
1. ABSTRACT
A recent paper by Hua, Cai and Sheu [7]
describes Patching as a technique for reducing
server load in a true video-on-demand (TVoD)
system. It is a scheme for multicast video trans-
missions, which outperforms techniques such as
Batching in response time and Piggybacking in
bandwidth savings for titles of medium popu-
larity, and probably in user satisfaction as well.
It achieves TVoD performance by buffering
part of the requested video in the receiving end-
system.
In a further study, the authors give analytical
and simulation details on optimized patching
windows under the assumptions of the Grace
and Greedy patching techniques. In our view,
this does not exploit fully the calculation that
was performed in that study. We state that tem-
poral distance between two multicast streams
for one movie should not be determined by a
client policy or simulation. Rather, it can be cal-
culated by the server on a per video basis, since
the server is aware of the average request inter-
arrival time for each video. Since we model the
request arrivals as a Poisson process, which is
defined by a single variable that is historically
called , we call this variation “ Patching”.
Furthermore, we present an optimization
option “Multistream Patching” that reduces the
server load further. We accept that some near
video-on-demand-like traffic is generated with
additional patch streams, and achieve addi-
tional gains in server load.

1.1 Keywords
Streaming Server, Video on Demand, Multicast, Adaptive

2. INTRODUCTION
Several approaches have been presented for lowering server
load by joining subsequent user requests in VoD systems. [3]
introduces batching, which works by collecting requests that
arrive within a certain cycle. At the end of the cycle they are
serviced from the same file and buffer. [2] modifies this
approach towards dynamic batching, which services requests
as soon as a stream becomes available. [5] proposes
piggybacking, which works by starting one stream for each
request and subsequently joining streams of the same title
that have been started in short sequence. The means is a
speed increase of the later stream and/or a speed decrease of
the earlier stream until they join. [10] and [8] introduce
content insertion to force larger numbers of streams into a
time window which is small enough to allow the use of the
piggybacking technique. As content to be inserted,
advertisements or extensions to introducing scenes are
proposed as fill content.

For the exploitation of multicast in TVoD systems, Hua et.al.
invented patching. The basic approach, presented in [7], is
the creation of a multicast group for the delivery of a video
stream to a requesting client. If another client requests the
same video shortly after the start of this transmission, this
client starts storing the multicast transmission in a local
cache immediately. The server sends a unicast stream to this
client containing the missing initial portion of the video,
until the cached portion is reached. Then, the client uses its
cache as a cyclic buffer.

We work on wide-area distribution systems without central
control and have been looking at various options for caching
and prefetching of continuous media data in such a system.
While the Patching technique [7] seems to be designed for a
central server system, this is not necessarily the only way of
using it. Some initial cost calculations are hinting at a joint
applicability with a caching architecture. As a prerequisite of
those investigations, several tuning options for variations of
Patching were considered and documented in this paper.

In the following chapter we provide the calculation of
optimal retransmission times for multicast streams based on
the measured interarrival time 1/ , which allows the server to
tune the restart times for complete movies on a per-stream
basis and thus, to tune the average number of required
simultaneous server streams. Chapter 4 extends the

Tune to Lambda Patching
Carsten Griwodz1, Michael Liepert1, Michael Zink1, Ralf Steinmetz1,2

2IPSI, German National Research Center for
Information Technology

Dolivostrasse 15
64293 Darmstadt, Germany

0049-6151-869869

1KOM - Industrial Process and System Communications
Darmstadt University of Technology

Merckstrasse 25
64283 Darmstadt, Germany

0049-6151-166151

{carsten.griwodz,michael.liepert,michael.zink,ralf.steinmetz}@kom.tudarmstadt.de

considerations by adding and optimizing the use of
multicast patches, Chapter 5 concludes the paper.

3. PATCHING
Figure 2 demonstrates the starting point of the
optimizations: the number of concurrent multicast and
unicast streams has a non-trivial minimal value.

For our calculations, we assume Poisson-distributed request
arrivals with an interarrival time 1/ that depends on the
current popularity of the video. We simplify the Patching
model by starting multicast streams in cycles of length M
rather than on-demand. This implies a near video-on-
demand (NVoD) model for the multicast transmissions. It

provides several convenient simplifications to computations,
e.g. that the expected value for the number of concurrent
streams is time-independent.

We agree with the inventors of the patching technique that
the interarrival time varies comparatively quickly during
each day. We ignore this issue on the basis that the server’s
decisions that we propose can be made whenever a request
for a video arrives, based on knowledge that has sufficient
short-term validity.

3.1 Expected Patch Stream Length
The expected value of the number of unicast streams that are
started in each interval of length between two multicast

stream starts is . Assuming that one full multicast

stream starts at time 0, the length of each unicast
transmission can be calculated as follows:

If we compute the expected value of the patch stream
length, we find that it is .

length of movie sec

time interval between multicast
starts

sec

expected time interval between
video demands (unicast starts),

according negative exponential dis-
tribution

sec

B buffer length at the client sec

W maximum number of streams
received by client
(receiving load)

num-
ber of

streams

CU cost of unicast stream at server EUR/
sec

CM cost of multicast stream at server EUR/
sec

SU unicast stream setup cost at server EUR

SM multicast stream setup cost at server EUR

Table 1: Terms and definitions of the calculations

Figure 1. Buffer usage in patching

3. client

client bufferclient bufferclient buffer

2. client 1. client

play out:

multicast streampatch stream

patch stream
server

F

M

U
1 ⁄=

no overlap

slight overlap

high overlap

5 5

5 4
active streams

6 6
active streams

Figure 2. Hints that M may have an optimum

time

position
in film

position
in film

position
in film

time

time

active streams

M

M U⁄

t n M n 1+() M,):[length t() t mod M=

1 2⁄() M

3.2 Expected Number of Active Patch Streams
The expected interarrival time of streams is . It is clear

that the average number of streams that are concurrently
active is . The expected value of the number of

streams that are concurrently active at a given time t is less
intuitive (although the result is the same).

We examine the interval of possible starting times for
streams that can still be active at the given time t.

This interval is defined by two sub-intervals. One includes
the streams that are started in the same interval

where t0 is that latest multicast stream

starting time before t and still active at time t. The other
includes the streams that have been started in the interval

and that are still active at time t. With earlier

definitions, this provides the following set of starting points
Ut:

These intervals are always disjoint, and their combined
length is

Since the Poisson distribution defines that the expected
number of arrivals in any interval T is , this provides

the expected number of active streams at time t, i.e., the
number of streams that are started in Ut, which is .

This results in equation (1), calculating the expected number
of unicast streams active for any t,

equal to the average number of concurrent unicast streams.

3.3 Optimizing M
Since all complete multicast streams have length F,

multicast streams are concurrently active

at each time. Together with equation (1), we have the overall

number of concurrent streams,

By adding server stream maintenance costs and server
stream setup costs for multicast and unicast streams, we get

the overall server streaming cost

We can now use the expected cost by computing an optimal
value for . It depends on the current popularity of the

video, which is expressed by . We get

By neglecting setup costs and assuming , this

can be simplified for an approximation of the optimal value
of the client buffer’s size as a time . It depends on

popularity and length of a video:

(under the condition that the client can receive 2 concurrent
streams).

We derive directly from given figures, so that a video

server can recalculate for every given film or change in

request rate or even bandwidth costs. This approach is more
easily applied in the real-world than simulations.

To demonstrate the use of these equations, consider the
following example: let multicast and unicast streaming costs
be equal, multicast stream setup costs be (i.e.,

setup is worth half a second of streaming) and unicast
stream setup costs be . Let the film be a popular

movie of 4200 seconds with an average request interarrival
time of 3 sec. This results with equation (4) in an

optimal temporal distance between multicast restarts of

about 159 seconds (equation (5) calculates the same). The
server streaming cost for this is equivalent to about

53.11 concurrent streams (equation (3)), with multicast
streams cost equivalent to 26.3 concurrent unicast streams,
including multicast setup costs.

U

M 2 U()⁄

tntn M– tn M+t
time

Figure 3. Expected start time intervals for active streams at
time t

position
in video areas of

streams
possibly
active at t

tn tn M+,)[

tn M– tn,)[

U t

t tn M–+

2
-------------------------- tn,

t tn+

2
------------ t,=

U t 1 2⁄ M=

T U⁄

U t U⁄

Nu t() M 2⁄

U
--------------- M

2
-----------= =(1)

Nm t() F M⁄=

N t() Nm t() Nu t()+ F

M
-------- M

2 U
----------+= =(2)

Cost -patching

SM

M

SU

U
------- CM+ +

F

M
-------- CU

M

2 U
----------+=(3)

M

U 1 ⁄=

0
M

----------- Cost -patching()
SM C+

M
F

M
2

--------------------------–
CU

2 U
----------+= =

M 2
SM CMF+

CU
-------------------------- U=

(4)

CM CU=

B

B M 2 F U
2F-------= = =

M

M

CM 0.5sec

CU 5sec

U

M

M

3.4 Given Limits
As every client eventually has to buffer of video, the

VoD-systems minimum client buffer size is an upper bound
to .

There is obviously a lower limit to the frequency with which
streams need to be started even under very high loads: since
there is a limit to the user perception of lag in stream
acquisition, it is acceptable to delay the stream start for a
few seconds without giving the user the impression of an
NVoD system. This imposes a lower limit to we did not

exploit in our calculations.

4. MULTISTREAM PATCHING
In this section we extend the patching algorithm by
additional multicast patch streams. This extension of
patching we call Multistream Patching. We demonstrate that
the server load can be traded for client network bandwidth.

4.1 First Multicast Patch Stream
We assume that a client is able to receive up to three streams
in parallel. Then, we extend the patching algorithm for the
server by the rule: “in every interval

between the starts of two

complete multicast streams multicast an additional patch

stream at , and play it for a length of ”.

The extension requires the client to listen to a complete
multicast stream, potentially one unicast patch and
potentially one additional multicast patch. This increases
peak receiving load on the client up to three concurrent
streams, demanding for higher bandwidth between client
and server and higher client computation power. The buffer
requirements do not change, as the received amount of data

to be buffered is still a maximum , although eventually

written concurrently in two portions).

4.1.1 Chosen Position of First Multicast Patch
Unicast patches deliver only the amount of data not
available from the last multicast stream (including complete
MC streams and MC patch streams). Their average length
and with that the average number of concurrent unicast
streams is proportional to the gap between multicast
streams. We therefore start a multicast patch in the middle
of two multicast stream starts to decrease the average
required length of unicast patches.

With a multicast patch halfway in between two complete
streams, unicast patches only patch a maximum gap of

. In the same way as seen above, this gives us an

expected number of . The

average number of concurrent unicast streams over an
arbitrary interval with one multicast patch is halved.

4.1.2 Chosen Length of First Multicast Patch
There are two cases, depending on the position of the
client’s request time in the interval between two complete
multicast streams.

• If the client requests a video at a time in the first half

of an interval between two complete multicast streams
(Figure 5), it listens to the unicast patch stream and to
the complete multicast stream, immediately playing the
unicast. The multicast stream is buffered and played
with a delay of .

These clients do not use the multicast patches the server
provides.

• If the client requests a video at time in the second half

of an interval between two complete multicast streams

M

M

U

Figure 4. Stream setup example with first multicast patch

tn M+

tn
M
2

---------+

tn

tn

3 M
2

------------+

M

Unicast
Patches

position
in video

time

Multicast
Patches

Complete
Multicast

T n tn tn M 2⁄+,)[=

tn M 2⁄+ M

M

M 2⁄

M 2⁄() 2⁄ M 4 U⁄=

tatn

tn
M

2
--------+

ta ta tn–()+

ta tn–

position
in video

time

Figure 5. Request at time ta tn tn
M

2
--------+,

}

ta tn– complete

patch

parts of
streams
played by
client

multicast
streams

multicast
streams

ta

ta t–
n

tb

(Figure 6), it listens to the unicast patch stream, to the
last multicast patch stream and to the last complete mul-
ticast stream. It immediately plays the unicast stream,
the two multicast streams are buffered and played with a
delay of for the multicast patch

respective for the complete multicast.

Figure 6 shows that the multicast patch at

eventually has to patch the video data of the interval

with

, which gives that the

latest video data possibly to be patched are at
.

Thus, the multicast patch has to cover an interval of data to
be patched of , being twice as long as a unicast

patch starting at the same time would have to be.

4.1.3 Evaluation of First Multicast Patch
With a fixed client buffer, but with of peak receiving
load compared to original patching, we introduced
multistream patching with one intermediate multicast patch.
With the halved unicast load and with one additional

multicast patch of length starting every , the

required bandwidth cost at the server is

The gain over non-multistream patching on the server is as
below.

This will be a positive value for large . In our

example, we get 27.4 multicast streams and 13.25 unicast
streams concurrently on the server.

Including the stream setup costs for multicast and unicast
streams at the server, the cost for multistream patching
is:

With equation (3), this is a gain of:

This again will be a positive value for large .

For or example above, equation (6) gets server costs for
patching with a first multicast patch as an equivalent to
40.89 concurrent streams, saving in this example an
equivalent of more than 12 streams from non-multicast
patching.

4.2 n-th Multicast Patch
To introduce the first multicast patch for multistream
patching, we had to extend the available maximum client
bandwidth to streams, which has to be fully
available during a short time immediately after requests. But
if clients can receive concurrent streams, we can

introduce multicast patch streams by applying the
multicast patch recursively. The resulting characteristics of
multistream patching with multicast patches are:

• peak receiving load:

• a time interval of between multicasts, resulting

in an average number of concurrent unicast streams on
the server of

• Server bandwidth cost of

• Server bandwidth and stream setup cost of

tb tn M 2⁄+()–

tb t–
n

tb

tn tn
M

2
--------+

tb tn
M

2
--------+–

tb tn–

tb tb tn–()+

tb tb tn
M

2
--------+–+

position
in video

time

Figure 6. Request at time tb tn
M

2
--------+ tn M+, :

}

tb tn–

tn M 2⁄+

tb tn M 2⁄+() tb tn–,–)[

tb tn M 2⁄+ tn M+,)[

tn M tn–+ M=

0[M,)

3 2⁄

M M 2⁄

CM
F

M
-------- CM 1 CU

M

4 U
----------+ +

CU
M

4 U
---------- CM–

M U⁄

Cost1st mc-patch

2SM

M

SU

U
------- CM+ + F

M
-------- CM+ CU

M

4 U
----------+

=
(6)

Cost -patching Cost1st mc-patch–

SM

M
--------– CM– CU

M

4 U
----------+

=
(3)-(6)

M U⁄

2 1+ 3=

W 3>
W 2–

n

W n 2+=

M 2⁄

M

2
n 1+

U()

CM
S F

M
-------- nCM+ CU

M

2
n 1+

U

---------------------+

• With a gain over non-multicast patching of

Again, these formulae are valid only for large .

Also, saved unicast bandwidth soon will be outweighed by
additional expenses in multicast path tree setup and
bandwidth. But if we consider the equations, we get a
theoretical optimum of savings over non-multicast patching

.

The optimum for here is computed for a fixed , as for

now we do not optimize the two-dimensional tupel
.

The multistream patching scheme could easily be extended
to chose according to a client’s buffer and available
bandwidth, as existing streaming approaches like MPEG-4
[5] support dynamic setup for multi-stream connections.
This would allow for a scheme to individually set up
multistream-patching for each client, dynamically
calculating the appropriate length of patches.

For our example movie above, equation (8) gives an advice
to use the fourth (or fifth) multicast patch:

This would result in a multicast patch every 9.9 seconds
(resp. 5 seconds). Using the fourth (fifth) multicast patch on
our example, we get server streaming and stream setup costs
equivalent to 32.4 (32.6) concurrent streams, which means
further savings of 8.4 concurrent streams over first multicast
patching. The video server with n-th multistream patching
in this theoretical example could provide TVoD while being
only about ten streams more expensive than NVoD at a
granularity of 159 seconds (26.4 concurrent multicast
streams). As stated above, this is in trade-off to the expense
of 159 seconds buffer and the triple(resp.) required
burst bandwidth on every client.

5. CONCLUSION
In this paper, we have presented two modifications of the
patching technique. The first variation patching is based
on dynamic buffer calculations that can be performed by a
video server at request time for each video depending on its
length and popularity, which must be expressed in
interarrival times 1/ . With this information, with respect to
server load the optimal temporal distance between complete
multicast streams can be approximated as

The second modification multistream patching provides a
means of starting streams cyclically, from which end-
systems can buffer video data while they receive patch
streams for the initial portions of a video. In contrast to the
original technique, these cyclically started streams need not
be complete video streams, but they can end when sufficient
data from a running complete video stream has been
received. This approach can be re-iterated. We have
provided a formula based on server cost computations that
allows to find the optimal number of iteration steps, again
depending on a video’s current popularity. Some example
computations show that this approach can provide
remarkable reduction of server load for popular videos in
conjunction with the dynamic buffer size selection of the
first part.

In future work, we intend to extend cost calculations to the
network and to identify an applicable combination of
patching with caching techniques.

6. REFERENCES
[1] C. Aggarwal, J.Wolf, P. Yu. On Optimal Batching Poli-

cies for Video-on-Demand Servers. IEEE Multimedia
Computing and Systems Conference, Hiroshima,
Japan, 1999, pp. 253-258

[2] Asit Dan, Perwez Shahabuddin, Dinkar Sitaram, Don
Towsley. Channel Allocation under Batching and VCR
Control in Video-On-Demand Systems, IBM Research
Report, RC 19588, Sept. 1994.

[3] Asit Dan, Dinkar Sitaram, Perwez Shahabuddin.
Dynamic Batching Policies for an On-Demand Video
Server. Multimedia Systems. 1994.

[4] A. Dan, D. Sitaram, P. Shahabuddin. Scheduling Poli-
cies for On-Demand Video Server with Batching. ACM
Multimedia Conference, San Francisco, USA, 1994,
pp. 15-24

[5] Leana Golubchik, John C. S. Lui, Richard R. Muntz.
Adaptive Piggybacking: A Novel Technique for Data
Sharing in Video-on-Demand Storage Servers. Multi-
media Systems 4, 1996, pp. 140-155

[6] L. Golubchik, J. Lui, R. Muntz. Reducing I/O Demand
in Video-On-Demand Storage Servers. ACM Sigmet-
rics, Ottwawa, Canada, 1995, pp. 25-36

[7] K. A. Hua, Y. Cai, S. Sheu, "Patching: A Multicast
Technique for True Video-on-Demand Services", Proc.
of ACM Multimedia 1998, 1998, pp. 191-200

Costnth mc-patch

n 1+()SM

M

SU

U
------- CM+ + F

M
-------- nCM+ CU

M

2
n 1+

U

---------------------+

=

(7)

Cost -patching Costnth mc-patch–

SM

M
--------– CU 1 1

2
n

-----– M

U
-------- n CM–+

=

(3)-(7)

M U⁄

0
n

------ CU 1 1

2
n

-----– M

U
-------- n CM–()=

n log2

CU M

U SM M⁄ CM+()
--- 1–=

(8)

n M

M n,()

n

n log2

CU 159

3
5CU

159
----------- CU+

---------------------------------- 1– log2
159 159
3 164

---------------------- 1– 4.7= =

7 2⁄

F

M 2 F ⁄=

[8] Rajesh Krishnan, Dinesh Venkatesh, Thomas D. C. Lit-
tle. A Failure and Overload Tolerance Mechanism for
Continuous Media Servers. Proceedings of the ACM
MM 97 Conference, 1997, pp. 131-142

[9] Moving Pictures Expert Group: Text for ISO/IEC FCD

14496-6, ISO/IEC JTC 1/SC 29/WG 11/N2206, 1998

[10]D. Venkatesh, T. D. C. Little. Dynamic Service Aggre-
gation for Efficient Use of Resources in Interactive
Video Delivery. Proceedings of the 5th NOSSDAV con-
ference, Nov. 1995, pp. 113-116

