
CPSys: A system for mobile video prefetching

Ali Gouta∗, David Hausheer†, Anne-Marie Kermarrec‡,
Christian Koch†, Yannick Lelouedec∗, Julius Rückert†

∗Orange Labs,†TU Darmstadt, ‡Inria
Email: ∗ali.gouta@orange.fr, †hausheer@ps.tu-darmstadt.de, ‡anne-marie.kermarrec@inria.fr, †ckoch@ps.tu-darmstadt.de,

∗yannick.lelouedec@orange.com, †rueckert@ps.tu-darmstadt.de

Abstract—Online media services are reshaping the way video
content is watched. People with similar interests tend to request
same content. This provides enormous potential to predict which
content users are interested in. Besides, mobile devices are
commonly used to watch videos which popularity is largely driven
by its social success. In this paper, we design CPSys a Central
Predictor System to prefetch relevant videos for each user. To fine
tune our prefetching system, we rely on a large dataset collected
from a large mobile carrier in Europe. The rationale of our
prefetching strategy is first to form a graph and build implicit
or explicit ties between similar users. On top of this graph, we
propose the Most Popular and Most Recent (MPMR) policy to
predict relevant videos for each user. We show that CPSys can
achieve high performance with respect to the correct prediction
ratio and by significantly reducing the traffic overhead. We
further show that CPSys outperforms other prefetching schemes
that have been presented and studied in the state of the art. At
the end, we provide a proof-of-concept implementation of our
prefetching system.

I. INTRODUCTION

Today, mobile devices are commonly used to watch videos
everywhere. Within a few years mobile devices are likely to
become the users’ preferred choice for accessing the Internet 1

while according to [1] multimedia content represents already
a significant portion of the mobile traffic today. This growing
trend is to a large extent driven by social networks. Online
social networks (OSNs) are reshaping the way videos are
being consumed. That is by boosting popularity of video
content within groups of users with similar interest [2] and by
providing viewing recommendation for each user. EdgeRank
[3] is used by Facebook to sort items on the news feed of
the individual users based on affinity, weight and time decay
scores. These key factors drive users to conduct a particular
behavior when browsing their news feed and allow for a
prediction of content a user is interested in. This social or
interest based interaction can be leveraged by networking
actors, in particular over-the-top (OTT) content providers
and content delivery networks (CDNs), to predict future
behavior of users and decide if it is worth pushing videos to
the interested users at a particular time. Hence, if properly
designed, prefetching videos can alleviate the network during
peak traffic periods, i.e. flash crowds. Besides, it can improve
the user experience since it avoids buffering delays or stalling
of the streaming video as the content can be played from
local storage.

1http://www.morganstanley.com/about/press/articles/4659e2f5-ea51-11de-
aec2-33992aa82cc2.html

In this paper, we design and implement CPSys, a Central
Predictor system to prefetch videos on users’ mobile devices.
Our prefetching scheme aims to answer the 3 following
questions:

• Which content should be prefetched? To determine
which content the user is interested in is hard in
general. The lifetime video views combined with the
preferences of the users are key factors to build an
accurate prediction model. CPSys assumes that the
user runs an application on his device which reports
information to a central server which holds all users’
profiles and their past activities. This central server
builds and maintains a similarity graph. This graph
is either inferred from the user’s social ties or built
based on collaborative filtering techniques. We name
the former a social graph and we name the latter an
interest graph. When CPSys runs in social mode, the
application running on the user device reports to the
central server the social ties of that particular user,
hence we build and maintain the social graph based
on these reports. When CPSys runs in interest mode,
the graph is built and maintained as the following:
Everyday, we compute the affinity scores between
users and reassign the edges with respect to these new
scores.
Finally, on top of this graph, we identify and maintain
for each user a list of relevent videos that would
interest him or her. We infer this list from the videos
watched by the neighbors.

• When to trigger prefetching? We define two control
mechanisms: a network-oriented and a state-transition
control mechanism. The former allows an efficient
use of network resources while the latter aims at
controlling the prefetcher agent running on the user
device. Combined, these control mechanisms do not
allow the agent to prefetch videos aggressively or
randomly.

• How many videos are to be prefetched? This is a
design choice. We differentiate between 2 kinds of
users: Heavy and light users. We correlate the number
of videos to prefetch with the user’s past activity and
conclude on the number of videos to be prefetched.

Our system design can be leveraged by all networking
actors, in particular by OTTs, CDN providers, and telcos. We
implemented several features to make it open and flexible for
future extension.

The rest of the paper is organized as follows. Section II

IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539/15 $31.00 © 2015 IEEE
DOI 10.1109/MASCOTS.2015.38

188

Ali Gouta, David Hausheer, Anne-Marie Kermarrec, Christian Koch, Yannick Le Louédec and Julius Rückert, CPSys: A System for
 Mobile Video Prefetching, In Proc. of the IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer
 and Telecommunication Systems (MASCOTS), 2015, ISSN: 1526-7539

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work
on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered
their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright.
These works may not be reposted without the explicit permission of the copyright holder.

Dataset Number of Number of Number of Service Typical URI
name unique users unique videos requestes provider
YT 3,179,296 10,676,156 64,722,755 Google r8—sn-4g57kue6.youtube.com/videoplayback?id=←↩

(Youtube dataset) CDN d1875abcee9b6d33&itag=36&source=youtube&....

FB 399,645 2,856,321 14,305,404 Akamai video.ak.fbcdn.net/hvideo-ak-prn2/v/←↩
(Facebook dataset) 1608327_750958311600439_982850231_n.mp4?...

TABLE I. PROPERTIES OF THE TWO USED DATASETS

describes the related works. Section III represents observations
on the behavior of clients through analyzing the used traffic
trace. In Section IV, we introduce our system and configure
it with respect to the observations drawn from the previous
section. In Section V, we extensively evaluate our system
with different assumptions. Section VI, we provide a proof-of-
concept implementation of our system. Finally, we conclude
the paper in Section VII.

II. RELATED WORKS

Watching videos with mobile devices becomes more and
more popular. In [4] and [5], authors deeply investigated the
mobile users’ viewing behavior when the mobile devices are
connected to 3G and WiFi networks. Their study focuses
mainly on TV programs watched on mobile devices, while in
this paper we provide insights into video properties published
in two widely user generated content (UGC) services, namely
Facebook and YouTube UGCs. Interestingly, we observe a
common behavioral pattern between our analysis and those
provided in [5] regarding the evolution of video popularity.
Our analysis on Youtube videos -except music category- shows
a sharp increase in popularity immediately after uploading the
video. This increase is followed by a fast decrease in the
number of views across time. This same pattern is observed
for TV programs watched on mobile devices.

Recent studies have brought forth the benefits of prefetch-
ing videos on mobile devices. NetTube [6] and SocialTube [7]
were designed to leverage P2P overlays to download YouTube
videos. In these systems, authors proposed a prefetching
scheme for prefetching prefixes of videos to improve the user
experience at the joining phase. In SocialTube, the authors
assumed optimistic hypothesis to evaluate their prefetching
strategy. They limited their study to 2000 videos shared among
5000 nodes. While this holds reasonable to assess the maxi-
mum performance the system may achieve, we believe that this
introduces a bias on the performance results. In contrast, the
present paper exploits real traffic traces collected over a large
mobile carrier in Europe; thus all the specific characteristics
of mobile video traffic are captured and taken into account in
the assessment works reported in this paper.

In [8], authors show that prefetching has potential benefits
regarding energy savings. Prefetching when the device is
connected to Wifi can reduce the energy consumption by 10%
with respect to a 3G connection. Yet, the authors did not
investigate the fundamental and prior question that should be
addressed: which content should be prefetched to individual
users? Even if connected to Wifi, an aggressive prefetching
strategy, i.e. prefetching all videos, would drain the battery
very fast which, as well, leads to a bad user experience. In this
respect, we focus on the primarily question: what to prefetch ?
Once we identify the video candidates, we address the second
question: when to prefetch?

Mohan et al. [9], proposed to prefetch advertisements (ads),
to achieve energy savings. In this paper we do not limit
our study to ads. Instead we prefetch all videos that may
interest an individual user. Finamore et al. [10] proposed to
periodically prefetch bundles of popular content videos on
mobile devices. In the prefetching context, we believe that the
term popularity has no absolute meaning. A content might be
locally popular inside a group of users sharing similar interests,
but not globally popular and vice versa.

As briefly discussed above, none of the presented related
works address all fundamental questions that we see as be-
ing of fundamental importance to prefetching. To this end,
we carry out analysis and draw lessons using real mobile
traffic traces. Based on these observations, we design CPSys
a network-friendly prefetching system. Then, we assess the
proposed mechanism using real traffic traces. At the end, we
provide a proof of concept implementation of CPSys.

III. TRAFFIC ANALYSIS

In this section, we introduce our dataset and provide analy-
sis and findings on users’ behavior. Then, we use these findings
to infer the design principles of our prefetching system.

A. Dataset

We rely on a large dataset gathered at all Gi interfaces
of all Gateway GPRS Support Nodes (GGSN) deployed by a
major mobile carrier in France. The dataset consists of logs of
video streaming sessions generated by all connected devices
of the carrier’s subscribers. The logs were collected from 8
January 2014 to 28 April 2014. Due to maintenance reasons,
the monitoring infrastructure was disabled for 27 days, which
makes the real period of data collection lasting about 94 days.
These disruptions do not introduce any bias in the data analysis
and simulations reported in this paper since they are not
achieved over the whole duration of the dataset. We limit our
study to 2 subsets of video traffic: requests for YouTube (YT)
videos and requests for Facebook (FB) videos. Table I gives
an overview of both these subsets of traffic. Parsing the HTTP
header in FB and YT traffic flows enables to extract the unique
video identifier (noted reference ID) requested by the users. For
illustrative purpose typical URIs from YT and FB are given
in Table I, the field in bold pointing to this reference ID of
the video. To preserve confidentiality and privacy, our dataset
is anonymized during an early stage in the collection process.
When capturing the log, the user confidential information are
pre-processed and changed into a unique identifier, hence we
use a fully anonymized dataset to conduct our analysis.

In the following, we provide empirical traffic observations
and Findings (noted F), upon which we establish the design
principles of our prefetching system. Due to space limitation,
we intentionally omit to show the figures carried by the two

189

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 r

eq
ue

st
s

pe
r

da
y

request rate ’λ’ binned each 900 seconds

facebook videos
youtube videos

(a) YT+FB data

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

m
ea

n-
st

d
of

 n
um

be
r

of
 r

eq
ue

st
s

pe
r

request rate ’λ’ binned each 900 seconds

Mean youtube requests
Std w sunday

Std w/o sunday

(b) YT data

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

m
ea

n-
st

d
of

 n
um

be
r

of
 r

eq
ue

st
s

pe
r

request rate ’λ’ binned each 900 seconds

Mean facebook requests
Std w sunday

Std w/o sunday

(c) FB data

Fig. 1. a: Relationship between the number of requests per day and the daily request inter-arrival time on 01/13/2014; b and c : on the week starting from
01/13/2014

first findings. Besides, the two first findings have been largely
reported in several previous studies, yet they are still important
for the design of our prefetching system.

First, we observed that video popularity follows Zipf distri-
bution for both YT and FB videos, i.e. most of the videos are
requested few times while few cumulates most of the views.

F1: Regarding prefetching, popularity remains an important
factor to maximize the prediction accuracy and to best manage
network resource utilization: a safe prefetching strategy would
be to favor the prefetching of popular videos.

Second, we observed that few users request far more
frequently video contents – we call them heavy users – while
the majority is less active – we call them light users. Now with
respect to prefetching, predicting the behavior of light users is
hard in general and turns into a typical cold start situation
where it is hard to learn the preferences of the user from a
small set of viewed videos.

F2: It is important to adapt the prefetching strategy with
regard to the user activity. Aggressively prefetching at light
users’ videos does not make sense: Our prefetching system
differentiates between heavy and light users based on their
past activity.

In the rest of this section we investigate 3 more traffic
properties:relationship between number of requested videos per
day and request inter-arrival rate, video lifetime distribution,
and load variation across the day.

B. Relationship between number of requested videos per day
and request inter-arrival rate

Figure 1(a) quantifies the relationship between the number
of requests and the request inter-arrival time of the YT and FB
videos during one given day; here Monday, January 13, 2014.

Given a row data - a vector of (xλ, yN)u values repre-
senting one single user, where xλ represents the inter-arrival
time of requests over one day and yN represents the number of
viewed videos per day - on the x-axis, we start creating bins of
900 second long. This subsequently generates 96 bins to cover
all the day. Then each user is associated to one bin. The bin
0 in the x-axis refers to users having their inter-arrival request
time ranging from 0 to 900 seconds. Bin 1 corresponds to the
range [900 seconds, 2*900 seconds[, etc. On the y-axis, for
each of these 96 groups, we show the number of requests per
day (yN) of the 99-percentile most active user within each bin.

Figure 1(a) shows that the activity of users could be modeled
and quantified with an exponential decay. Users do not request
more than 3 videos per day when their request inter-arrival time
is higher than 20 ∗ 900 seconds.

Figures 1(b) and 1(c) generalize this observation for the rest
of the days of the week (until 20 January). In these figures,
users are binned on the x-axis as per the daily average inter-
arrival time of the requests they generated in the week of
Monday, January, 13, 2014. On the y-axis, for each of the
96 bins, we show the mean over the seven days of number
of requests of the 99-percentile most active user within each
bin. The standard deviation is also given twice: once over the
seven days, and once over six days from Monday to Saturday
(excluding Sunday).

Figures 1(b) and 1(c) show that the request inter-arrival
time remains slightly similar across the days of the week.
The standard deviation gets quickly close to zero for the
least active users and it also remains relatively low for the
heaviest users. The standard deviation is slightly higher when
it includes Sunday. This illustrates that users have more
heterogeneous consumption behaviors on Sunday than the
other days. On Sunday, we record a lower activity on mobile
devices. This suggests that the majority of users consume less
FB and YT videos on their mobile devices while a minority is
much more active on Sundays. The patterns are quite similar
for YT (Figure 1(b)) and FB (Figure 1(c)); only the mean
request inter-arrival time of the heaviest users is higher for YT.

F3: The request inter-arrival time might be used to identify
the heaviest users from the least active ones in order to enforce
them a specific prefetching strategy. Moreover Figures 1(b) and
1(c) provide additional insights to fine tune the prefetching
system: The 99-percentile most active users request no more
than 35 FB videos and 52 YT videos per day on average, which
gives an insight on the daily number of videos to prefetch.

C. Video lifetime distribution

In Figure 2, we show the lifetime distribution of YouTube
videos across the time. We limited our study to videos that
have been uploaded to YouTube on 8 January 2014, which
is the starting day of the dataset. We also excluded music
video category since this category exhibit a different popularity
dynamics with respect to the rest of categories. Popularity of
music videos is more likely to sustain across time [11], while

190

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

time (granulality per hour)

CDF of number of views across the time

Fig. 2. Lifetime distribution of videos made available on January 8 2014

-as we show in this part- other categories do not necessarily
stick to this finding.

In figure 2, we align all videos to the same starting point
and we plot the cumulative distribution of the number of
views of these videos. The figure clearly shows that most of
the views happen in a short time frame after the videos are
made available: 10% the first hour and 40% the first day.

F4: According to Cha et al. [12] a large part of content
items is immutable which means that users tend to lose interest
in an item immediately after they consumed it. Figure 2
confirms that any prefetching strategy shall be proactive and
quickly anticipate the interest of each user towards each video.

D. Load variation across the day

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 5 10 15 20N
um

be
r

of
 s

im
ul

ta
ne

ou
s

se
ss

io
ns

hour

daily pattern

(a) Load variation during the day

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 50 100 150 200 250 300 350N
um

be
r

of
 s

im
ul

ta
ne

ou
s

se
ss

io
ns

(10*x) seconds

13h00-14h00
21h00-22h00

(b) Load variation during peak hours

Fig. 3. (a) Number of active sessions across the day; (b) Zoom in during
peak hours

We plot in Figure 3(a) the aggregated number of
simultaneous YT and FB sessions in the dataset across
one representative day. As expected, it follows a classic
daily pattern with peaks at 1pm and in the evening. Figure
3(b) concentrates during the most loaded hours: 1-2pm and
9-10pm. At a granularity of seconds we observe that traffic is
not uniformly distributed. A clever prefetching strategy would
be to leverage the local minima in these most loaded hours to
push contents on mobile devices. Digging further, one might
investigate the best way to allocate the mobile spectrum. One
possible solution would be to efficiently reuse white spaces
[13] and push contents during these periods. Yet, we leave
this for future work.

F5: Load is not uniformly distributed, including at peak
hours. Therefore, prefetching should be scheduled either at
off-peak hours or at much smaller time scales at the least
loaded instants during the peak hours, and in coordination
with the mobile carrier’s resource allocation scheme.

IV. SYSTEM DESIGN

CPSys (Central Predictor System) is designed to leverage
the user’s interest or social ties to determine a personalized
list of content items to be prefetched for each user. Figure 4
depicts the CPSys architecture. The system consists of two
main components:

• Prefetcher agent. Installed on the user device this
component runs as a background service to ensure
two main functions. First it provides the centralized
predictor with reports on the user’ activities. Second
it triggers and controls the prefetching of the videos
from a list it receives from the centralized predictor.

• Central predictor (CP). This component holds and
updates profiles of all users running the prefetcher
agents based on the reports sent by these agents.
Finally it exploits all these sets of information to
predict the candidate videos to prefetch for each user
running the prefetcher agent.

The 3 following questions are used to drive the design of
our system: What to prefetch? When to prefetch? How many
videos to prefetch?

A. What to prefetch?

Our strategy is first to identify users with common interests.
The rationale is to affiliate for each user a group of users -
we call them neighbors - who tend to request similar content
items, hence we build a directed graph. Second, on top of this
graph and for a given user X, the centralized predictor tracks
the videos that has been requested by neighbors of user X
and defines a personalized list of prefetching candidates. In
the following, we detail how the CP creates the graph and
updates the users’ profiles:

1) Building the graph: The graph component (B1 on
Figure 4) is one of the most important components of the CP.
It builds and maintains ties between users based on social or
interest affinity. It implements the following two interfaces:

a) Social graph interface (SG): The prefetcher agent,
installed on the user device reports the IDs of all social
neighbors running the prefetcher agent to the central predictor.
Hence, the social graph is inferred from OSNs like Facebook
or Google+. In our proof-of-concept, we used the Facebook
API to implement this feature and make the central predictor
aware of the user’s social ties.

b) Interest graph interface (IG): The central predictor
updates in daily routine the list of neighbors affiliated to
each user. It computes similarities between users based on
all past and recorded user preferences, hence re-affecting the
implicit ties with respect to the new similarity scores. The
more we learn about the user preferences, the more accurate

191

Fig. 4. CPSys design

the prediction model can become. We use the Jaccard index
[14] to compute the Affinity (A) score between all users:

A(u, y)d =
|Lu(v)t..d−t−1 ∩ Ly(v)t..d−t−1|
|Lu(v)t..d−t−1 ∪ Ly(v)t..d−t−1| (1)

Lu(v)t..t−d is the set of videos viewed by user u over
the time window of d days. We associate for each user the
K-Nearest Neighbors (KNN), i.e. the ones with the highest
affinity scores. The decision for an appropriate K value is a
design choice.

2) Content selection process: Having established the graph,
when user X requests a content item v at instant t, the
centralized predictor captures this request in real time and
proceeds as follows:

• Neighborhood Notification (B2 on Figure 4). The CP
manages (creates and updates) a queue named QNotif
which contains the identifiers, i.e. URLs, of the videos
watched by the user’s neighbors. We call it QNotif
because it is updated only if one of the user’s neigh-
bors watches a video. More precisely, each element in
QNotif -named index- is a data-structure composed of
the unique identifier of a video and several attributes

of the video, including its popularity, the source(s)
of the request(s) for that video (the neighbor(s) who
requested the same content), its freshness (the date of
the latest request for that content), and the pointers to
the next and previous indexes in QNotif. QNotif may
implement different policies to rank the indexes in the
queue. We opted for the Most Popular Most Recent
(MPMR) policy for the queue QNotif in CPsys, as
detailed below.

• Update User Profile (B3 on Figure 4): The CP updates
the profile of user X. First, it updates the request rate
associated to this user and increments the number
of requested videos viewed per day. Then the CP
inserts the index of the viewed video into the Qviewed
queue. In CPsys we do not prefetch the same content
multiple times. The rationale behind this design choice
is twofold:
First, users watch videos at most once [12]. This is
especially the case for, e.g. catch-up [15] or user-
generated content, where users tend to watch the
content only one time.
Second, we consider the local cache of a user being
large enough to hold content items for a considerable
period of time before removing it. As a result, requests
for already prefetched items can be easily served

192

locally, even for multiple requests.

��
��,�� ��

��,�� ��
�	,�	 ��

��,�� ��
�	,�	

�: �� �
� ∶ �� � − 1
� ∶ �� � − Γ

��
��,��

Fig. 5. QNotif: Data structure which holds the prefetching candidates

Figure 5 presents the queue QNotif implemented with
the MPMR policy. QNotif is divided into a set of classes
(Cj=0..Γ):

• Each class Cj includes at least the indexes of the
videos that have been watched by a part or all of the
user’s neighbors on day d = (N − j), where N points
to the actual day (d equals to N in that case).

• Γ is a parameter, expressed in terms of number of
days. Γ is used to prevent the queue from growing
indefinitely. The setting of this parameter is a design
choice. The higher the value of Γ, the more costly
the look_up and update operations will be. Given that
the number of views in the considered dataset drops
significantly 3 days after the upload (c.f. Finding F4
in Section III-C), we set Γ to 3.

In MPMR and within each class Cj , the rank of the index
is attributed with respect to the popularity (p) as a first criteria,
then with respect to the freshness of the content. The index
heading the class is referred by (vh

ph,th) which should point
to the most viewed content by neighbors, then as far as we
iterate through the list of indexes, the popularity should either
remain the same or drops until we reach the tail of the class
(vt

pt,tt).

Based on the notations used in Figure 5, we illustrate how
QNotif is maintained with respect to the MPMR policy, we
suppose that one of the neighbors of user X requests a content
item Vl. As a result, CP updates the list of indexes of the user
X’s QNotif. Algorithm 1 and the following paragraphs detail
where exactly in the list to insert the index vl, which is a
pointer to content item Vl.

Require: Qn(v), vl;
1: if vl �Qn(v) then
2: insert(vl, N , pitarget > 1, pitarget == 1)
3: else
4: dl ← get_day(Qn(vl))
5: pl ← get_popularity(Qn(vl))
6: pl ← pl + 1
7: if dl == N then
8: move(vl, N , pitarget + 1 > pl, pl ≥ pitarget)
9: else

10: dl ← dl + 1
11: move(vl, dl, pitarget > pl, pl ≥ pitarget)
12: end if
13: end if

Algorithm 1: Update of user X’s QNotif (Qn(v)) upon
the request for video Vl with index vl by one of user X’s
neighbors

• Line 1,2: This is the case where index vl does not
exist in Qn(v), hence the index is created and inserted

into class C0. The parameter p refers to the number
of views per video v. A newly created index starts
always with p = 1, since only one of the neighbors
watched the content. When we insert vl, first, we
determine its target location which is index vitarget

where : (pitarget−1 > 1) and (pitarget = 1), then we
shift each index after this target location vitarget

by
one position to make room for the new insertion.

Now, if the index vl already exists within QNotif, we take
both the Cj and p parameters to decide where to move it.

• Line 7: This line corresponds to the case where Cl

equals to CN . This index remains within class N and
only the number of views (pl) is incremented. Then,
vl is moved ahead to the position before index vitarget

with property (pitarget−1 > pl) and (pitarget <= pl).

• Line 8: This is the case where Cl<N . In this case,
vl jumps to class Cl+1, increments the (pl) score,
and is moved ahead before index itarget with property
(pitarget−1 > pl) and (pitarget

<= pl).

In the next section, we show that MPMR outperforms other
policies by improving the prediction accuracy and decreasing
the overhead. In particular we compare MPMR to LRU and
FIFO policies.

B. When to prefetch?

To efficiently manage the prefetching process, the sys-
tem includes a double control mechanism, consisting of a
network-oriented and a state-transition control mechanism. The
prefetching -triggered and performed by the user device- is
hindered until both control mechanisms meet.

1) Network control mechanism: The prefetching shall be
hindered when the network is overloaded. And, ideally, it
should be achieved in coordination with the mobile carrier’s
resource allocation scheme (See Finding F5 in Section III-D).

Hence, the Network status component (B5 on Figure 4) is
used to monitor and report the traffic load to the centralized
predictor. If the load exceeds a certain threshold, prefetching
is not allowed to be performed. This control mechanism is still
an ongoing work, therefore we leave this part for future works.

2) State-transition control mechanism: The prefetcher
agent is also controlled by a state-transition control mecha-
nism. Figure 6 shows the transition states that the prefetcher
agent should follow-up.

sleep listen prefetch

Fig. 6. Transition-state control mechanism running on the prefetcher agent

Figure 6 depicts the 3 states the prefetcher agent goes
through. By default, the prefetcher agent is in the "listen" state
and tracks all user requests. Then, if the network conditions are
met; therefore, the agent switches to the "prefetch" state and

193

the video prefetching process is triggered. When this process
ends, the agent turns to the "sleep" state for a certain period of
time Δ, predefined at the central predictor. Then it turns back
to the "listen" state.

This double-check control mechanism aims at maintaining
a solid control on the prefetcher agent, so as to prevent too
aggressive video prefetching plans especially for light users.
This is in line with the Findings F2 and F3 from Sections III-A
and III-B.

C. How many to prefetch?

Finding F3 in Section III-B. shows that a small set of users
behaves as heavy users. However, the users may change their
behavior across the time. Hence, the number of prefetched
videos should also follow the evolution of each user’s behavior.
In CPsys, the Update User Profile block (B3 on Figure 4)
models the user behavior as a function of time, based on
his past activity, and it determines the final list of videos to
prefetch with these three parameters: [S̃max]d, Nprefetch and
pth.

• [S̃max]d is a prediction of the number of content items
the user would request at day d. It is updated on a daily
basis and equals to the average number of requested
videos per day over the 10 past days.

[S̃max]d =

∑d−1
i=d−11 (number of requests per day)i

10
(2)

• Nprefetch is the maximum theoretical number of
videos from the queue QNotif that the prefetcher agent
is allowed to prefetch when the prefetching process is
executed. r is a scale factor bounded between 0 and
1 and used to approxiamte the number of prefectched
items on one user device and on one day to S̃max. For
example, if prefetching is executed 3 times on one user
device during the day and r is equal to 0.34, then the
number of items that will be prefetched during that
day will be equal to S̃max + 3.

Nprefetch = |S̃max ∗ r + 1| (3)

• The threshold popularity score, pth, is used to achieve
a final filter among the Nprefetch best ranked can-
didate videos in QNotif. The rational is to avoid
prefetching very unpopular contents. Hence only the
subset of the videos satisfying the property (pi >=
pth) are moved to the QCandidates queue in the
Update User profile block and communicated as a
list to the prefetcher agent on the user device to
be prefetched sequentially. In the next section, we
investigate the impact of fine-tuning this parameter pth
on the performances of CPsys.

The queue QRemoved on Figure 4 is just used for de-
bugging purposes. If the user requests a content which had
already been prefetched previously but removed before the
user watches it, due to storage capacity limitation for example,
QRemoved is updated with the index of the removed video.
Later, this information is used to feed the Statistics component
(B4 on Figure 4).

V. TRACE-DRIVEN SIMULATION EXPERIMENTS

We developed Prefsim 2, written in Java, a simulator
implementing the CPSys architecture as presented in Figure 4
and described in the previous Section. Prefsim runs either in
social or interest mode. It is a trace-driven simulator. In both
modes, Prefsim requires a traffic trace as input file which
contains the timestamp, the userID, the videoID, and the
duration for individual user sessions. Additionally, if it runs in
social mode, the simulator requires the social graph as input
file.

The task performed by the prefetching system might be
considered as an instance of a recommendation problem: the
system should be able to predict the user’s interest and to
timely prefetch the content of interest. The approaches applied
in studies in the area of recommendations usually rely on the
collection and exploitation of preferences expressed by users
- mostly ratings - to build recommendation algorithms and
engines, as well as to assess their performances - mostly recall
and precision - [16].

In recommendation systems, it is commonly known that a
very small proportion of users express their opinions on items,
instead we rely on real requests and not users’ expressions. The
Finding F1 in Section III-A suggests that the heavy long tail
of the video popularity distribution leads to a high sparsity
levels of the user-video matrix, which includes all users and
videos from the trace and describes how the two are linked
by observed sessions. Even if the prediction runs perfectly, it
is expected that the recall -later we call it Hit-Ratio (HR)- of
approaches based on this matrix will be too low to show a
considerable benefit in the context of prefetching.

We evaluate CPsys based on 3 metrics which are network
oriented. We evaluate the following:

• Correct Prediction Ratio (CPR): Ratio of requests
served from the user’s local cache out of the number
of prefetched videos. CPR refers to the precision of
our prefetching strategy.

• Overhead: Ratio of videos being prefetched and not
requested by the user divided by the number of
requests that were not served from the user’s local
cache. Formally, it is equal to:

Overhead =
(1− CPR) ∗Nprefetched videos

(1−HR) ∗Nrequested videos
(4)

• False Negative Ratio (FNR): Ratio of requests that the
prediction policy failed to detect, although clients have
already been notified about these contents: The QNotif
holds an index pointing to the requested content, but
the content was not prefetched since it was not con-
sidered to be relevant for the user. The reason for this
failure might be that the content was not considered
popular enough (pv < pth), and/or the freshness of
the content was not good enough to position it among
the Nprefetch best ranked content items in QNotif, i.e.
among the ones selected as prefetching candidates.

2http://www.ict-ecousin.eu/public-deliverables-dissemination/public-
deliverables/ecousin-deliverable-d3.2-v1.0-public.pdf/view

194

Thus the sum of FNR and CPR gives insights into
the optimal CPR we may achieve.

The goal of the Prefsim implementation is to get insights
into the prediction accuracy we may achieve.

A. Simulation setup

In Prefsim, the simulation setup is defined in an XML-
based configuration file (input.xml). We evaluated our system
using the FB dataset that was introduced in Section I. In
order to ensure fast simulation processing, we only considered
the users who requested at least 100 videos over the whole
data collection period (in average 1 video per day). Table II
summarizes the traffic trace used for the simulation. The
sparsity level (1− number of requests

number of user∗number of videos
) is extremely high

and, thus, sticks to the real world traffic properties.

The interest graph is updated in a daily routine. Each user
has at most 20 similar neighbors. The cache size used for users
is limited to 50 videos and LRU is used as a cache replacement
policy. We maintain a history size of the 10 past requests to
model the user activity. r is equal to 0.334. For a given user,
we do not prefetch videos unless he requests at least 20 videos.
This is to get a first insight on users’ preferences and to better
assign neighbors for each user in the system. The sleep state
period (Δ) is set to 1 hour. Regarding the configuration of the
queues QNotif and QCandidates, Γ is set to 3 days, and only
the videos that belong either to the classes C0 or C1 of QNotif
are candidates for prefetching.

Number of Number of Number of Sparsity level
FB sessions unique users unique videos
4,152,885 23,548 962,406 0.9998

TABLE II. TRAFFIC TRACE USED FOR THE SIMULATION

B. Performance analysis

In this part, we evaluate CPSys by conducting two experi-
ments. In the first experiment, we evaluate several prefetching
policies and show how MPMR outperforms other policies,
while in the second exeperiment we compare CPSys to a naive
prefetching strategy where we catch the most viewed videos
of the day and push them to all clients.

a) MPMR Evauation: In the first experiment, we eval-
uate the average CPR and the overhead of several policies
adopted by QNotif: FIFO, LRU, and MPMR-pth, i.e. the
MPMR policy with different values for the threshold popularity
score pth (pth ∈ [1..5]). In the same experiment, we also
compare the case where Nprefetch is equal to either Smax

or to 6. Figure 7 shows that regardless the values of pth,
MPMR outperforms the LRU and FIFO policies. We observe
a significant increase in the CPR when pth > 1, reaching up
to 18%. The CPR improves when the value of pth increases,
as this makes the prediction policy more conservative: the
prefetching process is triggered only when the content was
viewed at least pth times by the neighbors.

Figure 8 shows that the overhead decreases significantly
when adopting MPMR, especially when pth is high. We
observe that if prefetching is not well tuned, then the traffic
increases significantly and may even double, which obviously
cannot be accepted by Telcos. However, a fine configuration

of parameters significantly decreases the Overhead. We show
that it drops below 5% when (pth > 2). Besides, adapting
the number of prefetched videos with respect to the past user
activity (Nprefetch = Smax) also reduces the overhead, hence
leads to a better network experience.

The lesson we learn from this result is in line with Finding
F1: it is safer to avoid prefetching very unpopular contents and
wise to control the overhead caused by content prefetching on
the network load.

 0

 0.05

 0.1

 0.15

 0.2

FIFO
LRU

M
PM

R-1

M
PM

R-2

M
PM

R-3

M
PM

R-4

M
PM

R-5
C

PR

Nprefetch=Smax
Nprefetch=6

Fig. 7. CPR with different content seleciton policies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

FIFO
LRU

M
PM

R-1

M
PM

R-2

M
PM

R-3

M
PM

R-4

M
PM

R-5

O
ve

rh
ea

d

Nprefetch=Smax
Nprefetch=6

Fig. 8. Overhead with different content selection policies

Figure 9 shows that the FNR increases as far as the
prediction policy becomes more conservative, which in return
increases the CPR and decreases the overhead. Relying on
users’ neighbors, FNR reaches 12% and CPR reaches 18%
when pth is equal to 5, this suggests that while setting pth to
5, an optimal content selection policy would rise CPR to 30%.
However, decreasing the FNR will systematically increase
the overhead. This trade-off should be carefully handled in
operational networks.

The lesson we learn from the 3 past simulation results
is that whatever the policy used to select the prefetching
candidates, prediction is still hard in general. While the MPMR
suggests pushing the most popular and fresh content items that
have been seen by the most similar neighbors, we observe
that the large majority of viewed videos by individual users

195

are considered as personalized content items. Prefetching these
personalized content items is risky and leads to an acute trade-
off between the overhead and prediction accuracy. In CPsys,
the more we learn about users’ preferences, the more accurate
the prediction model is. Unfortunately, the dataset we used
does not cover all users’ preferences since it was collected
from mobile networks. We could have successfully pushed
a content the user is interested in. However, this user was
connected to a fixed network through a WiFi connection the
time he requested the content. In this case, we do not capture
this request in our mobile traffic traces. This suggests that the
performance assessment we carry out in this section represents
the lower bound of the real performance we may achieve.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

FIFO
LRU

M
PM

R-1

M
PM

R-2

M
PM

R-3

M
PM

R-4

M
PM

R-5

FN
R

Nprefetch=Smax
Nprefetch=6

Fig. 9. FNR with different content selection policies

b) Prefetching local VS global popular videos: In the
second experiment, we limit the simulation to 4 days and
compare our prefetching system with the authors’ proposition
in [10] which consists of pushing bundles of popular contents
on mobile devices. Mapping this to Prefsim, if one user
watches a video, then every user should update his list of
prefetching candidates with the most recently watched video.
Figures 10 and 11 show that limiting the neighborhood to the
20 most similar users and setting pth to 3 improves the CPR
up to 3 times, while it decreases the overhead by 5 times.
This means that pushing only popular contents to everyone is
not necessarily the best option with regard to the prediction
efficiency. Yet, it is better to personalize the list of prefetching
candidates according to the preferences of the user’s most
similar neighbors.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

M
PM

R-1

M
PM

R-2

M
PM

R-3

C
PR

Nprefetch=Smax
Only popular contents

Fig. 10. CPR

VI. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of CPSys using a client-
server model. The central predictor runs as a third-party server

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

M
PM

R-1

M
PM

R-2

M
PM

R-3

O
ve

rh
ea

d

Nprefetch=Smax
Only popular contents

Fig. 11. Overhead

holding profiles of all users running the prefetcher agent.

At the server side, we used an Apache Tomcat server 3 as
well as the Jersey framework 4 to implement the restful web
services. We used the Mahout framework 5 to build and update
the interest graph and compute the Jaccard affinity scores. As
a content selection policy, we implemented MPMR.

At the client side, users should install the CPClient which
is an Android-based application. The CPClient represents the
prefetching agent with a frontend interface (c.f. Figure 12(a)).
The CPClient is linked to the user’s Facebook account, i.e.
the user is asked to log in to his Facebook account to initiate
running the CPClient. The reason for this is that, in CPSys,
we use the Facebook_ID as a unique user identifier. The same
ID is used at the server to update all data structures, including
databases, QNotifs, QViewed.

We use an intent-filter mechanism 6 to follow users’ activi-
ties and report the list of videos watched to the CPserver. When
prefetching is executed, CPClient pulls the video IDs from
QNotif. Subsequently, the agent asynchronously prefetches
these videos. When prefetching is complete, thumbnails of
the videos are displayed (cf. Figure 12(b)). In this example,
QNotif holds the IDs of YouTube videos which are considered
for prefetching.

At last, in our prototype implementation, we enriched
the prefetching-app with a notification mechanism (c.f. Fig-
ure 12(c)). When the prefetching process is over, a user –
running CPClient receives a notification to motivate him or her
to watch the recently prefetched videos. We believe that this
incentive strategy improves both CPR and HR, since clients
are more likely to consult and watch the prefetched videos.

A video demonstration of this work is available at
http://tinyurl.com/pq2v28s.

VII. CONCLUSION

In this paper, we designed, evaluated and implemented
CPSys, a prefetching system we have designed based on
traffic patterns and clients’ behavior that we observed in a
real operational mobile network. We addressed a series of key
design issues. Subsequently, CPSys relies on recommendation

3http://tomcat.apache.org/
4https://jersey.java.net/
5https://mahout.apache.org/
6http://developer.android.com/guide/components/intents-filters.html

196

(a) CPClient interface (b) Prefetched videos (c) Notification

Fig. 12. Snapshots from CPClient

techniques to build the implicit or social graph, then we use the
MPMR policy to select the video prefetching candidates. At
the end, we evaluated CPSys through trace-driven simulations.
We show that the highest lower-bound performance of CPSys
regarding CPR ranges from 18% to 22% while we show
that the traffic overhead decreases significantly. We observed
that prefetching performance is strictly related to content
characteristics. When content items become further personal-
ized, prediction becomes harder and potentially reduces the
prediction accuracy.

There are many possible venues towards enhancing CPSys.
One primary direction would be to focus on the personalized
content items which are the key driver for the long tail dis-
tribution, hence supplying CPSys with additional information
to further personalize the list of prefetching candidates. In
parallel, we plan to enhance our system implementation and
make it faster and more scalable. The goal is to study how
CPSys performs at large scale and study how notifications can
improve the system performance.

REFERENCES

[1] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang, “Characterizing and mod-
eling internet traffic dynamics of cellular devices,” in Proceedings of
the ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems. ACM, 2011, pp. 305–316.

[2] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: a view from the edge,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 15–28.

[3] T. Bucher, “Want to be on the top? algorithmic power and the threat
of invisibility on facebook,” New Media & Society, vol. 14, no. 7, pp.
1164–1180, 2012.

[4] Y. Li, Y. Zhang, and R. Yuan, “Measurement and analysis of a large
scale commercial mobile internet tv system,” in Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference.
ACM, 2011, pp. 209–224.

[5] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, and
G. Peng, “Watching videos from everywhere: a study of the pptv mobile
vod system,” in Proceedings of the 2012 ACM conference on Internet
measurement conference. ACM, 2012, pp. 185–198.

[6] X. Cheng and J. Liu, “Nettube: Exploring social networks for peer-to-
peer short video sharing,” in INFOCOM 2009, IEEE. IEEE, 2009, pp.
1152–1160.

[7] Z. Li, H. Shen, H. Wang, G. Liu, and J. Li, “Socialtube: P2p-
assisted video sharing in online social networks,” in INFOCOM, 2012
Proceedings IEEE. IEEE, 2012, pp. 2886–2890.

[8] N. Gautam, H. Petander, and J. Noel, “A comparison of the cost and
energy efficiency of prefetching and streaming of mobile video,” in
Proceedings of the 5th Workshop on Mobile Video. ACM, 2013, pp.
7–12.

[9] P. Mohan, S. Nath, and O. Riva, “Prefetching mobile ads: Can adver-
tising systems afford it?” in Proceedings of the 8th ACM European
Conference on Computer Systems. ACM, 2013, pp. 267–280.

[10] A. Finamore, M. Mellia, Z. Gilani, K. Papagiannaki, V. Erramilli, and
Y. Grunenberger, “Is there a case for mobile phone content pre-staging?”
in Proceedings of the ninth ACM conference on Emerging networking
experiments and technologies. ACM, 2013, pp. 321–326.

[11] F. Figueiredo, J. M. Almeida, M. A. Gonçalves, and F. Benevenuto,
“On the dynamics of social media popularity: a youtube case study,”
ACM Transactions on Internet Technology (TOIT), vol. 14, no. 4, p. 24,
2014.

[12] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 1–14.

[13] R. I. Chiang, G. B. Rowe, and K. W. Sowerby, “A quantitative analysis
of spectral occupancy measurements for cognitive radio,” in Vehicular
Technology Conference, 2007. VTC2007-Spring. IEEE 65th. IEEE,
2007, pp. 3016–3020.

[14] S. Shafer and D. Rogers, “Similarity and distance measures for cellular
manufacturing. part i. a survey,” THE INTERNATIONAL JOURNAL OF
PRODUCTION RESEARCH, vol. 31, no. 5, pp. 1133–1142, 1993.

[15] A. Gouta, D. Hong, A.-M. Kermarrec, and Y. Lelouedec, “Http
adaptive streaming in mobile networks: characteristics and caching
opportunities,” in Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2013 IEEE 21st International
Symposium on. IEEE, 2013, pp. 90–100.

[16] J. Davis and M. Goadrich, “The relationship between precision-recall
and roc curves,” in Proceedings of the 23rd international conference on
Machine learning. ACM, 2006, pp. 233–240.

197

