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Abstract—Static configurations in Time-sensitive Networking
(TSN) using the Time-aware Shaper allow precise calculations of
deterministic, tight bandwidth and latency guarantees for real-
time industrial application streams. It is, however, this static
configuration which makes introducing flexible changes to a
running TSN system at runtime very hard. Scenarios of adaptive
TSN networks envision that the network configuration evolves
with time in accordance to anticipated changes such as the
dynamicity of machine formations and machine reconfigurations.

In this paper, we propose a notion of flexibility of scheduler
configurations along a network path that facilitates introducing
changes to TSN network configurations at runtime. Based on
this notion, we develop and analyze algorithms to incrementally
reconfigure TSN using the Time-Aware Shaper. These reconfigu-
rations include determining the admissibility of new or changed
streams that may possess individual deadlines.

I. INTRODUCTION

Time-sensitive Networking (TSN) allows the deployment of
real-time industrial applications with bandwidth and latency
guarantees on top of a converged and centrally controlled
Ethernet-based infrastructure [1]. To support strict real-time
requirements, TSN is endowed with the IEEE 802.1Qbv Time-
Aware Shaper (TAS), allowing to deploy scheduled traffic, i.e.,
streams with strict timing requirements to allow synchronized
execution of tasks being distributed across the network. To
meet the strict real-time requirements, TAS enforces time-
division multiplexed egress ports at switches through so-called
Gate Control Lists (GCL), that control precomputed cyclic
schedules on a number of queues per output port. Essentially,
these schedules determine a mapping of data streams (more
precisely queues at the output port) to transmission time
points, i.e., the gate opening times when the first packet in
a queue is allowed to be transmitted.

The main drawback of this model is the static mode of this
configuration and deployment. TAS configuration, i.e., egress
port schedules, can be computed using a number of methods
based on constraint-programming, such as using SMT-solvers
or ILP formulations [2]–[4]. Given these configurations, band-
width and latency guarantees can be calculated using analytical
tools for real-time network performance evaluation such as
network calculus [5]. However, we postulate that this static
model is not suitable for future industrial scenarios, e.g., man-

ufacturing pipelines. These are expected to benefit from flex-
ibility, in particular, the dynamic connecting and disbanding
of physical components, e.g., machines of the manufacturing
process [6]. This enables context-specific tasks on top of TSN
applications. Currently, the required dynamicity is pre-planned
before deployment and results in under-utilization of statically
reserved network resources.

To summarize, the need for dynamicity comes from adding,
removing, or changing machine tasks flexibly at runtime.
While the standard approach would require to recalculate
and redeploy a global configuration, that potentially requires
interrupting the running system, we postulate in this work
that this is not necessary. We show in this work how to
obtain incrementally extended schedules that still adhere to
bandwidth and latency guarantees by leveraging a formulation
for the flexibility of deployed schedules.

An important concept in the context of this paper is the
flexcurve introduced in [7]. A flexcurve is a notion of schedule
flexibility for a given path in a network. It indicates the number
of feasible arrangements within the bottleneck schedule along
the given path. This way, schedulers can create schedules or se-
lect suitable paths, which maximizes the ability to incorporate
future changes. This proposed flexibility notion can give this
information for streams of arbitrary sizes, is however, limited
in fixed cycle periods and undefined deadlines. We adopt this
notion and enhance it by providing optional deadline aware-
ness and optimizations for the creation and incremental update
support, that arise out of real-world deployment requirements.

Equipped with this formulation for path flexibility, we
summarize the contributions of this work as follows:

• We show that the computation time of incremental sched-
ules using this flexibility-based approach is far less than
the standard recalculation methods.

• We extend the concept of the flexcurve to include streams
that possess different latency deadlines.

• We present and analyze a search algorithm to find stream
embeddings in switch schedules along a path that adhere
to the stream specific deadlines and minimize the end-to-
end stream latency.ISBN 978-3-903176-48-5© 2022 IFIP
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Fig. 1. A centralized controller (CUC/CNC) is responsible for managing
the stream deployment and updating gate control list entries in the network.
Example with two tasks.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. TSN System Model

We consider a time-sensitive network which schedules a
set of dynamic tasks consisting of packet streams of equal
priority with zero jitter requirements. Tasks tv with v ∈ [l] are
temporally composed in a directed acyclic graph representing
a network application. We use the symbol [l] to denote
the set {1, ..., l}. Each task tv is equipped with a duration
Tv ∈ R+. The task model mimics process models known for
example from [8]. An example of such a network application
is sketched in Fig 1. A static network application is given
through a set of tasks {tv}v∈[l] for a fixed number of tasks l.
We define a dynamic network application to contain a set
of tasks {tv}v∈[l] with variable l(t) that is non-decreasing
over time, i.e., the network application may include additional
tasks at runtime in case new requirements arise. Each task tv
may contain periodic real-time traffic streams. We assume
that a task tv requires a set of n streams {fvj}j∈[n] to
be simultaneously deployed in the network. A single stream
consists of network traffic with application specific real-time
requirements between a pair of TSN end-devices.

We use the above definition of network streams to define
network paths that are comprised of a set of m ∈ N egress
ports that are used by a stream on a network path. Each
port is equipped with an active Time-Aware Shaper (TAS)
mechanism and up to eight separate queues. We also assume
time synchronization of all participating network devices as
required by TAS. Each port has an egress schedule denoted si
with i ∈ [m]. A schedule is an ordered sequence of time slots
si at which a stream’s packets are sent from a specific queue.
Every port schedule si is calculated in a way that all stream
requirements are met. Among such requirements is the cycle-
period, data-size, deadline and the stream’s path. Recall, that
a path for stream fvj , i.e., the jth stream of task v, consists
of a sequence of m TSN switch ports P = (pi)i∈[m] that are
utilized by this stream.

Since the size of the stream packets is known and fixed, the
schedule is translated to open and close instructions for the
gate control list of the Time-Aware Shaper. Note that, time
slots in the schedule are relative to the network cycle period

0 K

s₁
s₂

Fig. 2. Schedule execution is time synchronized between each participating
network device.

of K, often given by the least common multiple period of all
present streams. In other words, each schedule repeats every
K slots and the schedules of all TSN switches in the network
are time synchronized.

Since time granularity is finite in any practical TSN system,
we assume time slotted scheduling in the following. We
consider a cycle period of K slots j ∈ [K] with

si(j) :=

{
1 : slot is free
0 : slot is taken

}
which indicates the occupancy of slot j in schedule si. The
kth successor slot si(j+k modK) is denoted by succ(k, si(j))
with succ(0, si(j)) = si(j).

We call a stream f of size c slots admissible at the jth slot
of schedule si(j) if ∀k < c it holds

c−1∑
k=0

succ(k, si(j)) = c, (1)

i.e., there are at least c contiguous free slots from slot j to
accommodate the stream with period K. The stream f is
admissible in schedule si if ∃j ∈ [K] for which (1) holds.

A stream f of size c slots is said to be admissible on a path
P = (pi)i∈[m] consisting of m ports if there exists at least one
sequence of time points A = (ai)i∈[m] where f is admissible
at the corresponding schedule slots (si(ai))i∈[m].

We define the delay between the time points si(ai) and
si+1(ai+1) at two consecutive ports (i, i+ 1) as

d(ai, ai+1) =

{
ai+1 − ai : ai+1 ≥ ai + c
K + ai − ai+1 : otherwise

}
(2)

Note that (2) is based on our counting convention (cf. Fig. 2)
that the schedule start (in absolute time) of port schedules
along a path is synchronized. Now, we can obtain the end-to-
end delay for a stream along a path with assignment A as

D(A) = c+

m−1∑
i=1

d(ai, ai+1) (3)

B. Flexcurve-based Scheduling and Problem Description

Dynamic TSN configurations for dynamic TSN applications
are hard. Each change requires the introduction of new streams
and the removal of obsolete ones in the network. Note, each
update consumes significant computational overhead at the
controller (cf. Fig 1) in charge of updating the real-time
schedule. In particular, this overhead is caused by state-
of-the-art methods, generating schedules for given streams
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Fig. 3. Control flow of CUC and CNC for admitting new streams leveraging
flexcurves.

without considering future changes. These standard scheduling
methods take a significant amount of time to re-compute if a
new stream is added. The computational cost for the controller
can be reduced by improved update mechanisms, that can
either adapt the schedule incrementally with regards to future
changes and avoid entire schedule re-calculations.

Now, consider a centralized configuration model for a TSN
network, including Centralized User Configuration (CUC)
units and one Centralized Network Controller (CNC) as de-
picted in Fig. 3 which shows the control flow for flexible
TSN reconfiguration at runtime. Incoming streams designated
for embedding are either requested online or are queued in
advance at the CUC (App. request). The CUC acts as an arbiter
between requesting real-time applications and the network
configuration, which is handled by the CNC. The CNC returns
to the CUC whether an embedding is possible and may also
recommend the order of stream embeddings for the current
network situation. A tool to generate these recommendations
is the flexcurve, which provides the current path flexibility state
in regards to embedding additional streams.

The quantification of the flexibility of switch configurations,
i.e., of port schedules, was first attempted in [7]. This flexi-
bility measure, denoted as flexcurve, describes the number of
stream embeddings along a network path as a function of the
stream size c. For a given path P , described as a concatenation
of port schedules, the flexcurve is given as

h(c) = min
k∈P

K−c∑
τ=0

1{Ck(c+τ)−Ck(τ)=c}. (4)

where Ck(n) is a non-decreasing function that accumulates the
free capacity along the schedule of port k up to the nth time
slot. Hence, for a path consisting of one port with an empty
schedule h(c) in Equation (4) simply resembles a decreasing
staircase function starting from the number of time slots in
the schedule. In general, given a stream of size c then the
value of the flexcurve h(c) resembles the number of possible
embeddings along the path P . Note that the considered streams
are periodic and require contiguous embedding into the port
schedule. An application of this flexibility measure is to select
a path in the TSN which maximizes h(c) and this way yields
highest flexibility for future changes.

In light of the work at hand, we observe that a further
benefit of the formulation above is that it can be adapted under
online schedule reconfigurations. However, to allow seamless
schedule reconfigurations we require fast initialization of (4)
and efficient updates. While the approach in [7] is promising,
it is limited to a definition of real-time streams, that does not
extend to stream variable properties such as delay deadlines,
queuing delays and cycle-period bounds.

In the following sections, we enable fast dynamic TSN
reconfigurations by constructing schedule flexcurves that lend
themselves to rapid initialization using a subset lookup and
allow for fast incremental updates after stream admission.
Further, we develop a formulation of the flexibility of TAS
schedules for network paths that include streams with differen-
tiated deadlines and, finally, analyze the admission problem in
(1) to find TAS schedules to adhere to stream delay deadlines
while minimizing the flexibility impairment.

III. QUERY AND BUILD OPTIMIZATION FOR TSN
FLEXCURVES

Given the formulation of the flexcurve in (4), we observe
that the possibility of entire precomputation before querying
information about specific paths of interest is a major benefit.
The formulation can be computed asynchronously as it does
not depend on the number of streams currently present along
each path, given each port‘s egress-schedule. However, gener-
ating the flexcurve itself depends on the number of slots and
the free slots within the hyperperiod, which are directly depen-
dent on the duration and the time granularity the scheduler uses
(e.g. with nanosecond granularity a 1ms period results in 106

slots). Calculating (4) in this way, considering the hyperperiod
K as variable parameter, results in a computational complexity
of O(mK) for a path P of length m, as we need to check each
schedule along the path and calculate the number of free-slots
for each slot in the schedule. To build the complete flexcurve,
we apply (4) K times, thus resulting in a time complexity
of O(mK2). Now, we note that this computationally heavy
generation of the flexcurve for every stream size may not be
required as only a few stream sizes c are interesting for future
admissions. An optimized approach, where single values of (4)
are more efficiently computed as required is hence desirable.

To enable a fast computation of flexcurve values and partial
updates after stream admission, we leverage the schedule‘s
data structure. A schedule si is in essence an ordered list
of time-points when specific streams are scheduled to egress.
Knowing the hyperperiod K, we can linearly transform this
schedule to also encode contiguous free slots — the basis for
computing the flexcurve (see Ck(c + τ) − Ck(τ) in (4)). We
denote the sequence of gaps of schedule si as (gi,j ,∆i,j)j
where the jth gap has a starting time gi,j and duration ∆i,j .
We note that the number of gaps in a schedule is usually
much smaller than the number of slots. Next, we use the gaps
to generate an optimized version of the flexcurve that leads to
a strong reduction of the initial computation time compared
to computing (4).
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Given a port schedule, each gap in that schedule si encodes
a so-called gap-local flexcurve, i.e., a staircase function of the
form

hi,j(n) = (∆i,j − n+ 1)1{n≤∆i,j} (5)
with the indicator function 1{·}. The accumulation of all gap-
local flexcurves gives the so-called port-local flexcurve of the
corresponding port schedule si as ĥi(n) =

∑
j hi,j(n). An

illustration is given in Fig. 4 where the schedule of s1 contains
four gap-local flexcurves h1,j(n) (in blue). To obtain the
flexcurve of a network path, the port-local flexcurve for each
port schedule along the path must be computed. Note that the
generation of port-local flexcurves, with gap-local intermediate
representations, has a worst-case time complexity of O(mK)
for a path P of length m. As required gaps (gi,j ,∆i,j)j can be
found by iterating once over each element of si. Note that the
worst case of the number of entries O(K) per schedule differs,
however, significantly from the expected case as the number of
entries in a schedule si can be estimated by 1

E[cf ]

∑
f cf where

cf is the size of stream f and its expectation is E[cf ]. Note
the difference in runtime and variables between this approach
and (4). The initialization of this approach works on the higher
level schedule entries, and is free if a schedule’s data structure
supports gap information inherently, whereas (4) always works
directly at the fine grained slot level.

In addition to the reduction of the time complexity of the
computation, this initialization procedure saves a significant
amount of memory. As the number of slots is usually much
larger than the number of gaps in a schedule. This procedure
does not precompute flexcurve values for each stream size, but
rather stores the gap sequences (gi,j ,∆i,j)j per schedule.

A. Computing initial flexcurve values

We can now compute the flexcurve of a path P that utilizes
the gap-local flexcurves hi,j of the schedules si from (5) as

hP (n) = min
i∈P

∑
j

hi,j(n) (6)

where P is the path of traversed ports as defined in Sect. II-A.
For a queried stream size n we obtain the value of hP (n) by
calculating the value of the port-local flexcurve as the sum
the gap-local flexcurves at n and returning the minimum value
over the port-local flexcurve. Note that we deliberately express
(6) in terms of the gap-local flexcurves hi,j instead of the
port-local flexcurve ĥi as we will allow a simple incremental
update procedure. To this end, we also keep the realization of
this procedure based on hi,j , i.e., we keep at each port a list
of gap-local flexcurves. The time complexity of querying this
optimized flexcurve data structure is O(j) for a path P with
j number of gaps along the path.

B. Incremental schedule updates

One benefit when using gap-local flexcurves as the under-
lying data structure to calculate flexcurve values is the support
of direct incremental updates. In contrast to the formulation
(4) this can now be achieved without the need to update values
outside of impacted gaps in the schedule. To update an affected
port-local flexcurve, we need to distinguish two cases:

s₁

g₁₁ g₁₂ g₁₃ g₁₄

Gapsize 1 Gapsize 2 Gapsize 4 Gapsize 2

Local flexcurveGap-local flexcurves

Fig. 4. Port-local flexcurve (red) built from gap-local flexcurves (blue). This
enables fast generation of the required flexcurve data structure to enable a
quick query of specific values h(n) of (4).

A stream admission results in occupying free schedule slots
equal to the stream size c. Recall that we consider streams
that are embedded within one gap in the schedule. This is the
key to incremental schedule and flexcurve updates: To update
the port-local flexcurve, the gap-local flexcurve of the affected
gap is diminished or removed. There exists three possibilities
for contiguous stream embedding here: (i) ∆i,j = c, i.e., the
gap is filled by the new stream, (ii) ∆i,j > c and the stream
is embedded at the beginning or end of the gap, i.e., the gap
size is diminished as ∆i,j ← ∆i,j − c or finally (iii) if the
stream is embedded in the middle of the gap, i.e., we obtain
two gaps (gi,j ,∆

1
i,j) and (gi,j+1,∆

2
i,j) with ∆1

i,j + ∆2
i,j =

∆i,j − c instead of the original gap (gi,j ,∆i,j). The resulting
hi,j for the new gap(s) are simply added to the list of gap-
local flexcurves at the corresponding port. Affected ports will
therefore have an updated local flexcurve. The flexcurve from
(4) can then either be restored using (6), or by utilizing the
updated port-local flexcurves ĥi after the port was affected
using

h′P (n) = min
{
hp(n), ĥi(n)

}
(7)

resulting in h′P as an exact up-to-date flexcurve of the path P .
Updating the port-local flexcurves when removing streams

is more involved than the addition of streams as described
above. In fact, stream removal may either (i) create a new
gap if the stream to be removed is not adjacent to any
existing gap or (ii) extend a gap, ∆i,j ← ∆i,j + c i.e., for
a stream of size c that is adjacent to exactly one gap. In case
that the removed stream of size c was adjacent to two gaps
(gi,j ,∆i,j), (gi,j+1,∆i,j+1) those gaps are removed and we
obtain one new gap (gi,j ,∆i,j + ∆i,j+1 + c) The flexcurve of
the path hP (n) can then be incrementally updated as in (7).

IV. DEADLINE AWARENESS

One of the major limitations of the flexcurve as defined in
(4) is the lack of stream-specific deadline differentiation in
its representation. In this section, we resolve this limitation,
but still only consider streams with cycle periods equal to the
hyperperiod K. As discussed in Sect. II, the control flow of
CUC and CNC for stream admission control takes a stream
description together with a query of the flexibility measure
of the running schedules (flexcurves) to compute the stream
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embedding and to update the GCL and the flexcurves. Now,
we consider stream requirements that include a stream-specific
delay deadline of utmost (m − 1)K, with m denoting the
length of the selected path. This is the worst-case delay when
scheduling the stream at least once at every hop along the
path P . We define the scheduled stream delay as the time-
span from first scheduled time, to the last scheduled time of a
stream, i.e., the time a stream is traversing on the network path.
The scheduled delay may not exceed the stream’s deadline and
is therefore dependent on the actual stream-embedding.

For a stream of size n with a delay deadline d, a deadline
aware flexcurve hdp(n, d) considers only stream-embeddings
where the stream-deadline is not violated. Hence this limits
the flexibility of a network path towards admitting this stream.
The rationale behind this is that a CNC would calculate many
possible embeddings for the admission of a stream if it does
not possess a delay deadline while having a delay deadline
may restrict the number of possible embeddings for stream
admission making network paths seem less flexible for certain
streams. In this sense, we argue that the flexibility of a network
path (that is captured by the flexcurve, i.e., counts of possible
stream embeddings in the port schedules along that path) is
a property that is stream specific. Hence, we write for the
flexcurve hdP (n, d) of a network path P in combination with
a delay deadline d along that path that

hdP (n, d) ≤ hp(n)

hdP (n, d) = hP (n) if d ≥ (m− 1)K (8)

i.e. any value of the deadline aware flexcurve is smaller or
equal to that of the flexcurve (4).

A. Minimum Latency Stream Admission

The delay of a newly admitted stream depends on the port
schedules si along the designated network path. We assume
that the path is previously determined. With the usage of
classical TAS scheduling approaches, e.g. with Satisfiability
Modulo Theories (SMT) solvers, it’s possible to compute
an embedding that satisfies a stream’s deadline requirements.
However, using SMT [2] or similar approaches requires sig-
nificant computing time. In the following, we present a search
algorithm that is able to embed a single stream f of size c slots
and cycle period K with the smallest possible network delay
in linear runtime at the worst-case. We will use intermediary
results of the algorithm to generate a deadline-aware flexcurve.

Applying a first-fit heuristic for stream admission allows to
quickly find a stream embedding, i.e., for single streams, it
returns an embedding or it fails. Similarly, the admissibility
of a stream of size c can be determined by looking up the
value of the flexcurve for the corresponding stream size 1. The
resulting embedding of the first-fit heuristic gives the minimal
achievable latency of the first viable starting position in the
schedule s1 of the first port along the path. However, the result-
ing delay may still violate the stream’s deadline requirements.

1Note that the flexcurve formulation (4) enables simultaneously calculating
admissibility for multiple streams.

Fig. 5. Example for two states of Alg. 1 with a shift of the time point a1
that is the start of the initial assignment to the schedule s1 at port p1. Red
slots are occupied by other streams.

Other starting positions in s1 might provide lower delays to
keep the deadline. Repeating the first-fit heuristic for each
viable starting position answers this question of finding the
stream embedding with minimal latency, however it results
in quadratic runtime, given that the first-fit heuristic can be
implemented linearly.

Instead of repeatedly applying the first-fit heuristic, we
propose a search algorithm (Alg. 1) that is able find an
embedding sequence of time points A = (a1, . . . , am) for
stream f with the lowest possible delay for any starting time
in the schedule s1 of the first port along the designated path
P . The algorithm can terminate earlier if an embedding was
found that satisfies the deadline requirements.

In Fig. 5, we depict two states of the algorithm. Given
a path P as a sequence of m distinct ports, the algorithm
works by shifting the embedded starting position of the first
schedule a1 by one slot in each step assuming the resulting
embedding is valid if

∑c−1
k=0 succ(a1 + 1 + k, s1(a1)) = c.

Here the algorithm finds a concrete embedding ∀j in (1) of
the first schedule s1. This ensures latency improvements are
not missed in the search due to the starting time of f within
the first schedule s1.

With each shift of a1 to the right, the algorithm checks
for ai, i = 2, . . . ,m the current stream embedding falls
behind their predecessor’s ai−1 position (indicated by the
arrow position pointing to the next hop). Should this be the
case, the new scheduled position of each ai is set to the next
viable position. Setting the next viable position efficiently is
done by leveraging contiguous gaps (gi,j ,∆i,j) in each port
schedule as introduced in Section III. When shifting any new
stream embedding, the algorithm also keeps track of which gap
within the sequence is occupied. When a certain placement is
not possible, the new stream position ai is set to the starting
position gi,j of the next gap in the sequence.

Applying this algorithm allows finding a viable stream
embedding for any required deadline up to the stream delay
deadline. To simplify the description and implementation of
Alg. 1, we copy and append each schedule along the path mul-
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tiple times, i.e., we virtually extend the number of slots to Km
while periodically repeating the initial stream assignments.
This allows disregarding assignment wrapping to the relative
start of a schedule, thus allowing for simpler comparisons, and
also a simplified end-to-end latency calculation as am−a1 +c.

Since the algorithm Alg. 1 progresses to later slots, and
never revisits a slot already checked, the algorithm has a worst-
case runtime of O(Km). Here, the maximum number of slots
is given by Km, with a period of K and the number of ports
(schedules) on the path m. Preprocessing, i.e., creating the
sequence of gaps has a linear worst-case runtime, as it is only
required to iterate over a given sorted list of schedule entries.
Note that the path length m is in most practical settings upper
bounded by a small number, usually smaller than 10.

B. Time-Aware Shaper Configuration

While Alg. 1 can find a valid embedding within the given
port schedules, the resulting schedule may be infeasible for
an immediate deployment with a TAS-capable device. The
reason for this lies in the fact that TAS works by following the
gate control list of each output port to open and close priority
queues for the egress. If packets are scheduled with a no-wait-
constraint one queue is sufficient for scheduling as arriving
packets are immediately processed and forwarded to the next
hop. In our case, Alg. 1 finds suitable embeddings which may
require the packet to queue for a finite and predetermined
amount of time before the scheduled time arrives, while
still respecting any deadline requirements of the stream. This
waiting capability requires streams to be isolated from each
other, either by arrival time or by sorting into different queues.

C. Deadline Aware Flexcurve

We recall that by definition the flexcurve describes the count
of arrangements for the given path of the queried stream of size
c at the corresponding bottleneck schedule. Since each state
of the time point sequence A is a valid stream embedding, we
can use it to generate a flexcurve as well. Saving snapshots
of A, if the end-to-end delay is below the deadline, after each
shift of a1 in Alg. 1 results in a set of one or multiple possible
embeddings. Counting the number of distinct slot assignments
and returning the bottleneck count, i.e., the minimum count of
assignments along the path p1, . . . , pm, constructs the deadline
aware flexcurve. One may be tempted to assume that this
corresponds to the flexcurve value for a stream of size c
that possess the deadline d, however, this is only a necessary
condition. We note that saving snapshots of the embedding
search algorithm is not sufficient to satisfy the constraint of
the deadline aware flexcurve (8). This may result in underes-
timating the flexcurve values as some stream embeddings of
intermediate schedules are not counted. These embeddings do
not improve the latency so they are not guaranteed to appear
in the time point sequence A.

To extend the search algorithm Alg. 1 to include inter-
mediate embeddings not necessarily returned by the search
algorithm, we need to shift all embeddings from a2, . . . , am
after each shift of a1 to the maximum delay allowed by the

deadline. This results finding all valid stream embeddings up
to the deadline. A snapshot of each embedding precisely gives
the number of valid assignments for each schedule along the
path. The minimum number of valid assignments corresponds
to that of the deadline aware flexcurve value hdP (n, d).

Algorithm 1:
Data: g, ∆, P = (p1, ..., pm), c, deadline;
Result: A/False: Embedding/Stream is inadmissible
// Initial fitting of stream to free slots
// with extended address space
A = (a1, ..., am), gap(a1, ..., am)← InitialFit(Open Slots);
if am − a1 + c ≤ deadline then

return A;

while a1 < K do
// Shift stream of starting schedule
a1 ← a1 + 1;
j ← gap(a1);
// Check if current gap is large enough
if gp1,j + ∆p1,j − a1 < 0 then

// Otherwise, skip to next viable gap
gap(a1)← j + 1;
if gap(a1) is invalid then

return False;

a1 ← gsp1 ,j+1;

for i in 2...m do
if ai < ai−1 + c then

ai ← ai−1 + c;
j ← gap(ai);
if gpi,j + ∆pi,j − ai < 0 then

gap(ai)← j + 1;
if gap(ai) is invalid then

return False;

ai ← gpi,j+1;

delay ← am − a1 + c;
// We can save snapshots of the current
assignment A here if the calculated delay
adheres to deadline or return directly:
if delay ≤ deadline then

return A;

return False;

V. EVALUATION

In the following, we split our evaluation into several distinct
parts: First, we look at the runtime performance of incre-
mentally embedding streams, then we evaluate the lookup
time of the flexcurve presented in Sect. III. Further, we show
how different scheduling algorithms affect the path flexibility
before, finally, highlighting the impact of multiple variables
on the computation runtime for deadline-aware flexcurves.

For all evaluations, we use two different topologies. First, a
basic line topology consisting of 4 hops, i.e., 4 port schedules.
Streams are embedded along the entire line. Secondly, we
consider a more complex machine topology (cf. Fig. 6),
consisting of three switch-hierarchies. The chosen topology
consists of three sections, three subsections with six leaf nodes
each. Each node is a time-aware network device or switch.
All ports are uniquely numbered. Streams are set between one
single controller situated at a leaf node and all other leaf nodes
and back resulting in a total of 106 streams.
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Fig. 6. One section of the evaluated topology of a complex machine network.
The topology consists of three identical sections (only one discplayed here).
A leaf node acting as a controller is exchanging traffic with all other leaf
nodes.

Table (I) lists the used stream properties. The line rate is
set globally to 100 Mbps and time-slots are allocated with
µs granularity. We assign the stream sizes for the machine
topology uniformly at random between 60 to 300 bytes.

TABLE I
STREAMS USED FOR EVALUATION.

Topology Period Deadline Size Avg. Pkt Size

Line 1.0 ms 1.0 ms 100 byte 100 byte
Machine 1.0 ms 0.5 ms 60 byte–300 byte 180 byte

A. Incremental stream admission and embedding

In this section, we evaluate the search algorithm given in
Alg. 1 that finds an embedding for an incoming single stream
request. We compare the runtime of Alg. 1 given the line
and machine topology to a standard constraint-based SMT
counterpart, and to an incremental SMT solution. The used
SMT solver is Z3. Such an incremental scheduling approach
is known for example from [9]. Alg. 1 terminates and returns
when a valid embedding is found. Fig. 7 shows the results of
this performance evaluation.

We consider the runtime of each scheduling approach in
terms of the time required for adding a single stream, depen-
dent on the current number of streams currently in the system.
The standard SMT approach tries to schedule all streams
together, whereas the incremental SMT approach fixes the
already scheduled streams as constraints, therefore reducing
the number of variables significantly. Note that this makes a
comparison of Fig. 7a and Fig. 7b difficult.

The line topology is a worst case scenario in the sense that
every new stream conflicts on the same ports. In Fig.7a, we
show the time required to solve the problem of finding an
embedding for a number of streams. Note that as the standard
SMT approach is not incremental, adding one new stream
requires here to restart the schedule computation for a total
number of streams N as defined on the x-axis. The figure
shows that for a small number of streams in the network this
standard SMT scheduling is comparably fast for dynamic TSN
network reconfigurations. However, for increasing number of
streams incremental approaches outperform the standard SMT
scheduling. For example, adding a new stream to the consid-
ered network that already contains 30 streams requires a new
calculation for 31 streams that takes roughly 100 seconds. In

Fig. 7b, we observe that the runtime of the incremental SMT-
based approach increases rapidly with every stream added. In
contrast Alg. 1 performs as expected, having a linear increase
in runtime with every newly added stream.

B. Computing TSN network path flexibility

In Sect. III, we introduced an approach to calculating a
path flexcurve that allows incremental updates as it is based
on local, i.e., port specific, data structures. Next, we consider
the build and query times for the computation of the flexcurves
according to the related work approach, i.e., (4), and according
to our incremental approach in (6). We look at the schedules
of the line topology provided by Alg. 1 with ns granularity,
i.e. K = 106 slots. Table II confirms the analysis of Sect. III
as the computation of (6) requires significantly less time for
initialization. Next we consider the time required to query
(access) a flexcurve value, i.e., given a stream of size c
that is to be admitted the CNC queries the flexcurve of the
designated path P to obtain the value (4) or (6). Accessing
one or multiple values of the standard approach (4) requires a
constant time 157ms. In contrast, accessing a single value (i.e.
when embedding a single stream) of (6) is significantly faster.
In fact accessing up to 23% of the flexcurve values at once
is faster than (4). In addition, for frequent schedule updates
the flexcurve (4) requires re-initialization, whereas our version
supports incremental updates inherently.

TABLE II
COMPUTATION TIMES FOR INITIALIZATION, QUERY (ACCESS) AND

BUILDING A FLEXCURVE VALUES ARE ROUNDED TO [MS].

Type Incremental Flexcurve (6) Flexcurve (4)

Initialization 12 ms 157 ms
Single Access 0.5 µs —

23% Build 156 ms —
50% Build 302 ms —

100% Build 563 ms —

C. Comparing the flexibility of different TAS schedules

Next, we use the flexcurve concept to compare the flexibility
of the schedules resulting from different TAS scheduling
algorithms. Here, we schedule 10 streams in the considered
line topology. We compare Alg. 1, the standard SMT and
incremental SMT approach and a publicly available open-
source scheduler called TSNSched [4], that also based on
SMT to compute a schedule. To keep the comparison fair, no
scheduling approach has additional constraints or optimiza-
tions to optimize the flexcurve. The resulting flexcurves in
Fig. 8 for the line topology path reveal different results: (i) The
incremental SMT approach and Alg. 1 essentially produce a
coherent no-gap schedule (first-fit heuristic) which maximizes
the schedule flexibility. The standard SMT approach produces
gaps which lead to a change in slope, and less overall
flexibility. TSNSched reserves more bandwidth for scheduled
traffic leading to overall less flexibility.
D. Computation time for deadline-aware flexcurves

In (3), we show that the end-to-end stream delay depends
on the starting embedding position a1 in the first schedule
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(a) (b)

Fig. 7. Standard vs. incremental stream embedding: The runtime of different scheduling approaches given the line topology, and the machine topology (Fig. 6).
(a) Since the standard constraint-based SMT approach is not incremental by nature the figure shows the required runtime for embedding a total number of
streams. (b) Streams are sequentially added to an empty network (x-axis). The figure shows the cumulative runtime for incremental SMT and Alg. 1.

Fig. 8. Flexcurves of schedules created by different scheduling approaches
are comparable. A flexcurve is independent of the scheduling-approach.

Fig. 9. Runtime evaluation for computing the value of a deadline-aware
flexcurve. All schedules are randomly allocated each with 50 continuous
occupied slots using different overall schedule occupancy. The deadline was
set to 100 slots with a search for a stream of 10 slots length.

s1. Hence, computing the deadline-aware flexcurve essentially
requires to check the end-to-end delay of every possible
starting time point a1. This can be computed using Alg. 1 and
its corresponding extension (cf. Sect. IV-C). In Fig. 9, we show
the empirically obtained required time for computing one value
for the deadline aware flexcurve in terms of the granularity of
the schedule, given different schedule utilization. Note that
a schedule with a high utilization restricts the search space
leading to a faster computation result as can be seen in the
figure. Already admitted streams occupy the schedule in a
uniformly random manner. We observe that smaller deadline
lookups also require less absolute runtime which is due to a
fewer absolute number of search operations.

VI. RELATED WORK

In the following, we briefly highlight relevant related works
in the context of enabling dynamicity or flexibility for Time-
Sensitive Networking. To enable reconfigurability of real-time
scheduling in the context of time-sensitive software-defined
networks the authors of [10] use a solely departure scheduled
network and outline two ILPs to incrementally add single
streams to their global schedule. In contrast to the work
at hand [10] does not leverage TSN with the Time-aware
Shaper. With a similar goal as our work, a decentralized
CUC/CNC architecture for TSN reconfigurations that are
based on application requests are proposed in [11]. This is
similar to Section II-B with intended support for mechanisms
to maximize the number of streams. The original idea of the
quantification of the flexibility of TSN TAS schedules in form
of a flexcurve is given in [7]. In addition to the shortcomings
in terms of the time required to build and query the original
formulation in Sect. II-B, we note here that the formulation
in [7] does not capture important stream properties such as
delay deadlines, queuing delays and cycle-period bounds.

There exists a number of related works on incremental
scheduling using SMT. In [2], [9] the approach is based on
incrementally adding streams to a previously fixed schedule.
With the ability to backtrack to an earlier time-point if
scheduling fails. This results in a different embedding for the
discarded streams, and thus a disruption if the schedule was
deployed already. One approach to highlight is given in [12],
where the authors use bin packing with a first-fit heuristic,
while remaining resource overlaps are resolved using SMT,
which significantly improves scheduling speed. In addition
to constraint-based scheduling methods, e.g. [2]–[4], heuristic
scheduling methods are becoming more prevalent. Heuristics,
such as [13], [14], often lend themselves easily to dynamic net-
work situations as their scheduling mechanism is incremental.
These approaches limit the stream addition to single streams
and are not guaranteed to find an embedding for a requested
stream, even if scheduling capacity is sufficient. Note that the
main difference to the reviewed approaches above is that they
do not consider the impact of scheduling on future stream
admissions as, e.g., captured by the flexcurve. The search
algorithm presented in Section IV-A can select at least one
possible embedding if the deadline can be satisfied and directly
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measures its future impact. This algorithm is however also
restricted in the number of simultaneous embeddings and
feasible cycle periods. To treat the increase of complexity in
industrial networks, the authors of [15] propose a hierarchical
scheduling approach to improve classical scheduling perfor-
mance. We regard this approach as complementary to ours as
it may be introduced to guide a more flexible deployment.

Since we consider stream-based scheduling with equal pri-
ority we are restricted in approaches that increase flexibility
by a form of window aggregation. This approach is explored
in [16]. There the authors increase the flexibility of real-time
streams by combining asynchronous scheduling approaches
with the isolation that TAS can provide by building shared
TAS windows, thus improving the overall asynchronous per-
formance. A formal performance analysis of flexible Window-
Based GCL Scheduling that relaxes the non-overlapping strict-
ness of GCL can be found in [17].

One of the main methods to analyze the performance of
TSN is Deterministic Network Calculus [18] as it captures
the worst case behavior of some TSN mechanisms. It allows
deriving a description of the service provided to one stream
of interest at a single or multiple TSN switch ports along
a network path [5]. Combining this with a deterministic
upper bound on the amount of stream data to be transmitted,
the network calculus system model [18] readily provides
performance bounds as on the end-to-end latency. One such
attempt to analyze time-triggered Ethernet (TTEthernet) is
given in [19]. A comprehensive model of TSN AVB (802.1.
Qav) using network calculus is given in [5], [20]. There the
authors provide service curve descriptions for traffic classes
in TSN credit-based shaping that allow deriving deterministic
upper end-to-end latency bounds. Further applications of the
framework include the analysis of different TSN scheduling
mechanisms [21] and a comparative analysis of TSN traffic
shapers in [22].

VII. CONCLUSION

Current industrial TSN applications do not allow for highly
dynamic network environments, as the state of the art in
scheduling TSN resources mandates planning before deploy-
ment. In this paper, we contributed an extension of the
flexcurve concept to support incremental TSN reconfigura-
tions at runtime. In particular, we allow a flexible stream
admission faster than state-of-the-art methods and provide a
stream deadline-aware flexibility notion of TSN schedules.
Our concepts are an important building block to enable
dynamicity in industrial networks without planning changes
well in advance. Our evaluations show that this incremental
approach requires much less computation time compared to
classical approaches and even adapted incremental approaches
to admit and embed new TSN streams at runtime. In addition,
we provide path-flexibility metrics that can be used to assess
present scheduling mechanisms. This work allows incremental
changes to TSN configurations that are obtained on the basis of
network flexibility. Dynamicity of multiple simultaneous cycle
periods in the context of TAS schedules remains a challenging
problem that is left for future work.
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