riwodz, Michael Liepert, Abdulmotaleb E! Saddik, Giwon On, Michael Zink,Ralf
gasrisntr?rgtzG: Percelved Conslﬁн ACS/IEEE Intemational Conference on Computer

Systems and Applications, Beirut,June 2001. S.

[GLE+01]

Perceived Consistency

Carsten Griwodz?, Michael Liepert!, Abdulmotaleb El Saddik!, Giwon On!,
Michael Zink' and Ralf Steinmetz’

{
Industrial Process and System Communications

Dept. of Electrical Eng. & Information Technology

Darmstadt University of Technology
Mercksir. 25 » D-64283 Darmstadt « Germany

2
University of Oslo
Department of Informatics
Postbox 1080 Blindern N-0316
Oslo Norway

{griff, lipi, abed, giwon, zink}(@KOM tu-darmstadt.de

Abstract

Quality of service gugruniees for multimedia communicGtion
systems have been considered on several abstraction levels In the
multimedia networking field it is typical to identify the minimal Q65
requiremenss of an applicarion lp save resources by guaranteeiny
its functionality. Many of these applications can operate in spite of
an imperfec! delivery of media data, while other applications such
os distributed dawabases or disiributed filessstems consider perfect
Q03 necessary but accept delay. The basic problems af the latter is
the consistency of their data, while the former require a consistent
perepiion of the conten:, More generically, both Qo8 requirements
cqn be interpreted as a problem of maintaining a consistent svstem
state. Consequently we assume thit weny distributed applications,
inchuding most distributed multimedia applications, can fulfil their
fasks in spite of imperfect consistency. Since the apphcation
requirements differ widely, the elements that make up
“consistency” musi be separated and classified. This puaper
introduces Consistency QoS and praposes a classification of
elements that deterinine an application’s consistency requirements.
The low level QoS requirements that these sepurare paramelers rely
on are shown, and example parameter sets for application clusses
are given, :

1. Introduction

The number of mulumedia communication systems has
increased rapidly in recent years. These systems bave to
handle data types that are different [rom traditional data
types ltke text or HTML files and therefore fequire a
different behavieur of the network and the applications,
Limited bandwidth, for example, is aunoying but rarely
critical for file transfer. However real-time playback of
video and audio streams becomes usually impossible if it
falls short of a lower bandwidth limit. In order to solve this
problem, quality of service (QoS)} mechanisms for
multimedia communication systems bave been considered
on several abstraction levels The usc of these mechanisms
allows distributed applications to handle multimedia
contents,

In the beginning, the focus of QoS.related rcscarch in
muttimedia communication systems was on network level
QoS_ [ts goal is to identify and negotiate the minimal QoS

requirements of an application instead ¢f over-provisioning
the network resourees. Since negotiations do not always
result in guaranteeing the best service to the application, two
different application categories ean be identified:

Applications that can operate in spite of an imperfect
delivery of data. A limited number of errors in such data
does not harm the applieation but may reduce the quality that
is delivered to the user.

Applications that do not allow any errors in the
transmitted data but accept other performance disadvantages
including unpredictable delay and jitter

The basic requirement for the second eategory is the
consistency of their data, while the first category requires a
consistent perception of the data. More generically. both
kinds of application require maintenance of a consistent
system state On the one hand, the focus is mostly on an error
free transmission of the data, on the other hand it is on a
small or no delay. In both cases this consistency is
increasingly hard to achieve when the scale of a distributed
system grows. .

In this paper we express the hypothesis that several kinds
of distributed applications de not fall into the two clearly cut
categories We assume that many distributed applications,
inclnding most distributed muliimedia applications, can
fukfil their 1asks tn spite of imperfect consisteney. Section 2.
will motivate this hypothesis with some specific applications
thal are already in’ use.

We realize that the requirements of distinct applications
differ widely and therciore, that tbe elements which mske up
“consistency” must be separated and classified. This
separation and classification will make it easier to exploit the
limits to a distribuled application’s consisiency requirements
in genedc ways and potentially, to increase its scalabelity.
Once a classification exist, it will become easier to specify
conditions of inconsistency that still allow correct operation
of an application. The avajlability of a classification can also
be taken into account during the development of an
application in order to gain scalability

We proposc a classification of elements that will allow
the specification of an application's consistency
requircments and thus define the maximum state of

imperfectness that still allows an application lo work
correctly, We show low level QoS reguirements that each
parameter relies on.

2. Related Work

After the iniroduction of lower layer QoS support hke
the Tenet group’s [6] higher level QoS architectures
appeared soon. XRKRM (9] was one of the first that
implemented a generic QoS architecture The highest
practically relcvant abstraction level fo date Is 1he
integration of QoS handling into CORBA, which was
investigated by [3], [11] and [14]. Many other QoS
enhanced apphcations like [2] and {16] have followed the
approach of direct mappings and simplifications without
any generalized abstraction. Ia other application areas, the
term QoS is not applied, although servicc guarantees are
their central concetn.

To have a umited set of examples available later in the
text, we start with fivc real-world examples of distributed
applications that have a distributed system state.but do not
rely entirely on a hard synchronity betwecn the copies of
the dala. Thesc cxamples can not cover the entire range of
aspects that need investigation, but our initial
investigations are limited to the covered set of aspects.

2.1 Computer Games

A distnbmted, interactive computer game has a single
environment that is concurrently manipulated by all
participants. However, there are rules. Some things need
not be kept consistent because they do never change (Walls
in MiMaze [7], the race track m a car mcing game [12]).
Some things can be changed by only one present person,
not by others (target ear speed). Some things arc always
accepted (a turp of the steering wheel is always accepted,
since user input 15 mnever rewindable). (1Z] has
demonstrated that a highest permissible delay in system
feedback exists for applications such as the his racing
garne, and thal processing variations can reduce the effects
of such delays on the user perception. Investigations
showed that with a delay of 50 ms a player is still able to
steer the car without a perceptible reduction of his control.

2.2 Vehicle Remote Control

In this example we assume the rather extreme situation
of a single vehicle like the Pathfinder for the Mars mission
or other remotely controfled vehicles that are needed to
finlfil special tasks. This application differs from e.g. the
games scenario in several ways. An imponant one is that
the possible activity of the environment 15 not hmited to
preprogrammied actions. The system can be consistent for a
very loug time, but it can suddenly becorne inconsistent by
an unforseeable event. In normal operation, for the

Pathfinder specifically it was predictable tha! there were no
other remotely controlled vehicles or moving objects, thus
future situations could be predicted on the basis of the
vehicle’s movement alone, As this example shows, it can
be valuabic for distributed applications to consider which
data in the physical environment are subject to change and
which are not.

2.3 Distributed multimedia filesystems with dis-
connected operations

A distnbuted file systenu [ike the CODA file system [10]
will uysually refer w0 a referenice copy when it aperates in
comected mode, not allowing the system v become
inconsistent, In disconnected mode, the occumence of
ineonsistencies is expccted, and notifications and user-
controlled mechanisms are provided to resolve such
inconsislencies,

This lype of flesysylem supports disconnected
operation mainly for mobile clients. Unlike other
distributed file systems like DFS [5] and AFS [4], CODA
supporis the continued operation during pariial network
failures as well. This feature automatically intruduces a
certain level of inconsistency in dwstributed file systems.
Update speed and frequency are small n this system since
changes to the stored data would not occur in intervals of
milliseconds Versioning of the files allows 1o rzarrange
consistency when a mobife system that has been
disconnected reconnects.

2.4 Lip Synchronization

Loosing lip synchronization is a problem that appears 1n
the playback of separately transported audio and video
strcams that belong together. This problem cau be
interpreted as an issuc of inconsistent clocks. Although
several synchronization mechanisms exist Lo eliminate this
problem altogether, it may be possiblc to save resources by
synchronizing such streamns sufficienily well rather than
perfectly. The definition of sufficiency 15 difficult, but
Steinmetz [15] showed that the skew between audio and
video belonging to the same presentation ¢an be up 1o 80
milliseconds without heing noticed by the casual viewer.

2.5 Mobile IP

Mabile 1P zddresses 1ssues of lossy connections and, in
general, unrehable and dynamic networks [13). Services,
applications and work practices that were designed for
slationary, non-moving users linked to fixed networks have
to bc adapted to accomodate requirements imposed,
constraints introduced, and possibilities opened by the
mobility of users. Mobile P extends and Introduces

_protocols to allow for e.g messaging, localization, security

1n such dynarmc environments.

3. Intreducing Consistency QoS

During our work on distributed systems we learned that
some of these can deal quite well with a ceriain fack of
consistency. Dealing with the problem of distributing
changes of the system stzte sufficiently fast between the
separate nodes 1n a distributed system, we call this fiavor of
QoS "Consistency QoS". It expresses all QoS issues in
terms of constrained errors in a distributed sysiem state.
The examples of Section 2. indicate that many problems
can be formulated in these terms. 1t is itnportant ta note that
we do not address the problems of real-lime applications
alonc, but try to guarantee QoS for applications that are not
considered real-tirne as well In a middieware architecture
that is based on the replication of state, we assume that the
various copiés of state {data) are not perfectly consistent at
all times. Next, we introduce the required concepts of
perceived consistency (Section 31) and perception
{Section 32). Based on this, we define the term
Consistency (Jof in Section 3.3, and then we present the
list of Consistency QoS parameters that we have identified
so far {Scction 3.4).

3.1 Perceived Consistency

We assume that QoS requirements are often bosh
application-dependent and exist inherently within
applications. Finally. these requirements are driven by the
conscivus perception required of the user [8], respectively
the required physical output. The examples in Section 2 1
and Section 2.4 provide an intuition of the term ‘perceived
consisteney’: if the end user belicves that the video and
audio streams are lip-synchronous, or if the user believes
that the feedback to his controls are instant, perceived
consistency is achieved. We define
Perceived Consistency for distributed sysiems means that the

perceived physical output is interpreted equally by all users

An application can support perccived consistency only,
but obviously never guarantee correct interpretation by the
users, Still, suppon of perceived consistency puts dermands
onto applications

For most areas that require consistent system states, the
user involvement 1s less direct than in the given eases of
Section 2 . The impilementation examples present special
investigations or developments that are concerncd with
various scales of modifications to a systern state. They
seem to have few things in common. However, when the
elements of s consistent system state are separated into
measurable aspects, we can identify for each of the
indicated applications a sct of consistency requirements.

Starting with a reduced application space, we consider
only distritbuted applications with a logical system model
that can be reduced to a predictable and manageable set of
atomic data. We simplify further by considering ouly

Physical Local Application Node
Environment (e.2. a Client, Process)
(e.g. User)
I
N ~aa
Perceptehle Consistency
Cansistency Constraints

Effectively per-
eeived model slate

on local application data in-
slances {output and source val-
with limited tempo- ues) with constraints denved
ral and spatial exact- from constraints for perceptable
TIeES. consisiency.

Figure 1: Perceptable Consistency and

locat Consistency Constraints
simple, fix-sized data elements in a first step. Although we
are not sure whether a generalization is possible starting
with this approach, there arc applications fulfilling these
assurnptions (Section 2.1 to Scction 2.4), ie. such
applications that gain from an appropriate Consistency
QoS infrastructure.

[n a typical distributed application, some changes to the
system slate arc not necessanly perceived immediately by
each user. Actually, the same 15 true for some applications
as well, so we can more genencally 1alk about the physical
environment of the distrihuted application. To reducc the
effort for maintaining consistency, we try to find the
implementation constraints at cach edge to the physical
environment, that still provide percetved consistency, To
stay within thesc constraints, we map them onto constraints
for ther associated local instances of distributed
application data (Figure 1). Having (his, we want to benefit
from loosened constraints on the respective application
model values by cufting communication cost, preferably to
the Jevel that the physical and human environment of the
application demands. This yequires the notion of two
concepts’

« perception of data at a node of a distributed application,

presented in Seetion 3.2
* Gonsistency eonstraints on perceived data, presented as

Consistency QoS parameters in Section 3 4

3.2 Perception

Applications can exploit the fact that data need not be
more up-to-dale or exact than the perceived consistency.
Of course, the permissible deviation from an acwaily
consistent behaviour differs from one user to another, and
an ideal perceived consistency can not be measured. Just as
m lossy multimedia codecs, the permissible loss of perfect
replication of the system state competes with the resources

that are required to achieve it, and the limits are chosen
subjectively, e.g. based or case studies.

The concept of perception implies that avalability of
manipulated yet unperceived data is not relevant. The local
node needs no consistent information about anything oul of
its current scope of operation. in other words the {ocal node
works consistently within its scope even if it does not have
perfectly correct information about data oulside its scope,
granted that its eopies are invahdated before they are
perceived again.

i data is
manipulated by
a user, or
farget referred to for
the first time,
the tesult of the
operation can
not be known
immediately
Figure 2 shows
the states for a datum at a local node that enters (perceive)
tespectively leaves (forger) the pereeption of the local copy
of the application The state real indieales 2 reliable, non-
rewindable value of the datum. This can obviously not be
achieved immediately smce thc curfent state must be
transferred from another node initially.

The perception s:ate madel is in so far oblivious of the
communieation delay betwceen the nodes of the distwibuted
system and problecms of interactions with the physieal
cnvironment. It only specifies, whether conflicts have to be
rcsolved. Assuine that a user 4 inputs a valuc for datum D,
this datwmn is in the foeus of user 4 and 4's datum instance
has therefore lo be real. Any uncertain instance of D can
be informed with a one-way message, nodes where D is
unknown do not maintain instances of D. But if a user B aL
another mnode of the distributed application tries to
manipulate datum D, the two respective mstances of D are
real. The expected results of these inputs may differ for
users A and B, but the user input has becn accepied by the
respective nodes. Being physical input, the input is not
rewindable and must be ecnsumed, but the effect of the
user ioputs on [is not necessarily the respectively
expected effect. Twa situatrons ean potentiaily occur:

» The confliet between the two nodes can be resolved
within a delay aeceptable for the distribuicd appliea-
tion. A modcl-dependent mergimmg of the two user
inputs is performed and the new state of datum D is
cansistently shown to users 4 and 8.

. unknown
pE[CCIVC N

forpet

unceriain

Figure 2 stale graph for datum visibility

realize

* The communcation delay between the two nodes is not
acceplable. An application-defined excepiion handling
must be perfonned.

3.3 Consistency QoS

Consistency QoS 15 intended to formalize the abilny of
an application to execute comectly in spite of data being
inconsistent in some ways. With Consistency QaS, we try
no more 10 maintain absolute consistency (e, the logical
axioms of the respectivc application), but try to identify
and maintain the perceptable consistency (i.e.. perceptable
aspects of these axioms). We define:

Consistency QoS is a coofract between an edge of a
distributed application and an underlying application layer
that quantifies guaranteed contraiuts on reguest to and
provision of change to a distributed system state

An edge of an application here is a layer that connects
the apphication with the physical environment, e.g. GUlIs or
device adapters. The constraint quantification needs a
scheine whieh is developed in Section 3.4. This scheme
may be eommunicated te the physical environment
including users in a potcntially simplified presentaton
{hike g shder to control smear effects).

Specifically, this scheme provides a means to specity
acceptability for the conflict resolution mentioned for the
perception state model in Section 3.2

3.4 Consistency QoS Parameters

We aimm at the identification of a set of constraints
suitable to describe the requirements which a perceived
consistency may put on an application node, We try to
formulate these constraimis as applicatien level QoS
parameters, to be negotiated with a middleware.

Section 2. shows that datum consistency problems can
not be specified by a single parameter. Similarly, 1t is rcle-
vant to understand whether intermediate steps of a series of
consecutive state changes in an mstance ean be ignored
when the state in anather instance is updated, Consisteney
QoS can apply other QoS definitivns as a basis for its guar-
antecs (e.g. weakly consistent state ¢an only be guaranteed
when the end-to-end delay is known).

In fact the consistency problem can be split 1nto several
parameters and applications have different requirements in
cach of these parameters. Being an abstraction from lower
systemn levels, the values for several of the parameters can
only be achieved 1f the system is supported by QoS guaran-
tees on lower levels: the enforcement of parametcrs for eon-
sisteney must be supparted by network level QoS and lacal
sysiem QaS (CPU, memory, disk access). This ean be im-
plementcd by the use of e.g. an Integrated Services infra-
structure [1] and an operating system and application able
to provide QoS guarantees. Up to now we have 1dentified
the parameters of Consistency QoS that are presented in
Table 1. In case of applications that rely on netwark fevel
QoS gusrantees, Consistency QoS can reduce the amount of
resources that need to be reserved to guarantee the correct

parameter

update speed

update frequeney

synchronization frequency

replicability
_ S—
rewindability

acceptabitity

distributed multimedia filesystems with
disconnected operations {COD A-like)

days

high

manual

none

local transitivity

versioned files

-

vehicle remole control (Pathfinder)

fast
fregquent

seconds

limited

very limited

~ update speed

buiit-in {parameter interdependance is part of the
system); very limied

Table 2, Consistency QoS paramecters [or extreme applications

vatiables of the supported data types can be used
independently of their distribution state The data types are
provided by the middleware: rather than using a standard
integer data type int of the programming language,
interfaces of daia types such as Rewindablelnteger or
Mergablenteger with a limited set of operations are used
at the application level. At the middleware level, each
variable of a suppotted lype 15 implemented with a specific
conflict resolver. Three kinds of implcmentation are shown
in Figure 3, The simple dutu type implementation has a
locally available state, and all operations are timestamped
and performed on the local copy as well as broadeast tc all
remote copies. Because of limits to the number of replica, a
node in a distributed application may somelimes not held a
local instance of a specific datum. In that case, and if
network resources are sufficient for that, a remote simple
daota type stub is made locally available 1L redrrects
operations to the remote instances and retrieves the state
synchronously when it is requested by the application.
References are a means for sharing dynamically created
data among nodes. The reselved reference implementation
allows data that is replicated to the local node without an
inlerface at the application level, If they can be referred to
by a reference Such a reference datum, which may be
distributed itself, 15 used like a pointer by the application.
The raised grey box 1n Figure 3 provides a look into the
main element of a lecal implementation, the conflict
resolver. Conflict resolvers implement a specific strategy
such & rewinding or merging to provide the guaranteed
consistency. The box shows a conflict resolver that is based
on a verified state 1hat can not be manipulated any more, It
maintains 2 queue of unverified operations that will be
zpplied to the verified state when the fimc for a re-ordering
insertion of cperations from a remote node has expired. All
retfieval operations of the application refer to a visible state
that does not necessanly consider all operations that have

already been performed on the datm nstance; the
vistbility of the operations at the application level 1s
delaved. Funher important components of the middleware
layer are the garbage eollection for dynamical data and the
namespace administration which is responsible for globally
valid references.

We circumvent a central object naming serviee by
tdentifying names with references When an instance first
refers to a datum, a reference is created at the given node
and ns reference is registered. Since a reference itself 15 a
datum, each datum is either connected to globally known
data of the well-known binary code of the distributed
application through a chain of references, or it is not. in the.
second case, this datum is an intermediate datum for the
proccssing in a piece of code of one instance of the
application. In the other case, this datum may become
interesting 1o other instances of Lhe application, but onty if
the dawm is referred to. This reference by a remote
instance can. be achieved when the reference chain that
allows location of the datum is distributed 1o the remote
jnstance, When the remote instance de-references the
datum that refers to the newly created datum, it acquires
access to the original datum and perceives it. The means of
such access are defined by the modes of the datum

The modes may forbid replication, which increases
delay but guarantees consistency, or lhey may limit the
overall number of replica in the distributed application. 1f
replication is possible in spitc of such conditions.
requirements on the network level QoS must be checked to
detennine whether the temporal limits to the update speed
of the datum’s rephca can be guaranteed. If this is
impaossible. the replication 18 not performed but each access
to the datum by the remote node is executed by a remote
call.

paramelcr name

- - _— e —

meaning J

=

r npdate speed

The largest interval that is needed to deploy a change of state in a dalum 1o all instances of thet datum.
Guarantees of update speed require guarantees on end-to-cnd delays at the network level.

update frequency

The highest frequency of state chenges in a datum that can be handled by the service provider without affecting

other guarantees. Guarantees eu updale frequency require guarantees gn thronghput and loss at the network
level, and depend heavily on muliicas! features,

|

quency
Lthroughput, loss aud delay.

_

replicability

apphecation-defined cunstaiuts.

rewindabilily

synchronization fre- The lowest frequeucy of communication between any two instauces of a datum that stifl allows to recreate a

cowninon syuchronized siate. Guarentees of synchronizalion frequency require network level guzrantees on

The number and distribution of replica that may exist oI a datum (replicability=1 makes most other Consist-
ency QoS parameter srrclevant but may reduce system availability). Guarantees on replicability are based on

The past states, in terms of granularity and pasi time, to which a datum can return. Guarantees oo rewindability
require local guarantees on available memory.

acceptabilisy

local transitivity

puting specd

The acceptable level of divergence of the current content ou the display from the actual state of the system {e.g.
duc 1o human perception). Guarantees on acceptability are based on application-defined constraints.

The number of steps that can be reversed in modification of related local data when a datum is informed about
a remote siate change that occureed {legatly w.r.t. update specd) before operattans were perfouned based on
incorreet information. Guarantecs wu local transitivity requirc local guarantees on available memory and com-

Table 1. Consistency QoS Parameters

funetionality. -

Without limits to the parameters of Tablel, an
unacceptable number of rewind operations and re-
caleulations may become necessary. The rescurce usage of
all approaches that allow re-integration of the system state
is growing wo quickly for most applications. Only if
limitations apply. Consistency QoS is apphicable at all.
Table 2 shows that the requirement range of a single
parameter can be very wide (see update spced or
frequency}.

We are investigating whether these Qo8 paramelers are
sufficient, independent, and atomic. With the given
parameters, we can aircady demonstrate connections
between low level QoS parameters and application-level
parameters. We believe that the eonsideration of these
parameters will 1n some cases allow applications to decide
their QoS requitements without bothering with user
interaction at all, in some cases allow the indication tc a
user that perceived quality will be severely disturbed and
can not be increased, and finally provide users with means
of setting QnS parameters in terms that are far more
intuitive than, e.g. the packet loss ratio.

4. Implementations

The ongoing implementation is focused on early
application. Thus, we implement a varety of consistency

strategics (interpolation, voting, rewind, prediction, output
delay) for some basic data types (numbers, boolean and
chatacter values), references and aggregations. As a proal
of concept, we design and implement a simple middleware
for a system that can provide Consistency Qo$ to
applications on the basis of lower level QoS provision.
Only afler successful evaluation, 1t will be reasonable to
integrate Consistency QoS into more complex and
commen framewoerks, c.g. as a CORBA object adapter or
CORBA 1 0 QoS palicies.

We starl by considering a distributed application that is
implemented by separately runming copies or entities.
Being distributed, that application tries to maintain a
consistent system state in spite of temporal delays in the
distributior of changes to the system state from one node to
another. As stated above, we have reduced the data types
for 1nitial examination. We do not consider more complex
constructs such as classes and methods, we consider only
precompiled, static application code at this time. It is
currently unceriain in which way our results need to he
adapied to apply to more dynamic setups.

Consequently, we consider a middleware that consists
of an abstract distribution system that can guarantee
network level QoS such as end-to-ead delay and reliability,
and that provides multicast facilities. Figure3 shows a
design of an infrastructure that considers simple data types
and operations on these data types. At the application level,

simple d t.
interface

simple d.t.
interface

simple d.t. remote
; simmple d.t.
implem. cub

parbage
collection

[
g
5 E
8.7
g E
EE
==

ﬁ

system mullicasi~ and
level QoS-support-
capable
transport sublayer

Figure 3: distribution infrastructure

5. Future Work

After the ongoing implementation of Consistency QoS, we
will try to dissect applications and implant our shared par-
tially consistent data types Lo get a first proof of concept and
applicability.

Then, we want to implement an extensible framework to
allow implementation of new “plug-in strategics” and alsc
of new value types by means of aggregation (records, arrays
and classes). Also. we want to have a look at the possibili-
ties to integrate Consistency QoS implemenlation and con-
cepts into CORBA.

Having a development framework at hand, the benefits
of Consistency QoS have to be evaluated. This will certain-
1y demand further refinement of Consistency QoS classifi-

cation, application analysis and middleware
implementation.

6. References

[1] Bob Braden, David Clark, and Scott Shenker. Integrated Ser-

vices in the Internet Architgeture. Internet RFC 1633, June
1994,

T. Braun and S, Giorcelli. Quality of Service Support for 1P
Flows over ATM. In Proc.x of Xommunikation in Vertetlten
Systemen:GUITK Fachtagung. Springer-Verlag, Feb. 1997,
Christian Becker and Kurt Geihs, Generic QoS Specifica-
tions for CORBA. In Proceedings of KiV5'99, Kommunika-
tion in Ferteilten Systemen, pages 184—195. Springer Verlag,
Murch 1999,

Richard Campbell. Managing AFS - The Andrew File Sys-
tem, Prentice-Hall, 1993.

DFS Administration Guide. Transatc DCE Documentation,

[2]

[3]

(4]
51

Caiifict Resifver!

ol

refercnee

: | application
interface

feve}

middleware
level

resolved
reference
implem,

oS g
opergiion [~

* remofe

1995,

Domenico Ferrari, Anindo Banerjea, and Hui Zhang. Net-

work Support for Multimedia. Compurer Networks and ISDN

Systems, 26(10), 1994,

Laurent Gautier and Christophe Diat. Design and Evaluation

of M:Maze, a Multi-player Game on the tntemet. in Proc. of

{EEE Muitimedia Systerns Conference, June 1998,

William James. The Principles of Psychology - CHAPTER

X: The Conscipusness of Self. online library, 1850,

Anrel Lazar, Shailendra Bhonsle, and Koon Seng Lim. Bind-

ing Architecture for Multimedia Networks In Proc. of the

International COST 237 Workshop, pages 103-123.

Springer-Verag, Nav. 1994,

[10) ¥.W. Lee, K.S. Leung, and M. Satyanarayanan. Operation-
based Update Propagation in a Mobile File System. In Proc.
of the USENIX Annual Technicol Conference, June (999,

[11] Klara Nahrstedt and Jonathan Smith. The QoS Broker. /EEE
Multimedie, 2(1):53-67, May 1995.

[12) Lothar Pantel. Moplichkeiten zur Behandlung der Ende-ze-
Ende Verzégerung in Mehrparteienspielen. Thesis, Jan. 2000.

[13] C. Perkins. RFC 2002 - 1P Mobility Snpport. RFC, Oct. 1996.

[14]T. Plagemann, A. Saethre, and V. Gocbel. Applicalion
Requitements and QoS Negotiaticn in Multimedia Systems,
In Proc. of Second Workshop on Protocols for Multimedia
Systems, October 1995,

{15] Ralf Steinmetz. Human Perception of Jitter and Media Syn-
chronization. JEEE J. Selected Areas on Communications,
1416172, January 1996.

{16] Iens Schmitt, Michael Zink, Lars Wolf, and Ralf Steinmetz.
Qualtiy of Service Support for recording and playback of
MBone seasion in heterogeneous 1F/ATM netwotks. In Prac.
of SYBEN 98, volume 3408, papes 374-383, May 1998,

(6l

7

(8]

19

