
[GIO(S08] Kalman Graffi, Aleksandra Kovacevic, Song Xiao, Ralf Steinmetz; SkyEye.KOM: An
Information Management Over-Overlay for Getting the Oracle View on Structured P2P
Systems. In: The 14th IEEE International Conference on Parallel and Distributed Systems
(ICPADS'08), p. 8, IEEE Computer Society Press, December 2008.Seite

SkyEye.KOM: An Information Management Over-Overlay for
Getting the Oracle View on Structured P2P Systems

Kalman Graffi, Aleksandra Kovacevic, Song Xiao, Ralf Steinmetz
Technische Universität Darmstadt, Multimedia Communications Lab KOM

Merckstraße 25,64283 Darmstadt, Germany. Email: {graffi,sandra) @kom.tu-darmstadt.de

Abstract

In order to ease the development und maintenance of
more complex P2P applications, which combine multiple
P2P functionaliiy (e.g. streaming and dependable storage),
we suggest to extend structured P2P Systems with a dedi-
cated information management layel: This layer is meant
to generate statistics on the whole P2P system und to en-
able capacity-basedpeer search, which helps the individual
jünctionaliiy layers in the P2P application to jind suirable
peers for layer-specijk role assignment. We presenr in this
paper SkyEye.KOM, an information management layer ap-
plicable on DHTs, which fuljills these desired functionality.
SkyEye.KOM builds an over-overlay, which is scalable by
leveraging the underlying DHT, easy to deploy as simple
add-on to existing DHTs und efJicient as it needs O(1og N)
hops per query und to place peer-specijic information net-
work wide accessible. Evaluation shows that SkyEye.KOM
has a good query perj5ormance und that the costs for main-
taining the over-overlay are very low.

1 Introduction
The field of peer-to-peer (P2P) research is broadening

in recent years, ranging from classical overlays and con-
tent distribution, to multimedia streaming, dependable stor-
age with replication management, distributed computation
and many other functional layers. With the growth of appli-
cation areas for the P2P paradigm, more and more mature
solutions are presented (e.g. BitTorrent [3] instead of Nap-
ster). However, current P2P applications often focus only
on a few or single functionality, e.g. Skype [9] searches and
connects Users in an unstructured overlay, file sharing appli-
cations mostly enable to lookup file providers, Zattoo [I31
offers media streaming but no User interaction.

P2P applications combining various functionality on one
P2P host are still rare. Imagine an application in which
you can search (unstructured overlay) or lookup (structured
overlay) specific content, which you can download (con-
tent distribution) or is directly streamed (P2P streaming).
After consuming the content, you may add a comment to

the specific content according to your role (security), that is
then replicated (replication) and synchronized (versioning)
according to specific criteria.

In this paper we present SkyEye.KOM, an information
management (IM) over-overlay applicable as a further layer
(IML) on any DHT. SkyEye.KOM generates statistics on
the whole P2P network and provides the functionality of
capacity-based Peer search, finding a Set of peers with de-
sired capacities. We believe, that these are two challenges
that need to be addressed in order to enable complex multi-
functional P2P applications.

System Statistics: Current P2P applications do not reveal
statistics on the status of the network. We argue that metrics
on overlay performance, network topology and Peer load
can be measured by the P2P application itself using a ded-
icated information management layer (IML). Statistics pre-
senting e.g. the average traffic load per peer, the standard
deviation and even confidence intervals may reveal limita-
tions in the protocol and Support P2P application designers
to improve the mechanisms applied.

With an IML providing statistics on the P2P network in
real-time, interested parties (e.g. P2P application providers)
can calculate their costs more precisely, developers can de-
tect limitations in their protocols faster and the system itself
could apply self-optimizing mechanisms.

Capacity-based Peer Search: Combining various func-
tionality in one single P2P application, states challenging
requirements on the efficiency of each functionality layer.
As example imagine a P2P application for decentralized
simulations offering efficient job dispatching, remote com-
putation and replicated storage of the results. The first func-
tionality requires peers with high bandwidth capacities, the
second peers with high CPU and memory capacities and the
third peers with large storage space and long expected on-
line times.

Instead of having each functionality layer individually
looking for appropriate peers fulfilling the desired require-
ments, one dedicated information management layer should
provide them with the peer IDs of suitable peers. A func-
tionality layer may ask e.g. for the contact information of 5

peers which have at least 200KBIs upload capacity on aver-
age, have been online for 5 hours, and have at least lOMb
available Storage space.

An IML providing the functionality of capacity-based
peer search enables the building of complex P2P applica-
tions in which specific tasks are assigned to capable peers.
The load of information gathering is taken from the various
P2P functionality layers, so that focus shifts from how to
obtain the information to how to use the information.

Generated system statistics
I

@uery for n peers with list of capacity req ...
Result: n Peer IDs

...

I modules I '
b ' Metrics and parameteri

Information I
Management

Layer
Over-overlay for sys-
tem statistics & cap.-
based Peer search

uses
T 7

In Section 2 we present the assumptions and goals for DHT overlay
building an IML. Our solution, SkyEye.KOM, is presented offering route(msg, key), resp(key)
in Section 3 in detail. We described the evaluation setup and
results in Section 4. In Section 5 we discuss related work, 5
and conclude our work in Section 6. Figure 1. SkyEye.KOM as Over-overlay
2 Assumptions and Goals

In this section, we summarize the key aspects of the
problem Statement for building an information management
layer (IML) for structured P2P Systems. Goal of the IML is
to provide statistics on the P2P network and enable queries
for peers regarding their capacities.

We state following assumptions for the IML. A P2P
host maintains a DHT which provides the functionality
routefkey, msg, nextHop). This function is also defined by
Dabek et al. in [4]. The function enables a node in the IM
over-overlay (IMOO) to send a message to a node which is
responsible for a specific key in the DHT (which may rep-
resent a role in the P2P network). We further assume that
the DHT layer provides information on the keys a peer is
responsible for in the DHT. A peer should know in a DHT,
whether i t is responsible for a specific key or not. This pa-
per does not discuss security issues, we assume protocol-
compliant behavior of the peers.

Building an IML states various requirements on the qual-
ity of the solution. The architecture should fulfill the fol-
lowing non-functional requirements. The IM over-overlay
should scale, both in regard of the number of peers and
the number of peer attributes. A robust IMOO should ap-
ply mechanisms to overcome peer failure and churn. The
load for maintaining the IMOO should as much as possi-
ble be balanced on all peers participating in the P2P net-
work. The heterogeneity of peer capabilities (CPU, mem-
ory, bandwidth ...) should be taken into account, by allow-
ing each peer to specify a maximum load to tolerate. With
this, stronger peers can contribute more and weaker peers
are not overloaded. The traffic and computational overhead
of the IMOO has to be small, as it is meant as extension to

SkyEye.KOM implements the IML as an over-overlay
using the route and lookup functionality of the underlying
DHT, as depicted in Figure 1. The clear interface makes it
independent from the specific DHT used. The ID space is
recursively partitioned in ID intervals called Domains. For
each Domain, a characteristic ID is calculated using a de-
terministic function that maps the ID interval to a single ID
in it, called Domain Key. The peer responsible for the Do-
main, called Coordinntor of the Domain, is identified by
being responsible for the Domain Key in the DHT. The re-
cursively partitioned Domains and with this the correspond-
ing Coordinators build a b-tree. Peers identify their position
in the tree based on their ID, and send periodically infor-
mation messages to the Coordinator one level above them
in the tree. These messages, called updates, contain both
information on the individual peer capacity and aggregat-
able statistics information. Coordinators periodically pass
the aggregated statistics and the list of peer capacities one
level higher in the tree in a push-based manner. Having this
core-tree for information gathering, peers can send queries
regarding a set of peers with specific capacities to their Co-
ordinators, which forward the query up the tree, until one
Coordinator has in formation on the required set of peers.
Any Coordinator can be asked for network statistics on the
peers in his Domain. In order to relieve the load, Coordina-
tors may choose more capable Support Peers from their Do-
main and dispatch all update and query load to them. Hav-
ing some Coordinators dispatching their demanding duties
to Support Peers results in an easy to maintain support-tree
with peers capable to fulfill the requested task of informa-
tion management.

future's complex P2P applications, not as main application. 3.1 Architecture of SkyEye.KOM

3 SkyEye.KOM - Our Approach SkyEye.KOM is an overlay on top of an underlying

In this section we present SkyEye.KOM, our approach Distributed Hash Table (DHT) using the routing and ID-
for an IML, that gathers information from the peers in the mapping functionalit~ of the DHT.

P2P network and provides statistics on the system and the Let p E SID be a peer ID and SrD the ID space, then
functionality of capacity-based peer search. there exists a subset S, G SrD so that peer p is responsible

i i
resp(p) = Sp- Kp = Key of DornainDp

Figure 2. Definitions used in SkyEye.KOM

for all (object) IDsIkeys in that Set. Following counts

We define the responsibility function resp as follows:

resp : S I D -, SrD : o + p with o E S, (2)

Please note, that by using the core functionality of a DHT
we build an over-overlay, which is applicable on any DHT
that offers these to functions. Figure 2 depicts the defini-
tions we introduce in this section.

In order to aggregate the information of individual peers,
we establish a tree structure in the over-overlay. The tree
is built by recursively segmenting the ID space SrD in in-
tervals (which we call Domains) and assigning a respon-
sible peer to each Domain, which we caii Coordinator of
the Domain. The depth of the tree is O(log N). Each level
of the tree aims at storing the information on all peers in
the ID space, but with increasing tree depth the informa-
tion is shared on more peers. A Coordinator is in charge to
maintain the information of all the peers, whose IDs are in
its Domain. However, by setting specific thresholds on the
load capacity, the peers are not overloaded.

We define a Domain as continuous interval Df, in the ID
space SrD. Domains at the Same level 1 in the tree do not
overlap. Let p E SrD be a peer and D; be a sequence of
Domains containing p with I as level Counter. Then follow-
ing counts

Vp E S ID : D: = S I D (3)

Each Domain is maintained by a Coordinator, the Coor-
dinators of the various Domains establish the tree by send-
ing each other information updates. Two approaches exist
how to choose the Coordinator of a Domain: using stateless
allocation to a Peer responsible for a specific ID or dynamic
assignment based on peer capacities.

In our solution we combine the best of both solutions.
We build a core-tree using a deterministic function which
provides the ID of the Coordinator responsible for a peer
ID. The function Comes with no maintenance-overhead as
any peer can locally calculate which other peer it has to
contact. Coordinators in the core-tree can pick supporting
peers from the Domain they are responsible for and dispatch
load to these Support Peers. With time, a second support-
tree with more capable peers is established which carries
the load dispatched from weak peers in the core-tree.

For the following, we resume to describe the principles
for establishing the core-tree and describe details on load
balancing and using heterogeneity of peers in Section 3.3.

In the core-tree, each peer p identifies, using the de-
terministic function, its Coordinator(s) for the Domains
D;, that contain the peer's ID. A Domain of level I (e.g.
[i„ ib]) is partitioned in b (Sub-)Domains of level 1 + 1 (e.g.
[i„ il] , [il + 1, i2], [i2 + l , i3] , ..., + l,ib]), with this
the Domains build a b-tree structure. We map Domains to
peers, that become then Coordinators of the Domain, using
the responsibility function resp. A specific ID in the Do-
main, called Domain Key, determines the Coordinator by
the responsibility function. We use a mapping function K
to map Domains to their Keys, K has to fulfill Eq. 7 and 8.

Let K be the function mapping a Domain (subset of SrD)
to an ID in SrD, let p(SrD) be the power Set (set of all
subsets) of SID, and let K i be the key of the Domain D;,
then following holds

K : ~ (S I D) -+ S I D : (7)

b'p E SrD Vi E W : K: E D; (8)

For the ease of representation we use a simple function
for K.

max(D;) - min(D;)
K; := min(0;) +

2 (9)

Now we can define the Coordinators C; of a specific Do-
main D; containing a Peer p for all levels I in the core-tree.
Let D; be a Domain, then its Coordinator C; is a Peer and
defined as

1 C; = q E S I D , with q = resp(K,) (10)

This means, the Coordinator of the Domain D; (which is in
the l th level, and contains the ID p) is defined as the Peer
which is responsible for the key Kk in the over-overlay and
the mapped ID space of the underlying DHT. Please note,
that we use the index p in C; only to identify the Domain
D; which the Coordinator C; is responsible for. Coordina-
tors of a height larger than 1 are only related to Domains,
not to individual peers.

Every Peer p in the network identifies a single Coordina-
tor C, to which it periodically send its peer-specific infor-
mation called update. Each peer p in the network may be

a Coordinator of a Domain D; and receive updates, these
updates are then periodically sent in the network to the Co-
ordinator CF1 one level higher.

Now we discuss how a peer identifies its Coordinator and
how a Coordinator identifies its level and the Coordinator
one level higher. A peer p may be Coordinator for several
Domains on different levels in the tree. This Comes from
the fact, that DHT responsibility area r e s p (p) is an interval,
which may contain some of the Keys K i of the Domains
D; the peer p is in. In order to identify its Coordinator C,
to which p has to send its individual peer information, Peer
p calculates the Keys K; of the Domains D; it is in L„,
levels deep, with

1„, = m a x (i E W w i t h K; @ S,) (1 1)

The Coordinator C, of peer p is then C, = Ckmax . Here we
use the assumption, that a peer can determine, whether it is
responsible for an ID in SID or not. This Coordinator C,
is then the first owner of a Domain Key, that lies not in the
responsibility range of Peer p. For all Domains D; below
level 1 peer p is Coordinator, thus no messages have to be
sent on lower levels.

A peer q receiving updates is a Coordinator of some Do-
main, it periodically propagates the received updates up the
tree. In order to identify the Coordinator one level higher,
peer q calculates the Domain Keys KQ it is responsible for
(using the function resp) . The Coordinator one level higher
is then Cimin-' with

Imin = rnin(i E W w i t h K; E S,) (12)

The Peer q identifies the level of its largest Domain and with
this the Coordinator one level higher.

To join SkyEye.KOM, peers send a regular update to
their Coordinator. No specific join or keep-alive mainte-
nance is required as we rely on the route functionality of
the underlying DHT. The failing of a Coordinator C: is de-
tected by peers or Coordinators C*+' of lower levels, which
fail in sending update messages to the Coordinator. As soon
as a peer p identifies that the Coordinator C; failed, it Starts
a lookup for the peer now being responsible for the Domain
Key res(KL). The identified peer is then the new Coordi-
nator. Although the information is lost, it is refreshed in the
next update interval, when the Coordinators of lower lev-
els send their updates to the new Coordinator. No further
maintenance is needed if a failure occurs.

3.2 Functions Provided by SkyEye.KOM
Having descnbed the structure of the tree, we focus

in this Subsection on how the tree is used to disseminate
Peer information and to state queries regarding the network
statistics and individual peer capabilities.

Peers and Coordinators send update messages periodi-
cally one level higher in the tree. Update messages consist

of an aggregatable information part for monitoring purposes
and a non-aggregatable part for capacity-based peer queries.

To enable capacity-based peer search, peers decide on
the capabilities they offer to the network, e.g. CPU capac-
ity, upload and download bandwidth, main memory, storage
space or their network or geographical position. These at-
tributes are used as keys and create with the corresponding
value a peer specific key-value pair. The non-aggregatable
information part in the update is the Set of these pairs linked
to the peer ID. Further, a time to live (TTL) Counter is
added, which is decreased in each level in the tree, this al-
lows outdated information to expire.

SkyEye.KOM provides the function to resolve queries
of the type: Give me n peers fulfilling a set of requirements
on the known peer attributes (e.g. asking for a minimum
storage space, a maximum load, ...). Queries contain a field
identifying the requester, defining the number of requested
peers and a list for requirements on peer attributes and how
they are connected: AND, OR, 5, 2. Peers address their
queries to their responsible Coordinators. The Coordinator
checks locally whether it has information about n peers ful-
filling the desired requirements. Then it either replies with
n peers fulfilling the criteria or it redirects the query one
level higher in the tree. If no Coordinator in the tree can
respond to the query, the root of the tree responds with a
list of peers fulfilling the criteria (less than n). Please note,
that peers do not have to agree on a Set of valid attributes.
Still, complex queries considering and connecting various
attributes are possible.

For monitoring purposes, aggregatable peer-specific in-
formation is sent by each peer in its periodic updates. All
peers have to agree on a Set of metrics that can be aggre-
gated and are valuable to collect statistics On. Aggregation
enables for some metrics (e.g. CPU load) to calculate the
System wide average value, standard deviation and confi-
dence intervals.

To give examples, with SkyEye.KOM one could obtain
statistics on the number of peers in the overlay, their average
online-time and the churn rate. By aggregating observations
of individual peers, one could further measure statistics on
the number of hops per lookup, the hit rate and the over-
lay per underlay hop penalty, which describes the under-
lay awareness of the overlay. Statistics on the topology can
be obtained by aggregating node degrees and peer-specific
maximum hop Counts. Statistics on the load in the network
is valuable for many functionality layers in a P2P applica-
tion. Load can be described as resource provision (CPU,
memory, storage space, bandwidth) for the network, both
absolute and weighted with the individual peer capabilities
in a time interval or at all. This load information can be
measured for various functionality layers, like the replicat-
ing storage layer, multi- or broadcast enabling layers and
even for SkyEye.KOM itself.

Peers place the metrics, e.g. the number of incoming
messages in the last minute, in the aggregatable informa-
tion Part of the update message and send their update to
their Coordinator at peer-specific time intervals. Periodi-
cally, the Coordinator aggregates the received information
(e.g. calculates the domain wide average on the number of
incoming messages) and sends the compressed information
to its Coordinator one level higher. At the root of the tree,
the monitonng information is complete and can be used. On
lower levels, statistics on subsets of the tree are available.

In order to retrieve these statistics, peers send a request to
their Coordinator at an arbitrary level and receive the statis-
tics. The size of the result message is not related to the level
of the Coordinator asked, as aggregated information keeps
its size.

3.3 Load Balancing in the Tree

The tree structure described in Subsection 3.1 fulfills al-
ready the functional requirements stated for an IM over-
overlay. In this Subsection we solve the two main limita-
tions resulting from the tree structure: First, inefficiently
long update and query paths resulting from a deep tree in
which the Coordinators are mainly underloaded. And sec-
ond, overloaded Coordinators in the tree, that do not have
the capabilities to fulfill their Coordinator task.

In order to address both the underloaded and overloaded
peers, we introduce three thresholds TMin, TMaz and
TSuppoTt Each Coordinator should be responsible for at
least TM^^ and at most TM^, peers. Being responsible for
more than TAfa, peers requires to keep up to many connec-
tions, whereas being responsible for less then TMin peers
leads to a high number of levels in the tree. The parameter
TMi, is a system-wide parameter regulating the height of
the tree, whereas TM„ is a peer specific parameter denot-
ing the maximum load of the individual peer.

In order to decrease the height of the tree, Coordina-
tors check upon receiving an update, whether the number of
peers they know to be responsible for is between TMin and
TMa,. If a Coordinator C; receives an update from peer p,
and C; is responsible for less than TMin peers, then C; ad-
vises peer p to send its next N updates to CL-'. Coordina-
tor G';-' may advise peer p to send its updates to CiF2 and
so On. However, Coordinators dispatching peers hold state
on the number of redirected peers in order to know, when
to stop dispatching. Addressing of updates and queries is
not strict, beginning at a deeper part of the tree only disbur-
dens peers at higher levels of the tree, that are responsible
for more information. If updates or queries are addressed
"too" deep or high in the tree, the information is anyways
included and queries are resolved.

In order to decrease the load on Coordinators we intro-
duce Support Peers. Deterministically chosen Domain Keys
may put weak peers into charge of being responsible for Do-

mains. The Coordinator of a Domain may decide that itself
is incapable to carry the whole load that is required. Coor-
dinators have to store the information of the peers they are
responsible for, process information updates and react on
queries.

Coordinators limit their information cache size to TMa,,
storing only capacity information On the strongest T ~ n z
peers. Queries ask in general for a small number of peers
fulfilling specific criteria. In the case that the number of
incoming peer updates exceeds TswPoTt, the Coordinator
picks supporting peers in order to store all information on
the peers in its Domain.

Support Peers may be chosen based on their capabilities
by the Coordinator from the Set of monitored peers in order
to dispatch load to them.

Each Coordinator appoints the best m Support Candi-
dates (SC) in its own Domain (sorted in descending quality
according to some metric): SC1 to SC,. Support Peers
for its own Domain are chosen from the peers to
SC,. The information about the best Support Candi-
dates (SCl to SC?) is passed one level higher, so that in
this larger Domain more valuable candidates are available.

Once an overloaded Coordinator picks a Support Peer,
it announces to the peers i t is responsible for its Support
Peer(s) in a reactive manner. The peers, address then for a
given time period their updates and queries to the Support
Peers. If the Support Peer is overloaded as well, another
Support Peer is chosen and the load is shared among the
Support Peers. All Support Peers responsible for peers of
the Coordinator synchronize their information periodically
in order to keep themselves up to date with the information.
Only one peer, either the Coordinator or one of its Support
Peers sends information updates one level higher in the tree,
this peer processes the aggregatable information provided
by the other peers.

If the Support Peer is overloaded as well, another Sup-
port Peer is chosen and the load is shared among the Sup-
port Peers. Once the Support Peer reports to have less load
than TMaz, the Coordinator takes over the load. Then the
Support Peer is released and it dispatches all remaining up-
dates and queries to the Coordinator. Having the thresholds
TMnx and TsUwmt prevents restless responsibility swap-
ping at one threshold.

4 Evaluation
For the evaluation of our solution we simulated Sky-

Eye.KOM and measured relevant metrics with focus on the
tree characteristics, the query performance and the costs for
maintaining the over-overlay.

We simulated 1000,5000 and 10000 peers in the event-
based P2P simulator PeerfactSim.KOM [7] which imple-
ments an underlay based on global network positioning [8],
various P2P functionality and a set of DHTs. We used an

abstracted DHT component, which enables us to See the be-
havior of SkyEye.KOM independent of any specific DHT.
The abstracted DHT dispatches the lookup messages be-
tween the peers considering transmission delays and em-
ulating the DHT functionality.

Using this DHT, we implemented SkyEye.KOM as P2P
application in which peers build the SkyEye.KOM tree by
performing lookups to their identified Coordinators and pe-
riodically send them updates. The peers have 3 capacity
attributes, out of which one contains a random but fixed
number, and two values that change randomly in different
intervals. These values represent the peer's capacity like
free Storage space, CPU usage and available memory. One
Query is performed by each peer in every update interval,
which are for all peers equally large. Peers state queries for
a Set of five peers whose first capacity value is larger than
a random number, which characterizes the query complex-
ity ranging from 1 to 15. This random number is normally
distributed, 1 is the easiest query. We evaluated the tree
characteristics, the query performance and the costs under
this scenario.

4.1 Results
As metrics for the tree characteristics we have chosen the

tree depth, which shows how scalable and balanced the tree
is. This has an implication on the freshness of the data. With
the Start of the simulation, peers begin to join as depicted in
Figure 3(a). The depth of the tree increases logarithmically
in all three network sizes and stabilizes, even under churn.
For the next evaluation steps, we omitted the graphs with
1000 peers due to clarity and the similarity of the results.

The logarithmic scale of the tree has direct effect on the
freshness of the information stored in the tree. Information
is inducted by the peers at the lowest possible position in
the tree and then propagated with every update interval to-
wards the root. Figure 3(b) shows the age of the information
which is propagated by the Coordinators. The figure shows
that the height of a Coordinator and the age of the informa-
tion are nearly similar. With the tree based approach, Sky-
Eye.KOM is capable to announce the capabilities of each
peer in O(1ogN) update steps.

As the information in SkyEye.KOM gets older, results
may contain the IDs of peers that failed or left the network.
Simulations showed that the average ratio of online peers in
the result set is near 0.985 and independent of the level of
the Coordinators (no figure). Due to the short update paths,
SkyEye.KOM is able to provide a near real-time view on
the peers in the System.

In this tree, the Coordinators have a limited buffer size
(T„,) for maintaining peer information. Figure 3(c) shows
us the ratio of the available peers a Coordinator monitors
and which ratio of peers it ignores, a ratio related to T„,.
With T„, the individual Coordinator load is limited but
their knowledge on their Domain is incomplete, which may

lead to increased overhead, as queries are forwarded higher
in the tree, although the Domain offers suitable results. This
has an effect on the hop count for queries and is a tradeoff
which is worth to investigate.

In order to measure the query performance, we observe
the number of hops needed to find a suitable answer for
the queries. Figure 4(a) shows that the number of hops a
query was forwarded up in the tree, until an appropriate Set
of matching peers were found, ranges from 0 to 4 hops in
average. Although there are fluctuations in the hop count,
regarding the level of the query initiator, the results show
that queries are answered after a few hops. The delay for
answering queries is very low, as queries use information
paths between the Coordinators, which have already estab-
lished direct connections to each other.

Our next focus is on where in the tree queries are re-
solved and how this position is related to the complexity of
the query. As peers may be Coordinators on various levels
in the tree, we measure the position of resolving a query
as the difference of the level of query injection and the hop
count. Please note, that by this we can only estimate the
position in the tree. The average depth of query resolving in
relation to the query complexity is depicted in Figure 4(b).
More complex queries traverse higher in the tree and load
for easier queries is balanced in the tree. However, the re-
solving load is at about level 6. This results from the fact,
that peers inject their queries at the highest point in the tree
they are responsible for. This effect can also be seen in Fig-
ure 4(c). The average injection level for queries is around
level 8 (as most of the peers are) and with 2-3 query hops
most of the queries are resolved around level 6. By adjust-
ing the level on which a query is injected in the tree, we can
optimize the tradeoff between fast results and lower load on
higher peers.

An overview on the traffic overhead per update interval is
depicted in Figure 4(c). It shows that the number of update
messages per peer is between 1 and 3, which is very small
in comparison to common routing tables. The update mes-
sages are used to disseminate the information and to main-
tain the tree. Most of the messages in the over-overlay are
resulting from the queries, which are mostly injected around
level 8. However, queries and their results are small in size,
so that the message overhead per update interval is low. By
increasing the period of updating at the cost of freshness,
Coordinators can adjust the traffic overhead they are will-
ing to contribute.

4.2 Conclusion
The cost for each peer using SkyEye.KOM is limited to

the exchange of a few update messages per update interval.
This low overhead is reached by using the underlying DHT
functionality and omitting tree maintenance. This design
decision leads to scalability, robustness of the tree, a up-to-
date information on the peers and the network state. Churn

Netwoik Size and Tree Demh Averaae Aae of the Inlonnahon in a Coordinator Comoleteness 01 Knowledae 01 Coordinalors

li; .' - ' ' ' ' 9

peeß. 5k -
. peers. 10k .

levels, Ik L,

. levels. % . .'
levels, 1Ok . , , . .

. -
, . , . -r ..- , - . . .

. .

5000 Pers --
l WO0 peers

20

10

Simulaiion Time measured in Update lnlewals Peer Levd in the Tree Level of the Coordinalor ~n Ihe Tree

(a) Number of Peers and Tree Depth (b) Information Freshness (C) Coverage Scope of the Coordinators

Figure 3. Evaluation Results Corresponding to the Tree Structure
Quey Hops per Level of the Ouey Onginaling Peer Averaged Pmitlon 01 Quey Resohnng Peer in Ihe Tree 3 Traflc Load per Peer

10
5WO peers -

I WO0 peers

g 0 - I A

-2

l WO0 peers

4 6 8 10 12 14
Position 01 Ihe Query Originating Peer Quey Comple~ity Peer Level in rhe Tree

(a) Hops per Query (b) Position of the Answering Peer (C) Traffic Overhead for SkyEye.KOM

Figure 4. Evaluation Results Regarding the Query Performance and Costs

has no crucial effect on the tree, as a new Coordinator can
instantly be identified. Each peer is able to define a per-
sonal load maximum, which Supports the heterogeneity of
the peers. All peers are contributing according to their indi-
vidual capabilities. SkyEye.KOM provides capacity-based
peer search and monitoring capabilities in a light-weight,
easy to apply manner for structured P2P overlays.

5 Related Work
Various Papers have addressed peer and system informa-

tion management for P2P networks.
DASIS [l] is a module extending the routing table of the

used overlay to Store additional routing specific informa-
tion, no further IM data structure is proposed. It strongly
depends on the details of the used overlay and can only be
used for small portions of information.

T-MAN [6] is a proactive gossip-based overlay topology
management system, in which each peer exchanges period-
ically its knowledge with neighbors. Information spreads
only slow in the system and is hard to update. In Sky-
Eye.KOM, information is propagated in a structured man-
ner, enabling the refreshing of information in O(log N) up-
date intervals.

P2P-Diet [5] extends hybrid unstructured P2P overlays
with the functionality of ad-hoc and continuous search for
specific objects (and peers). P2P-Diet provides network
monitoring and capacity-based peer search causing signifi-
Cant overhead by broadcasting information updates and ex-
tensive maintaining operations. Maintenance costs for the
tree in SkyEye.KOM are low, as we use a deterministic

function to identify the nodes in the tree.
Astrolabe [10] has been published in 2003 as a dis-

tributed (structured) LM system, many concepts can be
adapted to the P2P scenario. In Astrolabe, nodes join sev-
eral so-called zones, which are corresponding to the nodes'
hierarchical host name. Creating a topology according to
the hierarchical zones results in an inefficient tree of depth
O(log I IDspacel) containing various empty zones, the tree
in SkyEye.KOM is O(1og I NI) deep.

Willow [I 11 extends the idea of Astrolabe [10] to a DHT
overlay integrating various functionality of P2P layers. The
solution is more efficient, but not overlay independent.

SOMO [14] is a metadata overlay for the resource man-
agement in P2P DHTs. SOMO builds a tree top down on
the peers in the ID space, identifying nodes in the tree us-
ing a stateless function. In SOMO the information is pulled
up towards the root, aggregated and pushed back. This re-
quires peers responsible for a region to periodically look
for unattached peers in their region. SkyEye.KOM fol-
lows a push-based approach saving probing costs. However,
SOMO does not provide mechanisms for load-balancing
and is limited due to its pull-based approach.

CONE [2] builds a tree, using the natural order of the
peer IDs, peers with higher IDs are parent nodes of peers
with smaller IDs. The tree is used to aggregate peer in-
formation in a reactive manner, though the overhead gen-
erated through updates is significant. In SkyEye.KOM up-
dates are transmitted proactively, in peer-specific intervals,
leaving time for messages to arrive and to be processed in
a group. Further, SkyEye.KOM allows besides information

aggregation, capacity-based search for peers.
SDIMS 1121 allows information aggregation and

attribute-based search for peers as well. SDIMS builds in
contrast to SkyEye.KOM for each peer attribute its own
tree, which distributes the load. Although SDIMS can op-
timized for traffic efficient updating and querying of single
attributes, the split of the aggregation tree also cut off the
relationship between the attributes. A complex query con-
sisting of the retrieval of multiple attribute values requires
multiple steps, which causes more time and message over-
head than in a solution with a combined aggregation path
like in SkyEye.KOM.

The presented solutions try to optimize for either
overlay-independency, enabling complex queries, being
load balanced, providing a wide range of functionality and
yet be easy and simple to use. However, the presented
solutions fail in one or several design goals. With Sky-
Eye.KOM, we address all of these requirements.

6 Conclusion
In this paper we discussed the motivation for building

an information management layer (IML) for structured P2P
Systems, which provides statistics on the whole P2P system
and helps the individual functionality layers (e.g. the DHT
storage layer) on a P2P host to find suitable peers for a layer-
specific role assignment (e.g. storing replicas).

Knowing mean values, standard deviations and confi-
dence intervals on critical system metrics (e.g. traffic load
on peers, number of hops per lookup) in distributed P2P
applications is a desired functionality. Statistics help de-
velopers of P2P applications to irnprove their mechanism
and companies offering P2P-based applications to calculate
their costs for supporting Servers more precisely. Further,
it enables self-optimizing mechanism to be implemented in
the P2P application, by setting system Parameters in depen-
dency to the system statistics.

Capacity-based peer search enables queries for e.g. 7
peers, offering at least 500MB storage space and 200KBIs
upload bandwidth. This functionality of the IML disbur-
dens other functionality layers in a P2P application from the
load of finding appropriate peers for a layer-specific task.

We defined the functional and non-functional goals for
an IML and presented SkyEye.KOM, an over-overlay appli-
cable on DHTs which implements the desired functionality.

SkyEye.KOM is an IM over-overlay applicable on
DHTs, building a tree with structured information flows.
Having a core-tree for proactively performed information
gathering, complex capacity-based peer queries considering
multiple peer attributes can be stated. SkyEye.KOM further
provides advanced statistics on the P2P network, which en-
ables interested parties to analyze the Status of the network.
As Coordinators in the core-tree can dispatch load to Sup-
port Peers and set a peer-specific maximum load to toler-

ate, load balancing is addressed and the heterogeneity of
the peers is used.

We evaluated SkyEye.KOM in simulations regarding the
establishrnent of the tree structure, the query performance
and the overhead. The evaluation shows the good query
performance of SkyEye.KOM and that due to the determin-
istic Coordinator assignment no tree maintenance is needed
in the over-overlay, even under chum.

Our solution is scalable by leveraging the underlying
DHT, easy to deploy as simple add-on to existing DHTs,
efficient with O(log N) hops per query and update and it
Comes with very low maintenance costs due to the deter-
ministic function assigning the peer position in the tree.

We believe that an IML, like SkyEye.KOM, has the po-
tential to become a valuable component in future's modular
multi-functional P2P applications.

Re ferences
[I] K. Albrecht, R. Arnold, M. Gähwiler, and R. Wattenhofer.

Aggregating Information in Peer-to-Peer Systems for Im-
proved Join and Leave. In Proc. of IEEE P2P '04, pages
227-234. IEEE Computer Society, 2004.

[2] R. Bhagwan, G. Varghese, and G. Voelker. CONE: Aug-
menting DHTs to Support Distributed Resource Discovery.
Technical Report CS2003-0755, University of Califomia,
San Diego, 2003.

[3] BitTorrent. http://www.bittorrent.com.
[4] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-

ica. Towards a Common API for Structured Peer-to-Peer
Overlays. In Proc. of IPTPS '03,2003.

[5] S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET:
An Extensible P2P Service that Uni fies Ad-Hoc and Contin-
uous Querying in Super-Peer Networks. In Proc. of ACM
SIGMOD '04, pages 933-934. ACM Press, 2004.

[6] M. Jelasity and 0. Babaoglu. T-Man: Gossip-based Overlay
Topology Management. In Proc. of ESOA'OS, 2005.

[7] A. Kovacevic, S. Kaune, P. Mukherjee, N. Liebau, and
R. Steinmetz. Benchmarking Platform for Peer-to-Peer Sys-
tems. it - Information Technology, 46(3), 2007.

[8] E. Ng and H. Zhang. Predicting Internet Network Distance
with Coordiantes-based Approaches. In Proc. of INFO-
COM'02,2002.

[9] Skype. http://www.skype.com, 2004.
[I01 R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe:

A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining. ACM Trans.
Comput. Syst, 2 l(2): 164-206, 2003.

[I I] R. van Renesse and A. Bozdog. Willow: DHT, Aggregation.
and Publish/Subscnbe in one Protocol. In Proc. of IPTPS
'04, pages 173-1 83. Springer, 2004.

[I21 P. Yalagandula and M. Dahlin. Research Challenges for
a Scalable Distributed Information Management System.
Technical Report CS-TR-04-48, The University of Texas at
Austin, Department of Computer Sciences, 2004.

[I31 Zatoo - TV to Go. http://www.zatoo.corn/, 2007.
[I41 Z. Zhang, S. Shi, and J. Zhu. SOMO: Self-Organized Meta-

data Overlay for Resource Management in P2P DHT. In
Proc. of IPTPS '03, volume 2735. Springer, 2003.

