(x, y), if it is true, that a relation r  holds
between x and y. For example, if r is ’is a’ it may
connect the concepts ’salmonella’ and ’bacteri-
um’ to a statement, which we interpret as ’a sal-
monella is a bacterium’.
The third part of an ontology, the axioms, are re-
sponsible for the supervision of concept creation
and deletion and for relation creation and dele-
tion [StM]. For example ’is a’ almost ever is a
transitive relation, i.e. if for concepts x, y, z the
relations r(x, y) and  r(y, z) hold, then also r(x, z)
holds. As our approach will propose extensions
of a given state of an ontology, we do not exam-
ine axioms in detail.
Note that our characterisation of an ontology by
concepts, relations and axioms implies that we
can visualise such an ontology as a directed

graph , with nodes corresponding to con-
cepts and edges corresponding to relations. 
Our ontological enrichment or extension identi-
fies new concepts and groups them semantically
to concepts from a given set of concepts from an
existing ontology : we translate the concepts
of  and the relations among them to a semantic
distance measure in the ontology. Technically
this is based on relational paths in  and on
topological properties of .

3.2 Distance measures

The distance between two concepts x, y indi-
cates, how strong the semantic similarity be-
tween x and y  is. Semantic similarity and the
distance measure are correlated: the bigger the
distance between x and y,  the bigger the dissim-
ilarity between x and y. Unlike the approaches of
[Tv], which is based on hierarchical structures,
and [Leng], which is based formal concept lattic-
es, we do not define our similarity measures by
the attributes or the extension of concepts. Nev-
ertheless the visualisation by [Leng], which is
based on the construction of paths corresponding
to an attribute-driven similarity definition of a
distance, has commonalities with our premise:
semantic distances between concepts in an ontol-
ogy  are defined by path lengths in the graph

 we introduced in the previous section.
To enhance a reasonable distance measure we
add a restriction to our ontology , namely
some our relations have to be hierarchical, for
example ’is a’- or ’subconcept of’-relations. The
parts of   remaining form a multihierarchy
as shown in figure 2, where the plain lines visu-
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alise hierarchical and the interrupted lines ex-
press non-hierarchical relations.  .

In figure 2 we also find an axis (’generality’),
which expresses the fact, that the visualisation
places the more general or abstract concepts at
the top and the more special concepts to the bot-
tom. We denote by  those parts of ,
which are  formed by the concepts (as nodes) and
the hierarchical relations (as edges). Thus 
would result from figure 2 omitting the interrupt-
ed lines. We will only use the hierarchical rela-
tions in the definition of semantic distance and
claim, that the measure should fulfil four princi-
ples: 

(i) longer paths in  are correlated with
a higher semantic distance. 
(ii) up-posting (generalisation) leads to a
lower semantic distance than stepping down
the      hierarchy. Finding superconcepts is
more fault tolerant than referring to sense-
less specialisations.
(iii) siblings increase the distance: this
means the more subconcepts one concept z
has, the higher is the distance between the
subconcepts and also between z and its sub-
concepts. We posed this principle, because
too many siblings often indicate missing ab-
straction levels in a hierarchy.
(iv) for isomorphic paths the distance be-
tween abstract or general concepts is higher
than between special concepts at the bottom
of the hierarchy, i.e. we judge  ’the same’
path on an abstract level to be vague in com-
parison to its pendant on a concrete level.

How do we achieve (i)-(iv) mathematically? An
example distance design is given by the formula

where the distance D(x,y) between two concepts
x, y is computed with  denoting the average ab-
straction level of the concepts x, y, whereas  de-
notes the average number of siblings of x and y.
By  we denote the steps upwards in the hierar-
chy while moving from x to y via the shortest
path in , by  the steps downwards in the
hierarchy. Let us define exceptions for formula
(1). If  then set D(x,y)=0, if  then
set 

and analogously, if  set 

Formula (1), (1a) and (1b) together fulfil (i)-(iv),
because 

(i) increasing path lengths  and  increase
D(x,y)

(ii)  decreases faster than 

(iii) as  increases also  D(x,y) increases

                  Figure 2
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(iv) we work with an abstraction factor ,
which we define as  1 divided by the aver-
age number of steps along the shortest path
in  from x and  y to one of the top level
concepts, which means a concept without
any hierarchical relations posting up from
it. The abstraction factor  is high on a high
level of abstraction  and low on a low level
of abstraction.

Note that D(x,y) and D(y,x) do not have to be
equal. The exponent -2 stretches the distances,
such that high distances become relatively even
higher.
For technical reasons, namely turning semantic
distance into semantic similarity to compute the
optimization formula,  should be modified by
a multiplication with a positive real in such a
way, that  for every pair of con-
cepts x and y. A consequent modification of 
would yield 1 for the maximal occurring distance
D(x,y).
With n concepts given, we obtain  distanc-
es, which will serve as the input for the compar-
ison mechanism optimising the configuration of
the statistic knowledge acquisition process,
which we will describe in the next section. 

4. Generic and configurable acquisition and
enrichment

4.1 Overview of the approach

For the remainder of this paper we consider an
ontology  to be given. In this section we refer
to a generic approach to determine similarities
between concepts. It is based on computing sta-
tistics of word usage in natural language. Large
text corpora are the basis for such statistics. [Bi-
NeCa] first described the design and the capabil-
ities of such an approach and applied it to
conceptual clustering without a given ontology.
Consequently the major differences between
[BiNeCa]  and our approach are
• we focus on creating algorithms for ontologi-

cal enrichment and not on automatic ontol-
ogy generation.

• we control our textual input by the concepts 
from . This is motivated by experiments 
outlined in [BiNeCa]: specialised and pruned 
corpora seem to be the ideal input to unbias 
the word usage statistics.

• we only will use the initial step of  [BiNeCa] 
and define conceptual similarities. We will 

modify it because we want  to determine 
conceptual similarities within and by the 
help of .

We undertake the following steps: we list the
concepts from the ontology  and query the text
corpus.  This extracts from the corpus all natural
sentences with at least one concept from the on-
tology  (see 4.2). We fill a representation of
the collocation phenomena in these extracted
sentences (see 4.3). From this sample representa-
tion we define similarity measures between any
pair of concepts: note that a concept may belong
to the known concepts from  and the additional
concepts from the extracted sentences, which
were formerly unknown. This finally yields  sim-
ilarities between each pair of concepts. These
similarities will be optimised (see 4.4 and 4.5) in
such a way, that at least the known concepts from
the ontology  have similarities, which do not
contradict the distances from section 3.2.

4.2 Corpus split and extraction

Again an ontology  and a large text corpus are
given. By  we denote the
set of concepts from . In this first step we de-
rive a corpus , which contains all sentences
from  the given corpus with at least one . 
The preparation of a corpus  is motivated by
the work of [BiNeCa] on the one hand, who
found evidence for the fact that specialised cor-
pora with a restricted vocabulary tend to be a
good basis for ontology learning. A partial re-
striction of the vocabulary and the domain in our
case will be due to the set of concepts . The
work of [ChGr]  shows, that a corpus, which is as
general as the one we use (a newspaper corpus in
both cases) may be split to several artificial cor-
pora, that were also a good basis for ontology
learning. [ChGr] called their method ’corpus
split’ because they grouped sentences from the
corpus to thematic domains: a sentence was add-
ed to the sample of the thematic domain, if it con-
tained significantly many words from one and
only one thematic domain. The thematic do-
mains were characterised by typical words oc-
curring in domain (such as ’judge’, ’crime’,
’law’ for the domain if justice) together with a
value of importance: for the domain of justice
judge(0.8), law(0.5), crime(0.6) for example
would indicate, that the occurrence of ’judge’ in
a sentence is highly significant for grouping a
sentence containing ’judge’ to the domain of jus-
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tice, i.e. more significant than the occurrence of
’law’ in a sentence. The domain significance in-
formation was determined by a collocation net-
work of the classical news categories in
newspapers ( politics, foreign affairs, arts, me-
dia, justice etc.).
Our approach to extract sentences from a corpus
works from the point of view - and especially

 - instead of a collocation network. Another
difference to [ChGr] is, that we do not categorise
the extracted sentences to get specialised text
corpora. We rely on the powers of the distance
measures for  defined in 3.2 to implicitly
group the concepts from . This will be done
in the further steps.
Although the ontology enrichment approach we
will show in the remainder of this paper is a tech-
nique, which may be applied to other languages,
our methodology will be applied to German. For
German the IDS ( ’Institut für deutsche Sprache’,
i.e. German Language Institute) located at Man-
nheim/Germany offers online access to very
large newspaper corpora [IDS]. The general on-
line corpus  at the IDS contains several volumes
of more than ten newspapers respectively. More-
over we find the online query system COSMAS
I [IDS] supporting extraction queries like the one
described at the beginning of 4.2. and in addition
to this systematic stemming. Consequently for
the German language we find an ideal environ-
ment for the establishment of the corpus 

4.3 The representation matrix

The next basic step is filling a representation ma-
trix  for a finite rule set  and the cor-
pus  defined in the previous section. We
firstly explain, what a matrix entry means and
then we explain how we install a rule set . Let
us state, that  by definition contains some of
the concepts  and  further nouns, which we
aggregate to a set .  are known con-
cepts from the ontology , whereas  are
formerly unknown concepts.
 We define  to be empty, 
consists of the concepts (i.e. nouns) additionally
found in  and is the set of the potential candi-
dates for the enrichment.
Each row in the representation matrix includes
the information concerning the properties of ex-
actly one concept from the unified set of con-
cepts . More precisely reading the
i-th row of   verifies, if the rules in 
are fulfilled for the i-th concept of . 

That means the j-th entry in the i-th row indi-
cates, if the j-th rule is fulfilled or how often it is
fulfilled in . The rules  used in [BiNeCa]
were of a syntactic type. The deployment of a
syntactic parser found concepts, which appeared
in at least one sentence from the corpus in a sub-
ject-predicate-object relationship with another
concept. We give an example of a syntactical
rule: 

Take the sentence ’The bakerman is baking
bread’ as an example sentence occurring in
the corpus. The rule  ’ ’bread ’ occurs as an
object of  ’bakerman’ ’ would be fulfilled,
as the sentence exists, and in the row for
’bread ’ there would be a positive entry at
the j-th position, if  j is the number of the
rule ’concept x occurs as an object in sen-
tence with bakerman as a subject’.

As we do not have syntactic parsers for German
at hand we define a rule set , which reflects an-
other usage information. The genericity of the
approach comes into play here: technically every
rule set  reflecting usage of concepts in a cor-
pus may design the columns of our matrix

. 
The query system, which [IDS] offers, is able to
return the words, which occurred at a maximal
distance  in a sentence.  just counts, how
many words one has to pass in a sentence from
one word to another.  At this point we remark,
that the notion of   should not be mixed up
with the semantic distances from section 3.2. In
our example sentence ’The bakerman is baking
bread’ we obtain the values for  listed in ta-
ble 1

For the rule set  we chose a fixed  and con-
stitute the j-th rule dependent from the ontology

 and its set of concepts . 
We define the j-th rule  to be fulfilled for a
concept , if x occurs at a prede-
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fined maximal distance  to the concept
 in a sentence from . 

Once we organised this particular rule set  we
declare the entries  of the matrix

as follows:

(2) , if the i-th concept in
does not fulfil the j-th rule 

in 

(3) , if the i-th concept in
fulfils the j-th rule  in 

For a more refined evaluation of the fact how of-
ten a rule  was fulfilled we could modify 
from (3) and count the number of occurrences of
rule  for the i-th concept. 
Actually all the  from for technical reasons
should be normalised to obtain . We
achieve this by viewing all  as a statistic sam-
ple, applying statistic standardisation and cutting
off all  values less than zero.
For the development of  our approach we only
focus on three characteristics of the : 

(i)  if a rule is not fulfilled for a concept, (2)
applies and the entry equals zero. 

(ii)  if a rule is fulfilled for a concept,
 must hold.

(iii) if we do not rely on the naive strategy
(3), we should define  positively corre-
lated with the frequency of this rule appear-
ing in the corpus .

We now give an example of a representation ma-
trix constructed according to (2) and (3). Note
that the size of the example is not realistic. In-
deed we have to deal with large corpora, so we
just demonstrate the context of section 4. Let the
set of known concepts be

. Let  consist of
two sentences:

The bakerman is baking bread.
She had bread and butter for breakfast.

The set of additionally retrieved concepts from
the corpus  is

. With a rule set
 founded on the word distance  in a

sentence and the naive entry strategy (3) we ob-
tain a matrix  like the inner cells we
visualise in table 2:

The matrix is not at all typical, regularly we ex-
pect sparse matrices in our approach. The next
section will derive similarity measures from ma-
trices  by comparison of the respec-
tive rows. 

4.4 Configurations, similarities and optimal
configurations

We follow [BiNeCa] and assign a weight to each
rule in our set of rules . While [BiNeCa] as-
signed these weights with a focus on avoiding
overgeneral clustering, a problem obscuring
many approaches in automatic thesaurus and on-
tology construction, we will use the weights as a
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configuration, which bring into line the two se-
mantic informations we compute: the distances
implicitly given by  (see 3.2) and the sim-
ilarities we define now.
Let us assume a given representation matrix

. A set of positive (or
zero) reals with  will be called configura-
tion of the rule set . The configuration k de-
cides about the similarities we derive from

 by the following definition. We de-
fine conceptual similarity S(x,y) between two
concepts x, the i-th concept from

and y, the j-th concept from
to be 

Thus a fixed configuration is needed to compute
S(x,y). The question arises, how we should chose
such a fixed configuration k. Remember section
3.2: we already own - for the concepts  from
the ontology  - a similarity, we just have to in-
terpret semantic distance D(x,y) as the contrary
of semantic similarity. Because we required for
our distance measure  the trans-
formation of such distance measures to similarity
measures,  can be achieved easily:

Taking the distances the ontology  as an input,
which approximately should be supported  by the
S(x,y) the question of finding an optimal config-
uration k reduces to the question:

 what configuration might minimise the av-
erage (squared) error expressed by the
(squared) differences ?

Finally we present  a formulation of this question
in terms of a quadratic optimization formula.
Searching for an optimal k means searching for a
minimum of the expression 

(6) 

with respect to and  for all
. Let us clarify the notation of formula (6):

we let i and  j run from 1 to . This
means, that in formula (6)  denotes the i-th
concept from . Correspondingly in (6) the

 are the matrix entries in in the
row of , whereas the   are the matrix entries
of   in the row of  .
As the time consumed for solving  the quadratic
optimization problem (6) depends on the number
of rules, we mention at this point, that in case of
large rule sets  these  can be reduced in two
ways: 

• if a rule is not at all or only once fulfilled for 
the concepts , it does not influence S(x,y) 

for  andshould be skipped.

• if two rules are strongly positively corre-
lated, for example in case of synonyms con-
stituting the rules, one could merge these 
rules to one rule.

Furthermore, we suggest a careful approach to-
wards the number of concepts from , that is on

. All steps presented also work with any
subset of .
We now get to our conclusion and explain,
which concepts are candidates for the ontologi-
cal enrichment.

4.5 Ontological enrichment

Once we optimised formula (6) with respect to
we obtain the configuration in

need to compute all the similarity measures
S(x,y) between all the concepts
from . We propose to apply an en-
richment step starting with the optimal similarity
measures S(x,y). 
Only take into concern the S(x,y) with 
and . If such a distance between a for-
merly known concept and a formerly unknown
concept exceeds a threshold, for example the av-
erage of the similarities , it is a candi-
date concept, which should be communicated to
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a knowledge engineer creating or maintaining
the ontology .
Additionally the S(x,y) with  and

 carry even more information, namely
an optimal placement of the candidate concepts.
The candidate concepts  and the concepts from

  can be presented together, a fact that simpli-
fies the knowledge engineer’s understanding of
how the candidate concepts evolved, i.e. in

which semantic area of  they might belong.
We sketch how this can take place in a visualisa-
tion. Remember figure 2, which presented

, the hierarchical parts of  as a graph.
Figure 3 is an example of a visualisation of the
enrichment process.

. 

Figure 3 shows the visualisation of the known
concepts on the left. On the right the candidate
concepts were inserted. These candidate con-
cepts have a similarity exceeding the threshold T
we mentioned at the beginning of this subsec-
tion. Moreover, the dotted lines between candi-
date concepts and known concepts show, which
one of the known concepts and which one of the
candidate concepts have a similarity exceeding
the threshold T. To sum it up we can visualise our
ontological enrichment by drawing , add-
ing all , for which a  with
S(x,y) > T  exists. Finally we draw a line for each
pair x, y with S(x,y) > T. Thus a candidate con-
cept can refer to one or many existing concepts,
and two or more candidate concepts can refer to
one existing concept. 

5. Conclusions and future work

In this paper we presented an approach of onto-
logical enrichment. The approach leads to group-
ing new concepts identified in a large text corpus

to concepts known in an ontology . The way to
achieve this goal is influenced by the given on-
tology  three times:

(i)  we derived a text corpus , which is
particularly characteristic for .
(ii) we created rules to determine, to which
extend the usage of a concept in  was
similar to  the usage of another concept in

. The rule set  consisted of rules im-
plied by the ontology . 
This step was possible because the ap-
proach has generic features principally al-
lowing the use of many different rule sets.
(iii) during an optimization process we
grouped  candidate concepts to concepts
from . The optimization process was due
to attaching a weight to each rule. The con-
figuration of these weights was transformed
into an optimization problem with semantic
distances also derived from . 

By (i) to (iii) we extended an approach originally
stemming from semi-automatic ontology engi-
neering and conceptual clustering [BiNeCa].
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The work presented in this paper should be con-
tinued with experiments. An evaluation of the
experimental results from our point of view
should investigate the following questions:

- do different distance measures fulfilling
the requirements 3.2 (i)-(iv) yield very dif-
ferent enrichment results?
- what is a sensible choice for the threshold
T? To answer this question, we must inves-
tigate, how many concepts are proposed as
candidate concepts with different thresh-
olds T.  
- does the quality of the candidate concepts
satisfy the needs of an ontology engineer?

In our opinion the latter question is crucial.
Roughly speaking, there are two ways of finding
answers to this evaluation question. We could
take parts of existing large ontologies and see, if
the parts left out evolve through our enrichment
process. On the other hand, we could ask a
knowledge engineer to build a (small) ontology
and comment the candidate concepts found after-
wards. This evaluation should include answering
the questions, which concepts did the engineer
expected to be added, if they did appear in the en-
richment results, if the enrichment results con-
tained unsuspected high-quality concepts and on
the contrary bad candidates.
Also future work should experiment either with
more complex concept extraction from the texts
(like attributed nouns) or extending the candi-
dates due to high similarity to another candidate
concept.
From a more abstract point of view, future work
also includes  applications of the approach to on-
tology merging and mapping, i.e. to the question,
what happens if we take more than one ontology

 as basic input. Finally, the question arises if
the approach presented here benefits automatic
ontology generation, i.e. if there are also optimi-
zation problems to be stated and solved in this re-
search area. 
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