
Practical Security in P2P-based Social Networks

Kalman Graffi, Patrick Mukherjee, Burkhard Menges, Daniel Hartung, Aleksandra Kovacevic, and Ralf Steinmetz
Multimedia Communications Lab1 and Real-Time Systems Lab2, Technische Universität Darmstadt, Germany

The Norwegian Information Security Laboratory3, Gjøvik University College, Norway
Email: {graffi1,sandra1,steinmetz}@kom.tu-darmstadt.de, mukherjee2@es.tu-darmstadt.de, daniel.hartung3@hig.no

Abstract— The peer-to-peer paradigm is used in more and
more advanced applications. One of the next areas that promise a
success for the p2p paradigm lies in the upcoming trend of social
networks. However, several security issues have to be solved in
p2p-based social network platforms. We present in this paper a
practical solution that establishes a trust infrastructure, enables
authenticated and secure communication between users in the
social network and provides personalized, fine grained data access
control. We implemented our solution in a p2p based platform
for social networks and show that the solution is practical and
lightweight both in time consumption and traffic overhead.

I. INTRODUCTION

Social networking sites are web-based platforms allow-
ing users to publish personal profiles, link each other, post
pictures, blog entries, join groups and search for friends.
Several hundred millions of users participate in today’s social
networks like Facebook or MySpace. However, due to the cen-
tralized character of this platforms, high server maintenance
cost exists. A p2p-based approach solves the load and cost
issues but leads to new challenging security issues for secure
communication and data access. In this paper we present a
practical approach for solving these security issues and give
an evaluation regarding the costs of our solution.

Social networks provide a wide set of functionality, enabling
users to publish and comment private profile pages, create
photo albums, join and manage (interest) groups, search for
users and groups and communicate with friends and groups
through a messaging system. We summarize briefly our ap-
proach for a p2p-based platform for social networks, which
can be found in [2]. We split the wide set of functional-
ity into individual modular functionality blocks, like friends
management, photo management and propose a plugin based
architecture. Plugins can communicate with each other, so
that more advanced plugins can be created by reusing the
functionality of existing plugins as shown in Figure 1(a).
Plugins operate also on an Information Cache which manages
data storage and retrieval and also quickens the access to
previously requested data. The Data storage is completely
decentralized through the usage of a structured p2p overlay and
a corresponding Storage and Replication layer. It provides the
functionality of a distributed hash table (DHT) and ID-based
routing, compliant to the Key-Based Routing (KBR) interface
proposed by Dabek et al. in [3]. Typical data structures in

1,2Authors supported by the German Research Foundation, Research Group
733, “QuaP2P: Improvement of the Quality of Peer-to-Peer Systems” [1].

social networks are lists. Friends lists, group membership
lists, album lists and photo lists are examples for this data
structure. We propose in [2] a distributed data structure based
on lists, as seen in Figure 1(b). All storable data structures
are reduced to storable list elements containing meta data and
pointers to other lists or storable objects (SharedItems) which
are identifiable by their unique object ID. Using a DHT, the
objects can be looked up and retrieved. Thus complex data
structures can be stored and the diverse applications of a social
network are supported.

A. Security Requirements

After having briefly described our decentralized social net-
work platform [2], we now focus on the security requirements.

1) Registration and Login: A registration phase is needed
to grant new users access to the network and to create
credentials for the user for later authentication. Users should
be able to log on at every peer in the network, thus login
credentials should be purely based on the knowledge of the
user. After the registration, the user should be equipped with
a valid and unique userID and authentication information.
The authentication information should be stored confidential,
available and with integrity.

The login functionality enables the (pre-registered) user to
announce his status in the network. During the login process
the user authenticates himself against the authentication infor-
mation from the registration phase. As a result the joining
of the node is announced in the network, and the node /
pseudonym can further on be contacted by other nodes.

2) Access Control: We distinguish between user and group
based access control, in both cases the security goals are simi-
lar. For all documents stored in the network the author should
be able to mark privileged users, which are authorized to
read these documents. Access to selected information of user
specific information (e.g. profile details) or whole documents
(e.g. photos) should be controllable. To manage groups with
thousands of users a group based access control is needed. We
call all storable data SharedItems.Access rights are dynamic
and must be changeable at any time if the author of the
document decides to do so. Access control aims to ensure
the integrity, confidentiality and availability of SharedItems
inside the community. SharedItems of users or groups must
be available with expected service up time (e.g. 99,9 percent),
thus the security solution must be compatible to common

rst
Textfeld
 Kalman Graffi, Patrick Mukherjee, Burkhard Menges, Daniel Hartung, Aleksandra Kovacevic, Ralf Steinmetz:Practical Security in P2P-based Social Networks. In: IEEE Society: The 34th Annual IEEE Conference on Local Computer Networks (LCN), IEEE, October 2009. ISBN 978-1-4244-4488-5. 

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



(a) Plugin-based Architecture

User Albums

storage key =
„user name“+“album“

List of user albums:
1. storage key a
2. storage key b
3. storage key c
4. storage key d

...

storage key a

List of images:
1. storage key x
2. storage key y
3. storage key v
4. storage key r

...

User album A

storage key x

image

Image x

storage key y

image

Image y

storage key d

List of images:
1. storage key n
2. storage key m
3. storage key k
4. storage key l

...

User album D

storage key n

image

Image n

storage key m

image

Image m

(b) Example of a Distributed Linked List

SharedItem
objectID Header

Privileged users

Payload

Pub
User A

userIDs
are public
keys

wrap symmetric key
with public key

CryptedItem
objectID Key list

userID A – key A
userID B – key B
userID C – key C

Byte array
containing
encrypted

SharedItem

Symmetric Key

Pub
User A

Encrpyted
with

ex
tra

ct

Serialized and encrypted with
symmetic key

Symmetric Key

Pub
User B

Encrpyted
with

…

Pub
User B

[userID A] =

[userID B] =

1

2

3

4

5

(c) SharedItem and CryptedItem with Key List

Fig. 1. Data-centric Security for P2P-based distributed Data Structures

replication mechanisms and caching mechanisms. There must
be no restrictions on the peers that store the data.

3) Secure Communication: During a live chat, all messages
are directly sent to the users they are addressed to. For this
communication, the sender and receiver must be authenticated,
the communication itself must provide confidentiality and
integrity. This wide set of requirements is challenging to solve
in p2p systems, due to the peers’ unreliability and autonomy.

II. A SECURITY FRAMEWORK FOR P2P-BASED
PLATFORMS FOR SOCIAL NETWORKS

In this section we describe the design of our security
framework for p2p based social networks. To summarize the
idea, each user creates with his username and passphrase an
asymmetric key pair. The public key is used as nodeID and
userID in the network. Any communication is encrypted with
the public key of the receiver, thus secure and authenticated
communication can be provided once the nodeID of the
receiver is known. For data storage and access control, we
use a hybrid approach. All sensitive data is encrypted with a
unique symmetric key, this symmetric key is encrypted with
the public keys of the privileged users. The encrypted and
signed data and the encrypted keys are stored as a package
(SecuredItem) in the p2p network. Any node may retrieve and
replicate this data, but only privileged users can decrypt it.

A. Registration and Login
In the registration process credentials for new users are

created in a fully decentralized way. First, the user picks a
(unique) user name and passphrase, which is used to generate
an asymmetric key pair PrivA, PubA. The numeric represen-
tation of PubA is used as nodeID and userID.

To join the network a request containing the node’s informa-
tion is send to a bootstrap node. A bootstrap node can be any
formerly known node. It looks up the generated nodeID inside
the network to prevent any nodeID collisions. If the object
exists the user is already registered, thus next registration steps
are skipped. If the object does not exist, the new user creates a
minimal public profile, signs it and stores it in the p2p network.
Through the signature, the profile is integer. The user is now
equipped with a valid userID that will be the basis for later

authentication and encryption processes inside the community
since the userID is also his public key. Documents or data
signed with the user’s private key PrivA can now be validated.

For the Login process, user A recreates his key pair by en-
tering his user name and his passphrase within the application.
His userID is then derived from the just generated public key.
The application sends a login request with the user’s userID
respectively public key to an available bootstrap node. The
bootstrap node answers with information about further nodes
to contact. This answer is encrypted, using the public key of
the joining peer. The information is crucial to join, the joining
peer must decrypt the data, thus to authenticate itself.

The presence of a user is depicted by a LoginItem, that
is stored in the network. This signed object contains user’s
nodeID and his IP address. Every time a user logs in, he
updates his IP address in the object. The signed LoginItem can
be retrieved and verified by any other user. The nodeID/userID
is further used to encrypt communication to this node (as it is
a Public Key). Only the receiving node can decrypt messages
that are encrypted in such a way. The concept of using the
userID as a public key allows to established a simple PKI
without any servers or certificate authorities.

B. Access Control

A user can read a SharedItem, create a new SharedItem or
to alter an existing one. In each case he must prove his access
rights to do so. We decided to use an Access Control Lists
(ACL) based approach instead of Capability Lists, as ACLs
can be sticked to data objects and allow an object-specific fine
grained control and replication strategies. Each SharedItem
that needs access control is encrypted with a object-specific
symmetric key. To the SharedItem a data structure (key list)
is added which holds copies of the encryption key of the
SharedItem, wrapped (encrypted) with the public keys of the
users who are allowed to access the item. The Shared Item in
addition with the key list is signed by the author and named
CryptedItem. CryptedItems contain all information to enforce
access control, they can be replicated and cached. An overview
on the SharedItem and CryptedItem is given in Figure 1(c).
Next, we describe the access patterns.



1) Write and Read Access: To store a new SharedItem it
is created with a timestamp and signed by the user for later
verification of the author. Next, the user defines which other
users should be allowed to read this item. If the user decides
that only a set of privileged users should be allowed to read the
item, he creates a symmetric key and encrypts the SharedItem,
including its signature, with this key. See therefore steps 2
and 3 in Figure 1(c). This symmetric key is then encrypted
with the public keys of the privileged users, which leads to n
encrypted copies of the symmetric key for n privileged users
(step 4). The encrypted copies of the key are then attached
to the SharedItem (step 5), which is then signed and finally
stored as a CryptedItem in the network. Each SharedItem (and
thus also CryptedItem) has an objectID, which indicates where
in the DHT the object will be stored (step 1). Using this ID,
the object can be retrieved as well.

To alter an already existing object it has to be retrieved,
modified and stored again. An ObjectID is created as a hash
of the userID and some unchanging properties depending on
the type of the SharedItem (e.g. hash(username + albumname))
(see [2]). As the ObjectID contains the username as well, any
node can check whether a CryptedItem is valid or not using the
ObjectID and the signature. For changing the privileged users
of a SharedItem, only the attached keys have to be altered.

Any node can retrieve a CryptedItem from the p2p network.
CryptedItems can be replicated and cached using any mecha-
nism. However, only nodes listed in the key list can decrypt
the SharedItem. If the retrieving node’s ID is in the key list,
the symmetric key is unwrapped and the item is decrypted.

2) Access Control in Groups: Inside a group, access to
documents can be granted for all group members. This allows
to use just one symmetric key for all accessible data inside a
group. This symmetric key is created by the group founder at
the time he establishes the group. At first, the founder creates
a key list for his group where he stores the symmetric key
encrypted with the public key of the group members. For
each new member that joins the group, the administrator just
adds a copy of the symmetric key, encrypted with the pursuant
public key. This list is stored in the network, signed with the
administrators private key to inhibit unauthorized write access.
The objectID of this list is a hash of the administrators public
key and the name of the group. A user can now store new
SharedItems just as described above with the only difference
that if he wants to make the item only accessible to group
members, he encrypts it with the symmetric key of the group.
For read access, a user accesses the key list of the group
instead of the key list of a particular item. The protocol for
read access is aside from that the same as described above.

C. Live Chat and Messaging

The live messaging functionality benefits from the design
of making the public key of a user also his userID inside
the network. User A wants to establish a secure connection
to another user B for the purpose of a direct plugin to
plugin communication, e.g. a live chat session. We use a
hybrid approach for secure communication. User A creates

a symmetric session key to encrypt his chat message to user
B. User A sends the encrypted message and the symmetric key
to user B encrypted with the public key of user B and signed
with his own private key. With the signature both the integrity
of the message can be checked and the sender verified. User
B now verifies that the message is really from the sender with
the given userID by verifying the signature of the message.
If user B wishes to answer, he creates a secret key for the
communication himself and wraps it with the public key of
user A. Both users have a secret key for communication now.
Each message sent between the users is signed by the sender
and verified by the receiver.

III. RELATED WORK

Freenet [4] is a p2p based website platform, providing
anonymous and resilient website and data storage. Although
anonymity is achieved, data access as security goal and user
interaction as function is not in scope of Freenet. Skype [5]
allows user-to-user voice over IP communication, but does
not support decentralized data storage. In Skype a server is
used for registration and management of the keys and buddy
information. Zattoo [6] and PPLive [7] provide p2p based
streaming but do not support direct user interaction.

In [8] the registration process is managed by super peers,
which are more powerful than casual peers. They are responsi-
ble for bootstrapping new peers, but no further security goals.
PAST [9] as storage module of FreePastry [10] focuses on
data availability, but also does not contain an access control
enforcement mechanism. OceanStore [11] and Cryptree [12]
provide secure data storage and access, Plutus [13] extends
this solutions by group access control. They focus strongly
on traditional tree based file system structures, a scheme
that does not apply in social networks with various complex
interconnected data.

IV. TESTBED EVALUATION

We implemented the security framework for the p2p plat-
form for social networks, which we presented in [2]. The
prototype [14] implements the described solution. We used as
p2p overlay FreePastry [10] and as mechanism for asymmetric
cryptographic keys we use RSA [15] with a key length of
1024 bits. To comprise the modulus and exponent, we enlarged
the ID space of FreePastry to 1088 bit identifiers. For the
symmetric keys we use AES [16] with 128 bits. A signature
is 128 bits in size as well. The described key sizes represent
a configuration, that provides a desired security level for
reasonable costs. All values are averaged over 100 runs on
an Intel Core 2 Quad machine with 2.4 GHz and 3GB RAM.

A. Data Overhead

Table I shows the data overhead on basic messages. We
started with an empty message, containing no text but only
the header, storage key, receiver ID and an empty payload.
Then we increased the message size by adding larger message
text. We have a nearly constant absolute overhead, smaller than
2 KB coming from the duplication of the receiver information



and the storage key and from the size of the empty Crypt-
edMessage. Encrypting a basic message and turning it into a
byte array does not increase its size perceptibly. The overhead
of 2 KB will not affect the traffic speed or the storage space
noticeably. Our approach is therefore an acceptable solution
regarding the data overhead.

Table II depicts the data overhead on SharedItems. The
size of an item does not affect the data overhead, therefore
we varied the number of privileged users as parameter. The
overhead grows with the number of privileged users as for
each privileged user, a copy of the secret key is added to
the CryptedItem alongside the users’ userID. Each additional
privileged user causes a data overhead of about 413 bytes.
Still the relative overhead is acceptable even for 200 privileged
users. The SharedItem we used, is a PhotoItem which has a
standard size of 346 KB. However, any other item of arbitrary
size would have the same absolute overhead.

The overhead we must deal with in this case is larger than
the message overhead if we have more than one privileged
user. However, 200 privileged users for a single object is a
turning point of whether individual user-based access control
should be replaced by group based access control. To keep the
scenario of a social network in mind, in cases with 200 or more
friends, it is recommendable to introduce group-based access.
The management of group keys is similar to the management
of individual user keys in the CryptedItem, same costs apply.

TABLE I
MESSAGE ENCRYPTION DATA AND TIME OVERHEAD

Msg. Size Encryp. Msg. Overhead Overhead En-/Decryp.
(bytes) Size (bytes) abs. (bytes) rel. (%) Time (ms)

895 2794 1899 212,18 10 / 9
995 2906 1911 192,06 10 / 8
1395 3306 1911 136,99 11 / 9
1895 3802 1907 100,63 12 / 9
2895 4794 1899 65,60 14 / 10
3895 5802 1907 48,69 13 / 9
5895 7802 1907 32,35 12 / 8

10895 12794 1899 17,43 11 / 9

TABLE II
SHAREDITEM ENCRYPTION DATA OVERHEAD

Privil. Item Size Encryp. Item Overhead Overhead En- / Decryption Key Wrap.
Users (bytes) Size (bytes) abs. (bytes) rel. (%) (ms) ping (ms)

1 346697 348159 1462 0,42 15 / 20 1
10 346715 351892 5177 1,49 25 / 21 4
50 346819 368524 21705 6,26 34 / 20 19
100 346969 389318 42349 12,21 54 / 19 37
200 347269 430922 83653 24,09 89 / 20 73

B. Time Overhead
We present the encryption and decryption times as an

important metric for the costs of a practical security framework
in Table I. The encryption and decryption time is around 12
ms and almost independent of the message size. Most to of
the time is needed for administrative processes like obtaining
the encryption keys and building the CryptedMessage.

For the time evaluation of the SharedItem, we can see that
the encryption time rises linear with the number of privileged
users. That is because the wrapping of the secret key with the
public key of each privileged user takes about 0.36 ms time.
Not surprisingly the decryption time is constant, as only one

key has to be unwrapped in order to decrypt the item with the
resulting symmetric key.

Data encryption is distinctly slower than message encryption
when we must deal with many privileged users. Still, 89
milliseconds seem applicable for the encryption of items for
200 privileged users. Please note, that all used public keys
were present in a buddy keys list, they were not needed to be
retrieved from the network. That applies for the message en-
cryption as well as for the item encryption we will investigate
below. However, this is a reasonable step, as user knowing the
privileged user(ID) also know the corresponding public key.

V. CONCLUSION

Social networks are very popular in these days, however
client/server based solutions are expensive and do not scale.
P2P-based platforms face several challenges, among the se-
curity requirements which we addressed in this paper. Our
security framework for p2p-based social networks includes the
support of user registration and a login process which allows
further authentication of the users. Any user and applica-
tion communication is confidential, integer and authenticated.
We also presented a access control solution both for user-
based access control and group-based access control. The
security framework solves the security issues appearing in
social networks. We implemented the security framework in
our p2p-based platform for social networks, demonstrated its
applicability and evaluated both its performance and costs.
Evaluation shows that all security requirements were solved
and the overhead in terms of space and time are low and
reasonable in a p2p-based scenario.

REFERENCES

[1] DFG Research Group 733, “QuaP2P: Improvement of the Quality of
Peer-to-Peer Systems,” http://www.quap2p.de.

[2] K. Graffi et al., “A Distributed Platform for Multimedia Communities.”
in IEEE International Symposium on Multimedia (ISM ’08), 2008.

[3] F. Dabek et al., “Towards a Common API for Structured Peer-to-Peer
Overlays,” in Proc. of IPTPS ’03, 2003.

[4] Freenet, “Freenet homepage,” http://freenetproject.org/cgi-bin/twiki/
view/Main/WebHome, 2001,.

[5] Skype, http://www.skype.com, 2004.
[6] Zattoo - TV to Go, http://www.zatoo.com/, 2007.
[7] PPLive - The Largest World Wide Internet TV Network,

http://www.pplive.com/.
[8] W. Nejdl et al., “Super-Peer-Based Routing and Clustering Strategies

for RDF-Based P2P Networks,” in Proc. of WWW, 2003.
[9] P. Druschel, “PAST: A Large-Scale, Persistent Peer-to-Peer Storage

Utility,” in In HotOS VIII, 2001, pp. 75–80.
[10] Freepastry, http://www.freepastry.org/FreePastry/.
[11] J. Kubiatowicz et al., “Oceanstore: an architecture for global-scale

persistent storage,” in Proceedings of the 9th International Conference
on Architectural support for Programming Languages and Operating
Systems. ACM Press,, 2000, pp. 190–201.

[12] D. Grolimund et al., “Cryptree: A Folder Tree Structure for Crypto-
graphic File Systems,” in Proc. of SRDS ’06, 2006.

[13] M. Kallahalla et al., “Plutus – Scalable Secure File Sharing on Untrusted
Storage,” in In Proc. of USENIX FAST, Mar. 2003.

[14] LifeSocial.KOM, http://www.lifesocial.org/, 2009.
[15] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, 1978.

[16] J. Daemen and V. Rijmen, The Design of Rijndael: AES - the Advanced
Encryption Standard. Springer, 2002.




