
[GPM+08] Kalman Grafi, Sergey Podrajanski, Patrick Mukhetjee; Aleksandra Kovacevic; Ralf 
- Steinmetz; A Distributed Platform for Multimedia Communities. In: IEEE International 

Symposium on Multimedia (ISM '08), p. 6, IEEE Computer Society Press, December 
2008.Seite 

A Distributed Platform for Multimedia Communities 

Kalman Graffi, Sergey Podrajanski, Patrick Mukhejee,  Aleksandra Kovacevic, and Ralf Steinmetz 
Multimedia Communications Lab1 and Real-Time Systems Lab2, Technische Universität Darmstadt 

Email: {graffil,sandral,steinmetz)@kom.tu-darmstadt.de, mukherjee2@es.tu-darmstadt.de 

Abstmct- Online community platforms and multimedia con- 
tent delivery are merging in recent years. Current platforms like 
Facebook and YouTube are client-server based which result in 
high administration costs for the provider. In contrast to that 
peer-to-peer systems offer scalability and low costs, but are lim- 
ited in their functionality. In this paper we present a framework 
for peer-to-peer based multimedia online communities. We identi- 
fied the key challenges for this new application of the peer-to-peer 
paradigm and built a plugin based, easily extendible and multi- 
functional framework. Further, we identified distributed linked 
lists as valuable data structure to implement the user profiles, 
friend lists, groups, photo albums and more. Our framework 
aims at providing the functionality of common online community 
platforms combined with the multimedia deüvery capabilities of 
modern peer-to-peer systems, e.g. direct multimedia delivery and 
access to a distributed multimedia pool. 

Nowadays, social interaction over the Internet is an on- 
going trend. Since the arise of blogs and the possibility to 
publish User generated content, the number of active users 
increased significantly. Once the self-presentation with blogs 
was established, platforms like YouTube [2] and Last.FM [3] 
arose, in which users can share their videos and music taste. It 
was a short step from self-presentation to interactivity, finding 
discussion Partners on the same topic of interest. 

Currently, online community platforms are the next step 
towards a seamless interaction with fnends and people one 

on the peer-to-peer (p2p) paradigm has proved to be self- 
scalable (new users contribute their resources) in various 
applications for file sharing, video streaming and telephone 
conferencing. Building a p2p based framework for multime- 
dia online communities promises to resolve the scalability 
problem and to provide further interaction possibilities like 
live (video supported) chatting, group-based shared folders 
for collaboration purposes and more interactive tools. Severe 
challenges arise while building such an architecture. 

Contribution: In this paper we present an extendible frame- 
work for multimedia online communities. Focus of this work 
is to identify the challenges for building an distributed online 
community platform based on p2p technology. We imple- 
mented the framework and present how to organize the data 
structures in the distributed online community platform and 
how to keep the architecture modular and still-easy to extend 
for the upcoming trends in multimedia research. 

First, we introduce in Sec. iI the characteristics of mul- 
timedia community platforms and identify the costs, quality 
requirements and challenges when applying the p2p paradigm. 
In Sec. ITI we discuss related work and show what knowledge 
can be reused and where current solutions are limited. We 
present our p2p based framework for multimedia online com- 
munities in Sec. IV, discuss design decisions in Sec. V and 
draw a conclusion in Sec. VI. 

know. Millions of users worldwide are attracted by e.g. 
M Y S P ~ C ~ ~  (1 IOM), ~ a c e b o o k ~ ( 9 8 ~ ) ,  studivz3 (5M) and 11. PROBLEM STATEMENT A N D  REQUIREMENTS 

Xing3 (5M), to which we refer in the following. 
On these platforms, users can present themselves and 

interact in different ways with their friends. According to 
Alexa.com [4] the sites are ranked in the top ten most clicked 
sites (MySpace and Facebook worldwide and StudiVZ in 
Germany), which shows the importance of web-based inter- 
action of Internet users. These online community platforms 
are currently limited to the exchange of text messages and 
pictures, more challenging applications offenng personalized 
video blogging, multimedia content sharing and Support for 
(haptical) interactions are still to come. 

However, current architectures for multimedia community 
platforms are client-server based, which result in both a 
scalability problem (which can only be avoided with investing 
a significant amount of money) and a limited innovation 
Progress (as there is only one provider). Architectures based 

Building a distributed solution for multimedia online com- 
munities states several challenges. Regarding the features it 
has to provide, it should allow common functionality of 
today's online community sites (like Facebook). We identified 
following services as common: 1) Registration of new users. 
2) Presenting the user's profile and provide individual settings 
customizable by the corresponding user. 3) Grouping of users 
in friends list, user-generated groups and organizational net- 
works. 4) Search functionality for users and groups. 5) Direct 
communication and presenting of multimedia content. 

These functionality is typically provided by a centralized 
platform. This Comes with high costs for the platform provider. 
For a distributed framework providing the same functionality 
we also identified following non-functional requirements. 

The load for maintaining the infrastructure and providing 
the above mentioned services should be distributed on the 

' v2Authors supported by the Gennan Research Foundation, Research Group 
users of the infrastructure. By distributing the load, peers 

733, "QuaP2P: Improvement of the Quality of Peer-to-Peer Systems" [I]. are ex~ected to participate in the network arid to provide a 
3www.myspace.com, www.facebook.com, www.studivz.de, www.xing.de reasonable arnount of Storage space. 



Security is a challenging issue in a distributed multimedia 
online community. Following security features are needed 
most. First, authenticity of (maintenance) messages and ob- 
jects in the system. Further, confidential, integer and authenti- 
cated direct communication and access control on the objects. 
Only owners should be able to change their data and to define 
who is allowed to access it. We sketch a security solution but 
keep the focus on the framework. 

A distributed framework needs to be extendible in order to 
be able to fulfill the requirements o l  upcoming multimedia 
trends. Extendability of the framework enables the vendor or 
even the users to add new functionality by writing small plu- 
gins that can easily be integrated into the existing application. 

In the next section we discuss approaches for the above 
mentioned requirements. Client-server based solutions may 
fulfi11 the requirements, they come with high costs for the 
vendor. P2P based applications address partially some func- 
tions of a multimedia online community, e.g. communication, 
and object sharing, but they do not address all at once. In Sec. 
IV we present our solution addressing all requirements on a 
distributed framework for multimedia online communities. 

~pimii i~iugim I R W - ~  - -  ' T os<rh~  
neaded da<a 

1 ~ 1  W miss) obwa 

(a) Architecture Blocks (b) Usage Scenario of a Plugin 

Fig. 1. Layer-based Architeciure for Multimedia Online Communities 

sewice (QoS), Intemet telephony tools like Skype [12] or 
video streaming applications like Zattoo4 or Joost4 state QoS 

Current platforms for multimedia online communities fol- 
low the client-server paradigm, one vendor provides the 
servers which provide the sewice to the users. While it is 
quite convenient for the users, the vendor carries all the costs. 

According to [5] annual administration expenses for the 
Facebook vendor are estimated to be 1.05$ per single platform 
User, while having 98 Million users in 2007 [6]. It is straight 
fonvard to assume that administration costs which the Face- 
book vendor has to bear sum to about 98 Million of dollars 
per year. The most of these expenses are server administration 
costs. For YouTube, LastFM and MySpace the pnnciple is the 
same. There as well, the most cmcial resources, storage space 
and bandwidth, are provided by servers and the capacities of 
the clients are unused. A second limitation of client-server 
based solutions is the limited innovation Progress. Typically 
only the provider is able to add new features and functions to 
the system, which limits the extendability of the platform. 

The p2p paradigm provides an alternative for building a 
service oriented multimedia platform. Basically, in a p2p 
system the consumers and users of a service are building 
the infrastructure that provides the service. In a file shanng 
scenano, the users' devices form an overlay in which desired 
content can be found. The p2p paradigm can help to drastically 
lower the costs for a provider [7], as administration costs and 
the service load are shared among the users of the system. 

Several applications demonstrate the advantages of the 
paradigm. For file sharing applications several overlays have 
been proposed. Unstructured overlays like FastTrack [8] or 
BubbleStorm [9] allow to search for the desired content using 
keywords. Stmctured overlays like Pastry [I01 and Kademlia 
[ I  I] map objects in the system to peers using a specific scheme 
and allow to lookup objects according their ID. Whereas file 
sharing does not state strict requirements on the quality of 

requirements. For telephony, low delay and jitter is cmcial, 
for video streaming high throughput as well. However, these 
popular p2p applications do not address multimedia online 
communities, no large-scale group interaction is supported. 

Several distributed storage applications like OceanStore [ I  31 
address the reliable handling of large data objects, but do 
not offer User interaction capabilities. Wuala4 enhances file- 
sharing with communication functionality, but does not offer 
common collaboration functions of multimedia online com- 
munities. Groove4 is a p2p based collaborative tool providing 
some limited support for group interaction, like message 
boards, chatting and shared folders. However, it only scales 
to a dozens of users in a group and does not support millions 
like in common multimedia online communities. 

All presented applications provide a valuable and optimized 
function, but to our best knowledge. there is no p2p based mul- 
timedia online community platform. We present a distnbuted 
extendible framework combining the described functions and 
fulfilling the requirements stated in Sec. Tl. 

IV. A FRAMEWORK FOR 

MULTIMEDIA ONLINE COMMUNITIES 

The architecture for multimedia online communities has to 
provide many functionality. Routing, distributed data storage 
and community specific functions are some among them. In 
order to combine these functions to a framework we use a 
layered model. Each layer provides specific functionality to 
upper layers by using the sewices provided by lower layers. 

A. Main Buiiding Blocks of the Framework 

For a multimedia online community we have several func- 
tional requirements, which are presented in Fig. l(a). A layer 
for routing, for storage and message handling, a cache and 



several plugins implementing base features of the multimedia 
online community are needed and discussed next. 

P2P Overlay: A stmctured p2p overlay, i.e. a Distributed 
Hash Table (DHT), maps objects to peers according their 
object ID. Further, it allows to route messages to peers 
responsible Sor specific IDs, i.e. routeMessage(nodeID, mes- 
sage). In our implementation we used FreePastry [14] which 
implements Pastry [10]. It is well maintained and widely used. 

Storage und Replication: A storage and replication layer 
uses the DHT and allows to store data objects in a distributed 
and reliable way. This is essential in our platform as User 
inSormation like profiles, Sriendship states, photos and videos 
have to be stored reliably even if the corresponding User goes 
orlline. We assume the DHT functionality put(key, object), 
get(key) and delete(key). In our implementation we used PAST 
[15], an extension to FreePastry, which we extended with 
deletefkey) by replacing with an empty object. 

Storage Dispatcher: Whereas the Storage and Replication 
layer offers the reliable storage of data objects, the Storage 
Dispatcher processes the application specific data to make 
it storable. Further, it provides additional functionality like 
removing or modifying data and is in charge that the storage 
operations are performed. As we operate in a distributed 
and unrcliablc nctwork, pecrs may go offline. The Storage 
Dispatcher detects failed storage operations and triggers new 
storage jobs. The list of offered functions is storeItem(object), 
geiItem(key) and deleteItem(key). 

Message Dispatcher: The Message Dispatcher offers direct 
communication for the higher layers of the platform. Higher 
layers, especially the multimedia online community related 
functionality, are encapsulated in so-called plugins. These 
plugins can either communicate over shared storage objects 
(indirect communication) or via direct plugin to plugin com- 
munication from peer to peer. Using the Message Dispatcher, 
messages are delivered in a reliable way, once the destination 
peerlplugin is online. The Message Dispatcher offers the func- 
tions sendMessage(node1dentifier; pluginldentijier; message) 
and rrceiveMessage(pluginIdenti~5er). 

Information Cache: As many plugins operate on stored data 
objects (e.g. friends lists, photo albums), it is necessary to have 
a local cache for the objects that has been retrieved once. The 
Information Cache is a local representation of the DHT and a 
contact point for higher layers, which may ask the Information 
Cache for specific objects using getItern(key) and getMes- 
sage(plugin1dentifier). The Information Cache maintains for 
each requested data object ID a timestamp and whether it is 
in the Cache, it has been requested or it is not available in the 
network. Using these three possible states for a data object, 
a proper answer can be replied to the querying higher layer, 
which can then react instantly. By periodically requesting the 
data object until either the data object is found or marked 
as not available (based on a timeout), the higher layers can 
proceed the snapshot of the results any time. An example 
is depicted in Fig. I(b), where the higher layer (here Photo 
Plugin) is prompted to provide the contents of an album. The 
plugin queries the Information Cache periodically and uses the 

User lntcriace 

lmmmmmmmml 
. - - - - - - I I Fricnds Plugin j , 

\ 

1 1 1 1 1 ,  All Plugins 

I 

I Information Cache I 
Fig. 2. Plugins Interacting with the U1 and the Information Cache 

current snapshot of the results. Once the object is requested 
again and a timeout depending on the timestamp and the 
current object state (available, pending or missing) is reached, 
the Information Cache identifies next steps. Upon a timeout 
of an available object it is requested again in order to find a 
new version, a pending object is set to missing, and a rnissing 
object is looked up again using the Storage Dispatcher. We use 
the least recently used cache replacement strategy. Please note, 
that current p2p applications do not operate on distributed data 
structures and do not use an Information Cache. During our 
research we identified this component being a highly valuable 
component for operations on the data, as discussed in Sec. V. 

Plugin Layer: The underlying layers provide the function- 
ality of reliable storage, quick data access and plugin to plugin 
and peer-to-peer communication using the Storage Dispatcher 
and Message Dispatcher. Based on these functionality we 
establish a layer for plugins that provide the desired func- 
tionality for online comrnunity platforms. Plugins are small 
building blocks providing a specific functionality, having a 
plugin identifier and an interface for accessing this functions 
and the results. We differentiate between mandatory plugins 
that are expected to be implemented in the framework of 
any participating peer and optional plugins, which cannot be 
assumed to be on every participating peer. This differentiation 
helps to make the framework extendible, as new (optional) 
plugins can be built and installed individually on any peer. 
Optional plugins can hereby reuse both the functions provided 
by the lower layers as well the functions provided by the 
mandatory plugins. We designed plugins to be shareable code 
packets that can be loaded dynamically into the system using 
init() and terminate() functions. For that we built a class loader, 
that parses at the beginning a specific folder and loads plugin 
compatible classes. 

User Integace: The User Interface is well decoupled from 
the underlying framework. Plugins offer an interface for ac- 
cessing their functions and retrieving the results. It is expected 
that every plugin has its own User interface, the set of all 
plugin-specific User interfaces are combined in a graphical 
User interface frarnework, like it is done in Eclipse [16]. 
We discuss this design decision in Sec. V. The interactions 



User Albums User aibum A Image X 

I. storage key a 

4. storage key d 

I .  storage key n 
2. storage key m 

List 01 imaget: 
1. slorage key x -- 

.. 2. slorage key y 
3. storage key V ,- -. --- 
4. Storage key r ,.. 

Image y 

storage key y 
Image n 

Image m 

Fig. 3. Example of Disiributed Linked Lists used for Albums and Photos 

between all plugins and User interfaces is depicted in Fig. 2. 
The figure shows that all plugins use the underlying layer 
and for all plugins a plugin specific GUT exists which is 
combined in a GUI framework. Plugins may use the different 
functionaiity (marked with a, ß, y and 6) of each other. The 
figure also shows the list of plugins we have implemented 
in the framework. Before presenting the plugins in detail, we 
describe the distributed data structures used and give a small 
example, how the layers interact. 

B. Distributed Data Structures 

Multimedia online communities require to store various 
kinds of information in the network persistently. vpical  ex- 
amples are User profiles, friends lists, photo albums, video sets 
with comments and information on interest groups. Casual get 
and put functionality of DHTs are not sufficient to build such 
complex applications. For that reasons we created a distributed 
data structure that operates with distributed linked lists. These 
are huilt up of several storable ohjects, identified by a key, that 
store hesides usage specific content (e.g. meta data to images) 
pointers on other data objects. With these pointers a graph of 
interdependent objects is established, a distributed linked iist. 

In Fig. 3 we present the concept of distributed linked 
lists on the example of the Photo Plugin. One main idea 
behind the concept is, that every data object can be uniquely 
identified hy its key. Further the key of the object is used 
to store and find it in the DHT. Plugins give their data 
objects specific keys starting with the plugin ID. The list 
of all albums corresponding to an User Alice for example 
is built by concatenating and hashing the terms photoplugin: 
albumsof and user: Alice, which results in a storage key. The 
corresponding object contains as payload some meta data and 
a list of pointers, pointing at data objects that contain the 
specific albums. One album is a data object containing some 
meta data and a list of pointers, pointing at irnage objects. 
The image objects contain as well some meta data and the 
picture itself. These data objects are placed using the Storage 
and Replication layer in the network. 

Please note, that the Photo Plugin is just a representative of 

storable multimedia files. Similarly video files like in YouTube 
[2] or audio files like in Last.FM [3] can be stored as well. 
Once the User retrieved the (small) multimedia file, it is 
presented to him by the GUI. Every album and every image 
is stored under an individual key in the network on a different 
peer, thus the load is distributed. 

C. Example of Layer Interaction 

Plugins use the functions of the framework and implement 
the spccific functionality for multimedia online communities. 
Fig. l(b) shows an example of the Photo Plugin interacting 
with the GUI and the Information Cache. Please note that the 
photo represents all storable multimedia content. The Photo 
Plugin offers to get a set of images belonging to a spccific 
album. It can be triggered by its GUI (or other plugins) to 
retrieve the photos of an album with a given name. As a result 
it provides a set of images, this set may be incomplete, some 
images may be marked as pending or missing. It is left to the 
GUI how to interpret and visualize this information. However, 
various GUIs may exist for the Photo Plugin, optimized for 
various devices and purposes. 

We assume that the Photo Plugin is triggered periodically 
and asked for a current snapshot of the results. The main task 
of the Photo Plugin is to identify which data has to be loaded 
and to combine data that needs to be presented. First, the 
Photo Plugin retrieves based on the album name a list of the 
images corresponding to this album. The list of the images is 
then stored in the Information Cache. The next time the Photo 
Plugin is asked it checks whether the list of image pointers 
corresponding to the album is available in the Cache and if 
it is so, iterates the List, checks whether the corresponding 
images are there and requests the pending/missing images. The 
plugin replies with a list of available images and the state of 
the missing images. As we assume that the plugin is triggered 
frequently by its GUT, more and more images arrive and the set 
of images provided to the GUI grows. The Information Cache 
is in charge to get the requested objects from the distributed 
storage and to mark missing objects. Note that other plugins 
can access the same data from the cache as well. 

The plugin itself does not contain any timers or complex 
mechanisms, it is always triggered (here from the GUI), it 
checks the availability of the data to combine, combines the 
data to a reply and passes the reply to the triggering instance. 
This stateless design eases the development of new plugins 
and is discussed in Sec. V. 

D. Plugins for the Multimedia Online Community Pla@orm 

We implemented several plugins named in the requirements 
analysis using the frarnework, i.e. for registration and profiles, 
grouping, searching and communication, were addressed. An 
overview is presented in Fig. 2. 

Login Plugin: The Login Plugin enables an User to join 
the network by providing information relevant for the authen- 
tication. We assume that we have pseudonym identities, i.e. 
identities that can be checked, but not who the corresponding 
Person is. We use asymrnetrical cryptographic public keys 
as node IDs in the p2p network. Any communication to a 



node can be encrypted directly with the node ID. The Login 
Plugin contains a self-signed document containing an User 
name (which may give hints on the identity of the user), the 
node identifier and the iP address of the node. Any Peer in the 
network can look up the login information of any other node 
using a specific object key e.g. hash(usemame:Alice). Like in 
ICQ or Skype the User name is a cryptic code, but a suitable 
buddy name can locally be assigned. 

Projile Pliigin: The prolile oT an user contains a personal 
photo and a list of attributes and values. These attributes may 
be school affiliation, hobbies, gender, geographical position, 
birthday ... the list of such information is extendible. In order 
to provide integrity in data Storage, users sign the data objects 
they store in the network. As their node ID is identical to 
their public key any other node can check whether a node 
(e.g. Ox2dc41a57, Alice) is the author of its own profile. The 
personal settings of an User may be confidential. In order to 
provide a secure access control without a central entity, we 
encrypt the signed data object symmetrically and encrypt the 
symmetrical cryptographic key with the public keys of the 
peers that are allowed to access the data. 

Groups Plugin: Groups (and Friend Lists) are special lists 
stored in the network containing the User names of group 
members. Every peer can subscribe in Open lists, which they 
identify by the group name and modify directly using the 
Storage Dispatcher, which we enhanced to support remote 
list operations. Restricted groups can only be edited by group 
owncrs, acccss pcrmission has to bc rcquested from a specific 
peer listed as group owner, who can then decide and modify 
the group list. The plugin manages to calculate proper group 
keys, the join and leave procedure and to derive the list of 
participants of a group. 

Search Plugin: In order to search for specific groups or 
users, we implemented a Search Plugin, which operates on the 
distributed linked lists and uses the functionality of the Friend 
and Group Plugin. It is a good example how plugin services 
can be combined to provide more mature services. The Search 
Plugin can be fed with attributes e.g. from the profile, it estab- 
lishes distributed lists and registers the corresponding User at 
the lists related to his profile. An User e.g. with Darmstadt as 
home town, is then registered automatically in the groupfist 
Darmstadt under the hash key of groupDarmstadt. 

The Search Plugin can also be used to search for users 
by specifying keywords (e.g. Darnzstadt). All possible group 
keys are then built within the plugin and queried. Results to 
corresponding groups are presented jointly or merged. 

Messaging Plugin: The Messaging Plugin offers a function- 
ality similar to email, namely offline messaging. Each user 
has an in- and outbox, by specifying an User name a message 
object is created, encrypted with the recipients public key and 
stored in the inhox list of the recipient under a specific key 
(e.g. inboxltsemame:Alice. Once this User Comes online, he 
checks his inbox and retrieves unread messages. 

Photo Plugin: The Photo Plugin is a representative of 
storable multimedia content. Giving an User name, a corre- 
sponding key is generated, under which the list of albums 

related to this user can be found, this is shown in Fig. 3. 
Giving an album name retrieves the list of photos in this album. 
The resulting Set of photos (or other multimedia content) can 
be used by the GUI for further processing, but can also be 
instantaneously displayed. 

Live Chat Plugin: The Live Chat Plugin represents all real- 
time dependent multimedia content delivery applications. It 
uses the Message Dispatcher and the node ID of the receiver 
to communicate with the Live Chat Plugin located at the other 
peer. The communication can be encrypted with the public 
key (which is the node ID) of the communication Partner. The 
messages are sent directly and dispatched immediately to the 
Live Chat Plugin (by naming the plugin identifier). 

E. Example for Plugin Interaction 

In Fig. 2 some plugin dependencies are shown. These 
dependencies are marked with letters a, ß, y and 6. The 
dependencies denote following relation between plugins. 

a - During registering, the Login Plugin instructs the Profile 
Plugin to create a new User profile. Login Plugin provides the 
necessary data for creation of a new User profile. ß - While 
creating a new profile or editing an existing profile, Profile 
Plugin instructs the Groups Plugin to adjust the appropriate 
groups. y - The Profile Plugin registers the criteria associated 
with a certain User by providing appropriate instructions to the 
Groups Plugin. The infonnation contained in a profile is used 
by the Search Plugin for searching the users associated with 
this information. 8 - The Login Plugin instnicts the Search 
Plugin to register e.g. the email address associated with a 
certain User as a searchable value in a distributed list. 

For building the framework we made several design deci- 
sion, which we Want to discuss in this section. They are helpful 
for building extendible p2p applications. 

A Common GUI Framework: Instead of combining the 
graphical User interface with the functional part of the mod- 
ules, we defined clear interfaces for the plugins. They can be 
used to state requests to the plugin (e.g. request list of all 
friends of Alice) and to retrieve the results (get the current 
list of friends of Alice). Using this paradigm helps to build 
several kinds of graphical User interfaces and to use the results 
by other plugins. The results can be either presented to the 
User using a device specific visualization or reused by other 
plugins. A GUI framework maintains the plugin GUIs and 
combines them on the screen (like in Eclipse [16]). We have 
implemented for all plugins User interfaces and integrated them 
in an User interface framework. 

Base Security Solution: Secunty is a challenging issue 
in p2p Systems, with several Open questions, especially if 
no central Server is used for support. For the Scenario of 
multimedia online communities we Sketch a solution that 
fulfills the requirements. We assume pseudonyms and with 
that explicitly no binding between human identities and User 
identities in our System. As node IDs we use asymmetric 
public keys, e.g. based on elliptic curves as they are small. 



Nodes can authenticate themselves based on this public key 
and receive confidential information encrypted with these 
public keys. Data stored in the network can be signed by 
their authors and the signature can be verified with the public 
key of the author. Integrity and authentication are provided. 
For access control we propose to encrypl confidential signed 
data with a fresh symmetrical key and this symmetrical key 
with the public keys of all authorized nodes. The signed and 
symmetrically encrypted data and the encrypted symmetric key 
is then stored and replicated in the DHT. Only a node that can 
decrypt the encrypted symmetrical key can access the data. 

Request-based Event Propagation: In the paper we claimed 
several times that the GUI periodically requests a current state 
of the queried results. We call this request-based event propa- 
gation. An alternative is the event-triggered event propagation. 

To give an example, an User triggers his GUI to show him 
the images of a photo album of Alice. The GUI triggers the 
plugin which looks up the corresponding image IDs. As a 
result, data objects with image specific meta data and an image 
is expected. After a short time, some of the requested data 
objects arrive at the Storage Dispatcher, which forward them 
to the Information Cache. Following the event-triggered event 
propagation idea, this event should then be forwarded to the 
Photo Plugin. In that case, the Photo Plugin would receive 
some of the images and decide, whether the partial images are 
of relevante for the User or not, whether the GUI is still active 
or maybe some other request should be prioritized higher. 
Further the images may be interesting not just for the GUI 
but for some other plugin as well. Should this other plugin be 
informed as well? Questions resulting in high complexity. 

The request-based event propagation is much simpler, yet 
more useful in this case. A plugin is just activated by the GUI 
or other plugins, then it uses the information available in the 
Information Cache, states maybe some requests for missing 
objects and combines a proper reply based on the available 
information. In order to Support delay-critical communication 
the Message Dispatcher offers direct plugin to plugin commu- 
nication between different peers delivering messages instantly. 

Implementation Details: We implemented the proposed 
framework in Java, which enables us to run the code on a 
variety of devices. We used FreePastry [14] as DHT and PAST 
[15] as storage and replication module. However, our system 
is not limited to these two implementations, as we clearly 
defined the interfaces and any DHT or storage and replication 
module implementing this methods can be used. The load is 
well distributed on the peers as the applied distributed linked 
lists spread the data and the load among the peers. Testing the 
system under chum leads to evaluating FreePastry and PAST, 
which have been evaluated in [17] and [18]. In comparison 
to client-server approaches the costs are totally shared among 
the Users. This is a great benefit in comparison to the millions 
for administration costs for Facebook and MySpace. 

Structured DHTs are widely used in file sharing scenarios 
to lookup the peer providing a specific object. Their lookup 
complexity is O(10g n) with n being the number of peers in 
the system, the typical lookup time is faster. However, lookup 

time for combined data objects (e.g. photo albums) has to be 
summed but is limited with a timeout (2s), in that rare case 
the objects are marked as missing. As the costs are shared and 
the quality of service is comparable to client-server solutions, 
we believe that the proposed p2p based multimedia online 
community platform may Open the door for a new application 
of the p2p paradigm in multimedia content delivery. 

VI. CONCLUSION A N D  FUTURE WORK 

The ongoing trend of Intemet communities like Facebook 
and MySpace did not reflect on p2p based applications up 
to now. Additionally, multimedia Systems converge more and 
more to the domain of p2p, as content distribution using the 
p2p paradigm has proved itself very powerful. In this paper, 
we present a framework that can be used to build large-scale 
multimedia online communities. The framework encapsulates 
the functionality in plugins, each providing a specialized 
function (e.g. maintaining photo albums, friend lists, groups, 
direct multimedia communication ...). These plugins can use 
each other and all use the underlying p2p functions provided 
by an Information Cache, Storage and Messaging modules and 
a Distributed Hash Table. The framework is easily extendible, 
the development of new plugins is simple and they can be 
dynamically loaded into the system. Using the framework 
enables to build high quality, complex p2p applications by 
reusing existing mature components. 

In the future we plan to extend the framework with more 
plugins enabling audio streaming for friends, collaborative 
work and more nice features. 

[ I ]  DFG Research Group 733, "QuaP2P: Improvement of the Quality of 
Peer-to-Peer Systems," hitp://www.quap2p.de. 

[2] YouTube - Broadcast Yourself, htrp://www.youtube.com. 
131 Last.fm - the Social Music Revolution. htr~://www.last.fm. 
[4j Alexa.com, 'The Web Information ~ o m ~ a i ~ : '  2008. 
151 Jesse Chan. "Facebook Valuation," h~://www.answers.com, Nov. 2007. 
[6] B. Stone, "Facebook;' New York ~ i i e s ,  2007. 
[7] N. Liebau, K. Pussep, K. Graffi, S. Kaune, E. Jahn, A. Beyer, and 

R. Steinmetz, "The Impact of the P2P Paradigm," in Proceedings of 
Americas Conference on Infonnarion Systems 2007, Aug 2007. 

[8] Shaman Networks, "KaZa.4," hnp://www.kazaa.com, Mar. 2000. 
[9] W. W. Teipstra, J. Kangasharju, C. Leng, and A. P. Buchmann, "Bub- 

bleStorm: resilient, probabilistic, and exhaustive Peer-to-Peer search," in 
Proc. of ACM SIGCOMM Conf: ACM Press, 2007, pp. 49-60. 

[I01 A. 1. T. Rowstron and P. Dmschel, "Pastry: Scalable, Decenfralized 
Object Location. and Routing for Large-Scale Peer-to-Peer Systems," 
in Proc. of lFIP/ACM Middleware '01. Springer, 2001, pp. 329-350. 

[I 11 P. Maymounkov and D. Mazieres, "Kademlia: A Peer-to-Peer Informa- 
tion System Based on the XOR Mehic," in IPTPS, 2002. 

[I21 S. A. Baset and H. Schulzrinne, "An Analysis of the Skype Peer-to-Peer 
lntemet Telephony Protocol," in IEEE INFOCOM, 2006. 

[I31 J. Kubiatowicz, D .  Bindel, Y. Chen et al., "Oceanstore: An Architecture 
for Global-scale Persistent Storage," in Proc. of the 9th Int. Conf: on 
ASPLOS. ACM Press,, 2000, pp. 190-201. 

[I41 Freepastry, http://www.freepastry.org/FreePastry/. 
[I51 PAST, "A Large-Scale, Peer-to-Peer Archival Storage Faciliry," 

http://freepastry.orgE'AST/default.hrm. 
[I61 Eclipse, "'An Open Development Platform," http://www.eclipse.org/. 
[I71 Daishi Kato and Toshiyuki Kamiya, "Evaluating DHT lmplementations 

in Complex Environments by Network Emulator," in IPTPS, 2007. 
[I81 A. Rowstron and P. Dmschel, "Storage Management and Caching in 

PAST, a Large-Scale, Persistent Peer-to-Peer Storage Utility," in 18th 
ACM SOSP'OI, 2001. 


