
DETECTING VM LIVE MIGRATION
USING A HYBRID EXTERNAL APPROACH

Sebastian Fiebig, Melanie Siebenhaar, Christian Gottron, and Ralf Steinmetz
Multimedia Communications Lab (KOM), Technische Universität Darmstadt, Germany

{firstname.lastname}@kom.tu-darmstadt.de

Keywords: VM Theft, Virtualization, VM Live Migration, Monitoring, Taxonomy

Abstract: Cloud computing has become a paradigm of our time. It is not only a technical solution, but a business
model to sell and rent computing power and servers. Virtual machines (VMs) are used to allow a dynamic
and transparent server utilization, which is made possible by VM live migration. VM live migration allows
to move VMs within and out of data centers while the VM is still running. Thus, resource usage becomes
more efficient. However, VM live migration also provides an opportunity for new attack vectors, which
can be used by malicious attackers. They can compromise hypervisors and afterwards steal VMs from data
centers to gain control over resources. In the worst case scenario, the theft remains undetected by both system
administrators and customers. In this paper, we present the first taxonomy of possible VM live migration
detection approaches. There are two different monitoring approaches, i.e., internal or external monitoring,
as well as different detection approaches, which correspond to the different approaches to detect migration.
Moreover, we propose a hybrid external approach using delay measurement with ICMP ping and time-lag
detection with the network time protocol (NTP) to detect VM live migration. We show that VM live migration
can be detected by using a prototype of our hybrid external approach.

1 INTRODUCTION

Cloud computing has become a paradigm of our time.
It is not a mere technical solution but also a business
model. One of the key concepts of cloud computing
is its dynamic resource provisioning. Through that,
computing power can be co-located in data centers
that can be shared by just one enterprise, but also be
outsourced and used by different enterprises.

Cloud computing is based on the so-called virtu-
alization. This feature allows dynamic resource pro-
visioning and adaption with VMs. One of the fea-
tures made possible by using virtualization is live mi-
gration. Live migration allows to move a VM be-
tween different servers using the underlying hypervi-
sor, while the VM is running. Therefore, a seamless
use of services is made possible. Because no or only
barely measurable downtimes occur, it is in general
hard to detect an ongoing VM live migration process.
While VM live migration has many advantages, it also
allows for completely new attack vectors. If the hy-
pervisor is compromised by any means whatsoever,
the live migration can be used to steal or copy VMs.
Having no information from the hypervisor, a detec-
tion of a VM live migration is hardly possible without

further monitoring. Thus, while on the one hand the
invisible VM live migration has the advantage of en-
suring a seamless VM utilization, on the other hand,
it offers an opportunity for attackers to hide their ac-
tions. In this paper, we extend the work of (König
and Steinmetz, 2011) and present the first taxonomy
of VM live migration detection, giving two general
distinct approaches and several detection approaches.
We choose a hybrid external approach to detect VM
live migration.

This paper is organized as follows: First, we dis-
cuss relevant literature in this field and give relevant
background information. This includes virtualization
and live migration as well as a description of a sce-
nario of how VM theft can be realized. In Section 4,
we show the detection taxonomy of VM live migra-
tion. Our hybrid external approach is discussed in
Section 5. The corresponding prototypical implemen-
tation follows in Section 6. This prototype is an exam-
ple of how to realize a monitoring system for a virtu-
alized infrastructure. After that, our experimental re-
sults, which give rationales for preferring the hybrid
approach, are presented and the applicability of our
prototype is shown. Finally, we conclude and present
suggestions for future improvements.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

rst
Textfeld
Sebastian Fiebig, Melanie Siebenhaar, Christian Gottron, Ralf Steinmetz:Detecting VM Live Migration Using a Hybrid External Approach.In: Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER 2013), May 2013. 



2 RELATED WORK

An overall summary of the different types of virtual
migration exploitation is given in (Oberheide et al.,
2008). Oberheide et al. describe three general attack
vectors: Control Plane, Data Plane, and Migration
Module. These differ in the way the migration pro-
cess is compromised.

There are several publications covering the prob-
lem of malicious hypervisors as well as counter-
measures to prevent attacks on them. (Xia et al.,
2012) show the attack vector of rollback attacks, i.e.,
reestablishing a previous state of a VM without the
user’s awareness. This can lead to a state with open
security holes. Xia et al. propose a so-called safe log-
ging to prevent such rollback attacks on VMs. (Wang
et al., 2010) describe a mechanism for securing the
process of VM migration. The process is measured
by using specific policies, e.g., allowed user roles that
can migrate or allowed target hosts for the migration
process. A general overview of cloud computing se-
curity is given by (Tsai et al., 2012).

The performance of VM live migration depends
on a number of metrics. Two key parameters de-
termining the speed of live migration are memory
changes, namely the page dirty rate, and the network
transfer speed, which both have a non-linear influence
on the migration performance (Akoush et al., 2010).

(König and Steinmetz, 2011) show that ICMP
ping is an appropriate mechanism to detect the live
migration of VMs. The round-trip time of pings
shows a higher average while migrating and at the
end of the migration process packets might be lost.
ICMP ping was also used as detection characteristic
by (Nirschl, 2011). König et al. have discovered that
the CPU load does not highly influence the ICMP
ping round-trip times if it is made sure that as few
memory changes as possible occur. This can be seen
as corresponding to the fact that the VM live migra-
tion performance can be predicted without taking the
CPU load into consideration (Akoush et al., 2010).

In previous publications, it has been shown that
it is possible to use appropriate mechanisms to auto-
matically detect changes in pings in order to detect a
VM live migration (Gottron et al., 2012). Administra-
tors can use this to monitor their server infrastructure
and to apply countermeasures if needed, e.g., in case
a malicious migration is happening.

To the best of our knowledge, in Section 4 the first
taxonomy of different VM live migration detection
approaches is given.

3 BACKGROUND

In this section, the VM live migration process is dis-
cussed and a simplified migration sequence for this
paper is introduced. Additionally, an attacker scenario
for VM theft is proposed to show how a malicious mi-
gration is realized.

The VM live migration process is described by
(Clark et al., 2005) using six steps. For the under-
standing of this paper, the VM live migration can be
divided in only three phases:

1. Memory Copy: Memory copy and mapping from
source to target host while the VM runs on the
source host. Detecting a migration in this phase
is preferable, because only then the full migra-
tion can be prevented. Nevertheless, a detection
is more difficult in this phase.

2. CPU Copy: Stopping the CPU and copy registers
from source to target host. In this phase, the VM
must be stopped, which causes detectable traces.
These can be more easily tracked.

3. Switch: Removing the VM from the source host
and starting the VM on the target host. After this
phase, the VM runs on a new host. If the new host
is not identical in software and hardware, these
changes could be detected.

The three phases are the basis for the understanding
of the detection taxonomy and experiments. Never-
theless, a detection of the live migration process even
after phase 3 is important to prevent further damage.

In the following, a possible scenario for a VM
theft is discussed. The steps for a successful attempt
to steal a VM from a cloud infrastructure are as fol-
lows (see Figure 1 for a structure of the scenario):

1. Compromise the hypervisor migration module to
gain access over the migration management.

2. Optional: Setup a corresponding subnet agent in
the hypervisor network (as described in (Silvera
et al., 2009)) to support migration across different
subnets.

3. Migrate the VM to another host, that can be lo-
cated in another subnet.

The attacker does not necessarily need to be an out-
sider, the cloud provider himself could be the attacker.
He/she could try to optimize the resource utilization
in his/her data center. In order to do so, he/she could
move VMs out of overloaded European data centers
to the USA without consent and knowledge of the
SaaS (Software as a Service) provider and SaaS user.
This becomes even worse when EU data protection
directives must be obeyed. Given that, the cloud
provider has the possibility to more or less hide all of



Connection

IP-tunnel

4. Migration

Connection

SaaS 

Provider

VM 1

SaaS 

Provider

VM 2

Migration 

Module

Cloud Provider 

Server
Attacker 

Server

Attacker 

VM

Using Services

Subnet 

Agent

Subnet 

Agent

SaaS User

1. Infiltrate Hypervisor

2. Create Subnet Agent

3. Initiate Migration

Internet

After Attack:

Using Services

Figure 1: A scenario for VM theft to a different subnet
(based on (Silvera et al., 2009)).

his/her actions. Compared to an attack coming from
outside, this scenario is also easier to realize. With
this slightly changed scenario, the hypervisor does not
even need to be compromised. The cloud provider
could simply present wrong information to the SaaS
provider.

4 VM LIVE MIGRATION
TAXONOMY

We now present the first taxonomy of VM live mi-
gration detection. There are two general monitoring
approaches and four detection approaches that can be
distinguished when trying to detect a live migration of
VMs (see Figure 2):

• Internal Approach: When using an internal detec-
tion approach, a monitor inside of a VM is used to
detect a malicious migration. These approaches
include hypervisor detection, hardware detection,
time-lag detection, and delay measurement. Inter-
nal approaches have the advantage of lower net-
work usage and of not needing an extra monitor-
ing server. They do not apply, however, if only a
copy attack is performed to copy a consistent state
of VMs leaving the original VM untouched.

– Hypervisor Detection: Different types of hy-
pervisors have different fingerprints (e.g., (Fer-
rie, 2006)) that can be used to detect a change
or replacement of the hypervisor, e.g. another
version.

– Hardware Detection: Hardware benchmarks
can be used to reveal a changed server con-
figuration. They could for example reveal a
changed CPU execution speed or link speed
of the new physical host of the VM. This can
be seen as the so-called VM footprint (Sonnek

and Chandra, 2009). Two different footprints
can be distinguished between the – dynamically
changing, but location independent – amount of
resources a VM wants to use (virtual footprint)
and the amount of resources the VM actually
uses on its physical host (physical footprint).
Migrating a VM to a different host may lead to
a changed physical footprint, which would then
be detectable.

– Time-lag Detection: Measure the NTP time to
detect a lag in time. In phase 2 of the migra-
tion process, the VM is stopped for a certain
amount of time and is then started on a new
host again. Being stopped for a certain amount
of time leads to a sudden time-lag, which can
reveal a migration.

– Delay Measurement: This is the original ap-
proach described in (König and Steinmetz,
2011) applying internal monitoring to defined
network entities.

• External Approach: When using an external de-
tection approach, mechanisms outside the super-
vised VMs are used to detect a malicious mi-
gration. The detection approaches are the same,
but the specific realization differs. External ap-
proaches need an extra server to monitor VMs, but
therefore not every VM needs to monitor itself.

Internal

External

Hypervisor 

Detection

Delay 

Measurement

Hardware 

Detection
Monitoring 

Approach

Time-lag 

Detection

Detection

Approach

Figure 2: VM Live Migration Taxonomy that distinguishes
between monitoring approach and detection approach. For-
mer describes from where and latter how to monitor.

All these approaches allow either for a detection while
live migration is in progress or only when the mi-
gration has been finished. Obviously, detection ap-
proaches that detect a change in the VM environment
(e.g., hypervisor detection) are only able to detect mi-
gration after the last phase.

5 HYBRID EXTERNAL
APPROACH

We use a combined approach of delay measurement
with ICMP ping and time-lag measurement using



NTP to detect a malicious VM live migration. Be-
cause the delay measurement using ICMP ping has
the disadvantage of needing a relative high monitor-
ing frequency, the second approach is added. Thus,
we can use a lower interval for the first approach and
be nevertheless sure to detect a migration.

Based on the work of (König and Steinmetz,
2011) and similar to (Nirschl, 2011), we use the
ICMP ping to detect the main characteristic features
to assume a VM live migration. To do so, a heuristic
based on the characteristic features of the ICMP ping
round-trip times is used. These are increased average
round-trip time, very high outliers mainly at the start
of a migration and, additionally, unanswered pings in
the second and third phase of migration.

As stated above, the main disadvantage is that
the high monitoring interval can be counteracted with
the time-lag measurement. However, in cases where
a high monitoring interval is possible, the proposed
heuristic is a possibility to abort the migration process
before it has finished.

The NTP allows computers to synchronize their
time with an external server. In (Broomhead et al.,
2010), the problem that time does lag after a VM live
migration as well as the possibility of using a clock
mechanism called RADclock (Robust Absolute and
Difference Clock) to prevent those time-lags, are dis-
cussed. For VM live migration detection, this time-
lag is a valuable information to be able to detect a mi-
gration. After a migration, the time continues from
the exact time as before the migration. This shift
in time can be detected. This time converges to the
proper time, as time jumps would not be appropri-
ate for running programs that rely on a proper time
progression. The slow converging of time allows a
detection in a large time frame. This is even larger,
the more time the second (CPU copy) and third phase
(Switch) of the migration takes.

6 PROTOTYPE

Our approaches have been prototypically imple-
mented as a software demo. This prototype is able to
detect if a VM is migrated and can give the user a no-
tification about the likelihood of a migration process.
To detect migration, the proposed hybrid external ap-
proach is used as described above in Section 5.

The system interface is built as follows: The user
has the ability to specify his/her VM servers, i.e., host
name or IP address. In addition, the monitoring in-
terval can be adjusted. A migration process needs
at least the time to transfer the whole memory con-
tent once. One minute might not be sufficient for

VMs with only small memory size and high band-
width connection within a data center. Results are ei-
ther presented in a detailed chart using the LiveGraph
API1 or a simplified view with only a status of the
migration likelihood.

7 EXPERIMENTS

We used two different testbeds to perform our experi-
ments. The first series was carried out in the German-
Lab (G-Lab)2 testbed. The installed hypervisor was
Proxmox 1.93 with four SUN Fire X4150 servers.
The servers were connected by a Cisco 4500 L3 series
switch having a bandwidth of 1 Gbit/s. On Server 2 a
NFS server was installed with a 32-bit Ubuntu 12.04.
For the experiments, a similar Ubuntu version us-
ing the KVM virtualization was also installed on the
test VMs. The migration VM was migrated between
server 2 and 3. The file system for the migrating VM
was on the NFS server, as the migration did not in-
volve the file system.

The second series was carried out in a hetero-
geneous testbed using two desktop computers with
Proxmox installed. The first server was an Intel Core
2 Duo with 2.13 GHz, 2 GB RAM and a Gigabit net-
work card. The second server was an Intel Core 2
Duo with 2.53 GHz, 4 GB RAM and a Gigabit net-
work card. A third computer was used as monitor. All
were connected with a Netgear switch with a band-
width of 100 MBit/s.

There are several metrics that are interesting for
VM live migration. The metrics can be derived from
the parameters influencing the migration performance
as given in (Akoush et al., 2010). These are page dirty
rate, link speed, VM memory size, and migration
overhead. Together with the results from (König and
Steinmetz, 2011), a useful set of metrics, besides gen-
eral hardware differences for the hypervisor servers
are memory, CPU use, and network bandwidth and
distance.

The network bandwidth was restricted using
WANem4 as proxy. To create CPU load, a bash script
with an endless loop was used, so that the page dirty
rate could be minimized.

On the first testbed, we could replicate the results
given in (König and Steinmetz, 2011). That is, the
ICMP ping to a VM gives a characteristic round-trip
times pattern while migrating. Some of the more

1http://www.live-graph.org/
2http://www.german-lab.de
3http://pve.proxmox.com/wiki/Main_Page
4http://wanem.sourceforge.net/



−20
 0

 20
 40
 60
 80

 100
 120
 140
 160

 0  50  100  150  200  250  300  350

R
T

T
 [m

s]

Ping #

(a)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  50  100  150  200  250  300  350

R
T

T
 [m

s]

Ping #

(b)

−40

−20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350

R
T

T
 [m

s]

Ping #

(c)

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200  250  300  350

R
T

T
 [m

s]

Ping #

(d)

−20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300

R
T

T
 [m

s]

Ping #

(e)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  50  100  150  200  250  300

R
T

T
 [m

s]

Ping #

(f)
Figure 3: Measurements in the heterogeneous network topology. Measuring migration from first to second server and vice
versa with ICMP ping every second. Negative values mark unanswered pings, not round-trip times. (a) Ping to first server.
(b) Ping to second server. (c) Ping to VM. (d) CPU load 100 percent on VM, ping to VM. SCP transfer measurements in a
similar way, copy from first to second server and vice versa. (e) Ping to first server. (f) Ping to second server.

interesting test results were obtained using the sec-
ond testbed with heterogeneous setup. This is also
more realistic in case of an attacker stealing VMs into
his/her own subnet. The most interesting result mea-
surements are shown in Figure 3. The first three Fig-
ures 3(a)–3(c) show the ICMP ping measurement for
both servers involved in the migration and the VM
itself. The migration is first performed from server
1 to server 2 and afterwards from server 2 to server
1. As can be seen, not only the measurement for the
VM shows a characteristic trace, but also the hyper-
visor servers do so. The characteristics are signifi-
cantly more pronounced when pinging the less pow-
erful server (in terms of CPU power). In addition,
the characteristics are almost only measurable for the
server initiating the migration process, independent
from the computing power.

We used the first testbed described and measured
the occurring time course. As can be seen in Fig-
ure 4, the time-lags after a migration are over 100 ms.
That time corresponds to phase 2 of the migration pro-
cess that largely depends on the speed at which the
last remaining VM resources are copied. The time
converges after a synchronizing event with an NTP
server. A low monitoring interval is possible, because
the time to converge takes more than several minutes
and only after an NTP update occurs.

In addition, we performed a simulation approach
for the VM live migration. To do so, we used the

−50

 0

 50

 100

 150

 0  100  200  300  400  500  600

T
im

e−
la

g 
[m

s]

Time [s]

NTP detection

Figure 4: Measuring a time-lag when migrating a VM. This
induces a time-lag of more than 100 ms.

second testbed and copied files using SCP (Secure
CoPy). The characteristics while pinging the first and
the second server are depicted in 3(e) and 3(f) for a
file with a size of 2 GB. The SCP copy shows simi-
lar characteristics as a migration process. When com-
pared to Figure 3(a) and 3(b), the round-trip times and
general pattern are similar. Outliers at the beginning
and an increase in average ping round-trip time can
be seen. Only the unanswered pings are not present,
as could be expected. This supports the need for a
hybrid approach.

We used the prototype to test VM live migration



detection in both testbeds. As expected, several early
detections using the ICMP ping approach occurred.
Using a high ping interval to detect unanswered pings
as well as time-lag detection we were able to detect a
migration in all of our simulations.

To sum up, the experiments produced the fol-
lowing interesting results: The ping measurement as
shown by (König and Steinmetz, 2011) have not only
characteristic patterns for the VM itself, but also for
the hypervisor servers. Not only a migration, but also
a copy process of a file, as performed with SCP, leaves
a characteristic trace, and so will other network activ-
ities. Only the unanswered pings are unique in com-
bination with the other two characteristics. If a high
monitoring interval is not possible, our approach can
detect a migration process after its execution.

8 CONCLUSION

In this paper, we presented the first taxonomy of
VM live migration detection, showing different ap-
proaches that were categorized in two general groups.
Only the delay measurement approach allows a detec-
tion during the first migration phase, i.e., during the
copying of memory. This is the only way to prevent
the migration process. Nevertheless, a detection after
migration has finished is also very valuable in order
to prevent further damage.

We proposed a hybrid external approach that com-
prises an ICMP ping detection and a time-lag detec-
tion using NTP. Our approach has been tested us-
ing a prototype on different testbed configurations to
show the suitability of our hybrid external detection
approach. This applies especially to the detection of
migrations when using a low monitoring interval and
having certainty in cases where ICMP ping character-
istics have another origin than a VM live migration.

Further issues have to be addressed in future work.
The mobile IP scenario has to be thoroughly tested
and attacker scenarios have to be evaluated against the
prototype. Especially, the specifics of different server
types, e.g., video servers or webshop servers, could
be used to create even more improved monitoring ap-
proaches. In specific terms, that means that mecha-
nisms providing a correct classification for migration
cases and non-migration cases even while using low
monitoring intervals, are needed. In this field, tests
with machine learning have been performed, but their
applicability is very restricted. Finally, experiments
in real cloud environments, e.g., Amazon EC2, have
to be conducted. In this paper, we focused on the
scenario of VM theft; however, the case of copying
VM data without actually migrating the original VM

leaves even less possibilities for detection. Therefore,
more advanced detection approaches which also ad-
dress this aspect must be developed.

REFERENCES

Akoush, S., Sohan, R., Rice, A., Moore, A., and Hopper,
A. (2010). Predicting the Performance of Virtual Ma-
chine Migration. In IEEE International Symposium
on Modeling, Analysis Simulation of Computer and
Telecommunication Systems (MASCOTS’10), pages
37–46.

Broomhead, T., Cremean, L., Ridoux, J., and Veitch, D.
(2010). Virtualize Everything but Time. In Proceed-
ings of the 9th Conference on Operating Systems De-
sign and Implementation (OSDI’10), pages 1–6.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. (2005). Live
Migration of Virtual Machines. In Proceedings of the
2nd Symposium on Networked Systems Design and
Implementation (NSDI’05), pages 273–286.

Ferrie, P. (2006). Attacks on Virtual Machine Emulators.
Symantec Security Response.

Gottron, C., Fiebig, S., König, A., Reinhardt, A., and Stein-
metz, R. (2012). Visualizing the Migration Process
of Virtual Machines. In Proceedings of the 12th Eu-
roview.

König, A. and Steinmetz, R. (2011). Detecting Migration
of Virtual Machines. In Proceedings of the 11th Eu-
roview.

Nirschl, J. (2011). Virtualized guest live migration profil-
ing and detection. Graduate Theses and Dissertations.
Paper 12055.

Oberheide, J., Cooke, E., and Jahanian, F. (2008). Empir-
ical Exploitation of Live Virtual Machine Migration.
BlackHat DC convention.

Silvera, E., Sharaby, G., Lorenz, D., and Shapira, I. (2009).
IP Mobility to Support Live Migration of Virtual Ma-
chines Across Subnets. In Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference
(SYSTOR’09), pages 13:1–13:10.

Sonnek, J. and Chandra, A. (2009). Virtual Putty: Reshap-
ing the Physical Footprint of Virtual Machines. In
Proceedings of the 2009 conference on Hot topics in
cloud computing (HotCloud’09).

Tsai, H.-Y., Siebenhaar, M., Miede, A., Huang, Y., and
Steinmetz, R. (2012). Threat as a Service?: Virtu-
alization’s Impact on Cloud Security. IT Professional,
14(1):32–37.

Wang, W., Zhang, Y., Lin, B., Wu, X., and Miao, K.
(2010). Secured and Reliable VM Migration in Per-
sonal Cloud. In 2nd International Conference on
Computer Engineering and Technology (ICCET’10),
pages 705–709.

Xia, Y., Liu, Y., Chen, H., and Zang, B. (2012). Defend-
ing against VM Rollback Attack. In IEEE/IFIP 42nd
International Conference on Dependable Systems and
Networks Workshops (DSN-W’12), pages 1–5.




