
Chapter 4
Structured Search Overlays

Christian Groß, Björn Richerzhagen, Max Lehn

Since the first structured search overlays for peer-to-peer systems have been pre-
sented in the years 2001/2002, a variety of approaches have been developed, greatly
differing in their design. Although all of these approaches provide almost the same
functionality, their respective evaluations greatly differ with respect to the metrics
and workloads used. These differences in the evaluations make it hard, if not impos-
sible to compare their performance and resulting costs. In addition, most evaluation
sections do not provide information about the performance limits of the respective
structured search overlays.

To cope with the problem of comparability, Li et al. [7] presented a performance
vs. cost framework for evaluating DHTs under churn. Although the approach can be
used to compare different overlays with respect to their performance and cost under
churn, Li’s approach only evaluates the performance and costs of DHTs under churn
and does not take into account other environmental conditions such as an increasing
message loss or an increased service consumption resulting in a higher workload for
the DHT. In contrast, the presented benchmarking approach investigates the perfor-
mance and costs in a holistic fashion with the specific dedication in determining the
performance limits of a structured search overlay.

Therefore, a basic benchmark for structured search overlays along the formal
model and the methodology established in Chapters 2 and 3 is defined. The bench-
mark addresses two main goals: First, it allows to compare existing structured search
overlay implementations under different workloads. Based on this comparison, it is

Christian Groß
Technische Universität Darmstadt, Multimedia Communications Lab, Darmstadt, Germany,
e-mail: chrgross@kom.tu-darmstadt.de

Björn Richerzhagen
Technische Universität Darmstadt, Multimedia Communications Lab, Darmstadt, Germany,
e-mail: richerzhagen@kom.tu-darmstadt.de

Max Lehn
Technische Universtität Darmstadt, Databases and Distributed Systems Group, Darmstadt, Ger-
many, e-mail: max_lehn@dvs.tu-darmstadt.de

1

chrgross@kom.tu-darmstadt.de
richerzhagen@kom.tu-darmstadt.de
max_lehn@dvs.tu-darmstadt.de
ehlhardt
Notiz

rst
Textfeld
 Christian Groß, Björn Richerzhagen, Max Lehn:Benchmarking Peer-to-Peer Systems. In: Wolfgang Effelsberg, Ralf Steinmetz, Thorsten Strufe, vol. 7847, vol. LNCS, chap. Structured Search Overlays, p. 49-67, Springer, June 2013. ISBN 978-3-642-38672-5.http://www.springer.com/computer/communication+networks/book/978-3-642-38672-5.



2 Christian Groß, Björn Richerzhagen, Max Lehn

possible to determine which overlays are suitable for a specific application scenario,
stating specific workload characteristics. Second, by pushing structured search over-
lay implementations to their performance limits, their strengths and weaknesses be-
come visible.

Before coming up with a concrete interface definition for the benchmark, it is
important to first define structured search overlays and their functionality. Through-
out this chapter, we define structured search overlays along the lines of the definition
given in [11], as an overlay network that enforces a predefined topology for intercon-
necting peers. The overlay protocol ensures that the routing process is deterministic
by using a particular data structure for storing overlay contacts, usually referred to
as the routing table.

The fundamental functional block that each structured search overlay provides
is to route a given message m with hash key k from a peer p to a responsible peer
q. The hash key k usually is computed by using existing hash functions such as
MD5 or SHA-1. On top of this basic routing function, a search functionality for
data objects or peers can be built. This is done by hashing data objects or peer
information to determine their corresponding hash key k. Based on the key, the
overlay routes search requests to the position in the overlay where either the peer or
the data object of interest is located.

4.1 Interface Definition

When designing a benchmark for structured search overlays, one has to think about
which functional block the benchmark should address. If the routing functional-
ity is to be tested, the interface definition must contain a single route(k, m)
→ flag method. This method takes the hash key and message as an input and
asynchronously returns a boolean value (the flag) indicating whether the message
was routed successfully to the responsible peer or not. Several approaches exist for
generating particular hash keys that are requested via the interface, as discussed in
Section 4.3.2.2.

When the search functionality is to be benchmarked, the interface definition must
be extended such that the storage and retrieval of data objects is supported. There-
fore, the two methods put(k, data, lifetime) and get(k) → data for
storing and retrieving an object under a given key k are added to the interface. In
addition, we assume a getDirectNeighborSet() → neighbors method,
which returns the set of neighboring peers of a peer in the overlay. The set of neigh-
bors is defined as the list of the closest peers to a peer p measured by the same
distance metric as used by the route function.

The following assumptions are made: (i) The get function asynchronously re-
turns the result, meaning that the result for a request is returned later on through a
callback function. (ii) It is expected to always deliver a result. (iii) If no item for
the requested key is found, the overlay returns an empty object. (iv) Each object is
stored with a maximum lifetime after which it is deleted. Thereby, a simple garbage



4 Structured Search Overlays 3

collection mechanism is realized, avoiding peers to store outdated information and
to get overloaded.

4.2 Non-Functional Requirements

When looking at the non-functional requirements, a search overlay should scale
with respect to the number of users participating, the number of objects being stored,
and the number of request generated by users in the overlay.

In addition, it should be stable even under high churn rates, meaning that the
success ratio and the average query response time should not drop below a given
threshold. For most applications that use a search overlay, a success ratio and recall
close to one and a response time below one second is acceptable. Furthermore, the
search overlay should be robust against a massive leave or join of peers. From the
fairness point of view, the overlay should distribute the load according to the ca-
pacities of the peers while providing equal access to the resources of the overlay to
all peers. In doing so, overloaded or starving peers in the overlay are avoided. The
overlay should always deliver a valid answer to a request, i.e., the correct object for
a given key is to be returned, or an empty object if no correct one can be found.

4.3 Workload

The generation of a workload for structured search overlays is based on their func-
tional interface. As discussed in Section 4.1, we assume two types of interfaces
and, thus, two types of workloads. To test the routing functionality, a synthetic peer
lookup workload model is defined that generates peer lookups for online peers in
the overlay. Defining an application workload for testing the routing functional-
ity is not possible as there is no peer-to-peer application that uses only the routing
functionality of structured search overlays.

We use two different models to generate the load for the overlay: (1) a synthetic
workload model where requests and updates for abstract objects are generated arti-
ficially, with the goal of determining the performance limits of existing structured
search overlay implementations, (2) an application-driven workload model repre-
senting a distributed overlay-based BitTorrent tracker, where peers request informa-
tion about which other peers are currently participating in a particular swarm.

4.3.1 Synthetic Peer Lookup Workload Model

To model peer lookups we define a peer oracle that stores the information about
which peers are currently online in the overlay. In this way, we are able to generate



4 Christian Groß, Björn Richerzhagen, Max Lehn

requests for online peers only. Workloads are comprised of two types of parameters:
(1) parameters for modeling the geographical distribution of peers and their online
behavior and (2) parameters for modeling the route requests generated by the peers.
The workload model has the following set of parameters:

Number of Peers, Session and Intersession Times, First Join, Final Leave. One of
the basic parameters is the total number of peers that participate in the overlay.
For each peer in the overlay, we model its lifetime in accordance with Chapter 3,
which comprises the following phases: (i) initial join, (ii) presence phase, (iii)
multiple repetitions of leave and join phases, (iv) final leave, meaning that the
peer will not rejoin the system any more for the rest of its lifetime. To model this
behavior, the following parameters are required: (i) the session time ts, (ii) the
time between two sessions ti, (iii) the probability P(leave) for a leaving peer to
not return to the system, and (iv) in case of a peer joining the system the prob-
ability P(new) that the peer joins the system for the first time. The impact of
selecting entirely new peers for joining the system is that new peers do not have
any knowledge of earlier sessions, e.g., stored objects.

Geographical Distribution of Peers. Another important parameter is the geograph-
ical distribution of peers, which has an influence on the delay between peers and
the resulting response time of the structured search overlay under test.

Peer Activity. Finally, peers generate requests. The behavior of the peers is mod-
eled as a Poisson process with arrival rate or intensity λr. In a Poisson process
with intensity λ the inter-arrival times between consecutive events are exponen-
tially distributed with arrival rate λ . In addition, the popularity distribution of
route requests to target peers is needed. This popularity distribution can be mod-
eled using measurements of real applications or synthetic popularity distribu-
tions.

4.3.1.1 Per Peer Workload Generation

To generate load on the system under test the following method is used: First, a
peer draws a value for the inter-request timer that the peer has to wait between two
successive route requests. The request behavior is modeled as a Poisson process,
where the inter-request times follow a exponential distribution. Afterwards, the peer
waits until the execution time for the next route request is reached. Then the peer
draws a random peer ID, which is used as the target ID for the route request, and
calls the route method and passes the drawn ID to it. Finally, the peer waits until
either a result for his request is returned or the timeout expires.

4.3.1.2 Workload Scenario

In the following, the peer variation schemes for the peer lookup workload are pre-
sented. The workload scenarios are derived from the generic workload scenarios
presented in Section 3.4.1. They are grouped according to the elementary entities of



4 Structured Search Overlays 5

the structured search overlay. These are (i) the peers, (ii) the services provided by
the peers, and (iii) the underlay.

Peer Parameterization

• Scenario 1: Without Churn. Peers join the network, and after a static period,
where no further join or leave of peers occurs, the workload is deployed on the
system. This workload scenario should demonstrate the performance and costs
of the structured search overlay under ideal conditions, without peer churn. If a
SUT is not capable of providing a reasonable performance at reasonable costs in
this scenario, it suffers from severe design drawbacks.

• Scenario 2: Exponential Churn. In Scenario 2 the performance of the structured
search overlay is investigated with an increasing level of peer churn. We execute
multiple runs during which the churn factor of the exponential model is decreased
stepwise. Peers initially join the system similar to Scenario 1, and the system
stabilizes in a silent period. Afterwards, the churn is enabled as follows: The
exponential churn model defines the session time λs and intersession time λi
which both are decreased from λ over 1

2 λ , 1
4 λ , 1

8 λ to 1
16 λ .

• Scenario 3: Massive Crash. The third scenario covers the extreme situation of
a large fraction of peers crashing. As in the two scenarios before, peers join,
and the workload starts after a silent period. The percentage of peers leaving the
overlay ungracefully is increased stepwise per run from 10% to 90%.

• Scenario 4: Massive Join In contrast to Scenario 3, the massive join scenario de-
ploys a simultaneous join process of a large number of peers instead of a massive
crash. Initially, peers join the overlay, and after a static period, a massive join
takes place. The percentage of peers suddenly joining the overlay is increased
stepwise per run from 10% to 90%.

• Scenario 5: Increasing Number of Peers. Peers join the network according to a
linear function, increasing their number as long as the system remains stable.

Service Parameterization

• Scenario 6: Flash Crowd. In this scenario, a large number of the peers request a
specific content in a short amount of time. Again, a join and silent phase is as-
sumed, like in the last settings. Peers join the overlay, and the exponential churn
model is deployed together with the aforementioned workload model. Route re-
quests per peer are modeled as a Poisson process with an arrival rate of λr request
per minute. After a silent period, the flash crowd begins. The intensity of the flash
crowd is doubled per run, meaning that the average number of requests executed
per peer is doubled per run until it reaches 16 times the initial load level.

• Scenario 7: Increasing Service Consumption. We deploy the structured search
overlay under test like in the scenarios before and increase the intensity λr of the



6 Christian Groß, Björn Richerzhagen, Max Lehn

Poisson process that models the request frequency of peers. Over multiple runs,
the intensity λr is doubled per run until in reaches 16 times the initial value.

Network Parameterization

• Scenario 8: Increasing Message Loss. In this scenario the delivery reliability is
decreased by increasing the percentages of messages being dropped. Similar to
Scenario 2, peers join the overlay and churn is enabled. After a silent period, the
rate of messages being dropped by the underlay is increased stepwise per run
from 1% to 2%, 5%, and 10%.

4.3.2 Synthetic Object Lookup Workload Model

In contrast to the peer lookup workload where peers execute route requests, peers
in the data lookup workload execute store and search requests for objects. Objects
are modeled with a given maximum lifetime, which are stored in the overlay and
retrieved afterwards. All objects that are stored in the overlay are also stored in
a Global Object Database which is not part of the SUT. Since this benchmark is
designed for simulated or emulated environments, we assume that this database can
be maintained as part of the global knowledge in the simulator. The database is used
for selecting objects to be queried as well as for validating results obtained from the
overlay. The following parameters are used in our model:

Number of Peers, Online Time, Non-persistent Storage on Peers. An important pa-
rameter is the number of peers, as it directly determines the load for the overlay.
The peers’ online times are determined by the churn model, which describes
the session and inter-session times. In our workload model we assume a non-
persistent storage in case that a peer goes offline, which means that its stored
data is deleted. In doing so, we avoid the re-insertion of possibly outdated ob-
jects into the overlay caused by rejoining peers.

Object Size, Popularity, Lifetime. The second parameter set is related to the ob-
jects that are to be stored in the overlay. We model the popularity of objects
according to a Zipf distribution [9], [6] . Stored objects are modeled with a fixed
size. In order to avoid a constantly growing number of objects, we introduce an
object lifetime, after which an article is considered to be outdated and i sdeleted
from the overlay.

Peer Activity. The third set is related to the peer activity, specifying how often a
peer executes a certain type of action. We define three basic operations: creat-
ing a new object, requesting an existing object, and updating an object. Hence,
it is necessary to specify an execution probability per peer for each of these op-
erations. In addition, the time between successive operations is needed. A grace
period after the creation or update of an object before a read or update request
for the same object allows the overlay to properly store the objects. The delete



4 Structured Search Overlays 7

operation is not part of the peer activity. Objects are deleted automatically by the
overlay as soon as their lifetime expires.

As already mentioned, the Global Object Database maintains information about
all objects stored in the overlay. For each object this information comprises the
object id, the object lifetime, the object store timestamp, and a hash value of the
object. This information is needed in order to verify whether the correct version of a
requested object is returned by the overlay. The object database offers methods for
creating, updating, and requesting an object.

As mentioned above, in order to obtain meaningful results in the benchmark for
the structured search overlays, the overlays have to provide means for replicating
objects in order to prevent the loss of stored objects in the case of a leaving or
failing peer.

4.3.2.1 Per Peer Workload Generation

The workload generation algorithm, which is run by each peer, works as follows.
Initially, an activity index is defined per peer, drawn from a global activity index
distribution. Similar to the peer lookup workload, the requests issued by a particular
peer are modeled as a Poisson process with a given arrival rate λr. The activity in-
dex defines the expected value of inter-arrival times between two successive actions
performed by the peer. In contrast to the workload model for the node lookup, peers
can decide between three different functional methods: (i) storing a new data object,
(ii) requesting a data object, or (iii) updating an already stored data object. The up-
date method can be realized by first issuing an lookup for a data object, followed by
a store request. To model the decision process, a peer draws a uniform distributed
random value between 0 and 1. For each method a certain probability range is de-
fined, with all the ranges summing up to 1. Based on the drawn probability value,
the method is select by calculating the range that the drawn probability value is
overlapping with. Finally, the chosen method is executed and a new inter-operation
time is drawn, which determines how long a certain peer has to wait until it executes
the next operation.

4.3.2.2 Workload Scenarios

For the workload, the scenarios as presented in Section 4.3.1.2 are assumed with
some small differences. Instead of invoking the peer lookup algorithm, the peers
execute the workload algorithm as described above.



8 Christian Groß, Björn Richerzhagen, Max Lehn

4.3.3 Application-Based Workload Model

As already mentioned at the beginning of the Section, an application-based work-
load model representing a fully distributed BitTorrent tracker is proposed, where
peers request information about which other peers are currently participating in a
given BitTorrent swarm. In contrast to the synthetic workload, which tries to drive
a system to its limits, the application-based workload aims at the generation of a re-
alistic synthetic workload. Systems being benchmarked using an application-based
workload can be compared to others in order to find the best system for a partic-
ular workload. The BitTorrent workload was derived from two large measurement
studies presented in [4]. The first study investigated BitTorrent by periodically prob-
ing over 46,000 torrents in order to quantify high-level characteristics, such as the
swarm size and the proportion of leechers and seeders. In contrast, the second study
investigated relevant properties of BitTorrent users such as their download rates and
chunk availability on a microscopic level by contacting over 700,000 individual
peers in 832 torrents.

Furthermore, we model the geographical location of peers by using the distribu-
tion shown in Figure 4.1a, which was extracted from traces of Twitter [3], containing
22 million location-based status updates from 220,000 users.

The typical workload for a distributed BitTorrent tracker works as follows: A
peer joining a particular BitTorrent swarm performs a lookup in the overlay to get
a list of peers that are currently participating in the swarm. The key used for the
request is calculated by hashing the swarm’s meta-data. A peer receiving the query
request responds with a list of peers currently active in the swarm. Afterwards, the
joining peer adds itself to the received list and stores the updated list in the overlay.
To ensure the availability of all stored peer lists, they are replicated in the overlay.

In order to model the mentioned peer behavior, we extracted the workload pa-
rameters shown in Figure 4.1 from the measurements.

Firstly, each joining peer i selects the length of its session li, which determines
how long the peer will remain in the system. This is done by drawing an equally
distributed random number rl ∼ U(0,1), which is mapped onto a session length
based on the CDF shown in Figure 4.1b. Afterwards, a peer determines its session
activity index λi from the CDF shown in Figure 4.1c by mapping a second random
number rλ ∼U(0,1) onto the requests per hour. The activity index λi determines
how many request the user has to perform per hour during its online time. The
requests per peer are modeled as a Poisson process Pλ ,t with λ = λi and t ∈ [0,60]
min. If the session length of a peer is smaller than a full hour the Poisson process is
stopped at the end of the peer session. In case that the peer session length exceeds
one hour, the Poisson process is repeated. For every request made by a peer the item
to be request has to be determined. This is done by mapping a third random number
ritem ∼U(0,1) onto the item ID according to the CDF shown in Figure 4.1d.



4 Structured Search Overlays 9

(a) Geographical Distribution of Peers

0 200 400 600 800 1000 1200 1400 1600
Session Length [min]

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Fr
ac

tio
n

(b) CDF of the peer session length in minutes

0 5 10 15 20
Request per hour [#]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cu
m

ul
at

iv
e 

Fr
ac

tio
n

(c) CDF of the peer request rates per hour

0 10000 20000 30000 40000 50000 60000 70000
Item ID

10-3

10-2

10-1

100

Po
pu

la
rit

y

(d) CDF of item popularities

Fig. 4.1: BitTorrent workload parameters extracted form the measurements

4.4 Metrics

Having presented the synthetic as well as the application-based workload schemes,
we are now going to present the metrics that are measured during the benchmark.
Each set of metrics is associated with the corresponding quality aspect. First, we will
introduce the basic metrics that quantify the performance and the cost of a system.
Afterwards, we will present the derived metrics, that make use of the basic metrics.
All metrics are measured on every peer i every ∆ t seconds, which results in a set of
samples for each peer. Based on the set of samples global metrics can be calculated.
The following basic metrics are measured per peer:

Performance The performance of a search overlay is quantified by two different
metrics: The success ratio s(i, t) and the query response time tq(i, t) at every peer
i at time t.

Cost The costs for operating an overlay are quantified by the upload traffic u(i, t)
and download traffic d(i, t) measured on each peer i at time t. The traffic can be
further classified into maintenance and routing traffic.



10 Christian Groß, Björn Richerzhagen, Max Lehn

For each metric x the Jain fairness index F(x) is computed based on the averaged
values per peer using the formula presented in Section 3.5.2. In doing so, the distri-
bution of the performance and costs among the peers can be quantified. A fairness
index close to one should be targeted as an unequal distribution of performance and
costs either leads to peers leaving the system (unequal distribution of performance)
or stability issues in case of an unequal distribution of costs.

4.5 Example Implementations

In the area of structured search overlays several attempts have been made that
greatly differ in their design. A list of common characteristics of structured search
overlays was derived in [1]. All approaches have in common that they maintain a
fixed topology such as a ring or a tree. Peers and objects are mapped onto an identi-
fier space using hash functions, e.g., SHA-1 or MD5. Based on the identifier space
a distance metric is defined, which is used during the routing process for deliver-
ing search requests to their destination. Structured overlays use a greedy routing
scheme, which ensures that the distance to the destination is decreased with each
routing step. Prominent structured search overlays are Chord [14], Kademlia [8],
and Pastry [10].

4.6 Benchmark Results

In the following the benchmark results for three structured search overlays are pre-
sented. All three overlays have been implemented in the discrete-event-based over-
lay network simulator PeerfactSim.KOM [13]. The benchmarking setup follows the
methodology described above. All benchmarks are executed five times, and for all
results the averages together with the 95th confidence intervals are reported. The
values for the environmental setup, the workload, and for the concrete system pa-
rameters are shown in Table 4.1.

5,000 peers join the overlay and run the workload model described in Sec-
tion 4.3.3. Delays are modeled according to the GNP delay model [5] as it provides
a realistic model for approximating delays in the Internet. In scenarios with churn
enabled, the KAD churn model [12] is used, which was derived from real measure-
ments of the KAD overlay running together with BitTorrent. All benchmark runs
are executed for twelve hours such that all operations of the overlay are executed
multiple times.



4 Structured Search Overlays 11

Table 4.1: Environmental-, workload-, and system parameter setup.

Parameter Value
Environmental and Workload Parameters

Number of Peers 5,000
Workload Model Application-based workload model based on

BitTorrent measurements
Underlay Delay Model GNP Delay Model [5]
Session Duration KAD Churn Model [12]

Weibull(λs,ks), λs = 169.5385 min, ks = 0.61511
Intersession Times KAD Churn Model [12]

Weibull(λi,ki), λi = 413.6765 min, ki = 0.47648
Simulation Duration 12 h

Chord System Parameters
Size of Finger Table 160
Finger Table Update Interval 30s

Pastry System Parameters
Size of ID Space 128 bit
Size of Leaf Set 10
Size of Neighborhood Set 10
Pastry Base Parameter b 4

Kademlia System Parameters
Size of ID Space 160 bit
Number of Parallel Lookups α 3
Bucket Factor k 20

4.6.1 Stability

The results for the increasing churn benchmark are shown in Figure 4.2. Under
ideal conditions all three overlays deliver a high success ratio and a recall of one,
as shown in Figure 4.2a and 4.2b, indicating that all three overlay concepts work
properly. When applying churn on all three overlays, the success ratio of Chord and
Pastry is rapidly dropping whereas Kademlia shows a stable success ratio of one.
The reason for the difference in the performance is that Kademlia uses an iterative
routing scheme with parallel lookups, which is more robust to churn. In contrast to
that, the recursive routing procedures used by Chord and Pastry are not able to cope
with high churn rates. Especially Chord starts to deliver wrong results, as shown
by the decreasing recall in Figure 4.2b. Furthermore, the iterative routing concepts
with parallel lookups allows to reach a target peer via multiple paths, whereas the
recursive ring routing of Chord and the prefix routing of Pastry are not that flexible.
Here, requests are forwarded along a single path determined by the greedy routing
procedure of both overlays. In case that a single peer along this path goes offline, the
routing request is very likely to fail. This result is along the lines with the findings of
a theoretical stability analysis presented in [2]. The stable performance of Kademlia
under churn, however, comes at the cost of an increase response time, as shown in
Figure 4.2c. The reason for this is again the iterative routing procedure, which needs
one additional round trip time for sending back found peers within each step. For



12 Christian Groß, Björn Richerzhagen, Max Lehn

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 S

u
cc

e
ss

 R
a
ti

o

Kademlia Chord Pastry

(a) Success ratio for different levels of churn.

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
ca

ll

Kademlia Chord Pastry

(b) Recall for different levels of churn.

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0

1

2

3

4

5

6

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 [

s]

Kademlia Chord Pastry

(c) Query response time for different levels
of churn.

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ra

ff
ic

 [
kb

it
/s

]

Kademlia Chord Pastry

(d) Traffic per peer for different levels of
churn.

Fig. 4.2: Results for the churn benchmark.

all queries of Chord and Pastry that are resolved successfully, the recursive routing
scheme provides a much better performance with low response times. From the
cost point of view, Chord consumes the highest traffic, as shown in Figure 4.2d,
because it actively maintains its entire routing table. Kademlia and Pastry use a
passive maintenance scheme for the routing table, which detects stale peers in the
routing table only during the lookup procedure at the occurrence of a timeout. The
use of a passive maintenance scheme creates less traffic as unnecessary maintenance
messages are avoided. In addition to the passive maintenance of its routing table,
Pastry actively maintains a small leaf set of ten peers by periodically checking their
online status.

In the following, the fairness of performance and costs in the churn scenario are
presented. The Jain Fairness Index is computed according to the method presented
in Section 3.5.2. When examining the fairness of the three overlays, it is clearly



4 Structured Search Overlays 13

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 S
u
cc

e
ss

 R
a
ti

o

Kademlia Chord Pastry

(a) Success ratio fairness for different levels
of churn.

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 R
e
ca

ll

Kademlia Chord Pastry

(b) Recall fairness for different levels of
churn.

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ir

n
e
ss

 R
e
sp

o
n
se

 T
im

e

Kademlia Chord Pastry

(c) Query response time fairness for different
levels of churn.

no churn 170 85 42.5 21 10.5
Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

 F
a
ir

n
e
ss

 T
ra

ff
ic

Kademlia Chord Pastry

(d) Traffic fairness per peer for different lev-
els of churn.

Fig. 4.3: Fairness evaluation for the churn scenario.

visible that an increasing churn level leads to a more skewed distribution of perfor-
mance and cost, especially for Chord and Pastry, as shown in Figure 4.3. Peers in
the Pastry overlay suffer from an unfair distribution of the success ratio, as shown
in Figure 4.3a. Kademlia and Chord show a fair distribution of the performance
among the peers in the overlay with a fairness index close to 1. The stable behavior
of Kademlia and Chord up to mean session times of 42.5 min, thus, corresponds to
a fair distribution of performance among peers. Pastry shows the highest decrease in
the fairness of the success ratio, which correlates to the deteriorating success ratio
in terms of a decreasing session time of the peers. Considering the fairness of the
recall, all peers in all three overlays receive an equal performance. This is in con-
trast to the response time fairness shown in Figure 4.3c. Peers in Kademlia perceive
an equal response time, whereas peers in Chord and Pastry suffer from large dif-



14 Christian Groß, Björn Richerzhagen, Max Lehn

ferences. This unequal distribution of response times can be explained by a partial
failure of the two overlays, which causes peers in certain regions of the overlay to
suffer from high numbers of stale contacts in their routing tables. The fairness of
the operational costs in terms of traffic is shown in Figure 4.3d. Under ideal condi-
tions all three overlays distribute the costs equally over all peers. With an increasing
churn level, however, the distribution of cost becomes more skewed, resulting in a
decreased fairness value. This fairness values stabilizes at a certain threshold for
each overlay and does not further decrease with a higher churn level.

4.6.2 Robustness

In the following, the results for robustness are shown. The ratio of ungracefully
leaving and suddenly joining peers is varied as well as the fraction of messages
being dropped during transmission from a source to a target peer.

Massive Crash

The results for the massive crash scenario are shown in Figure 4.4. The plots show
the results for different fractions of peers leaving the system ungracefully, ranging
from 0 to 90% of the peers. For the runs with a leave ratio greater than 0%, the
measured success ratio, recall, response time, and traffic right after the crash are
shown. With an increasing ratio of peers suddenly leaving the overlay, the success
ratio and recall of Chord is dropping rapidly, as shown in Figure 4.4a and 4.4b. In
contrast, Kademlia and Pastry show a stable success ratio and recall of close to one
for all ratios of peers leaving the overlay.

Furthermore, with a higher ratio of peers leaving the overlay, the response time of
Kademlia increases (Figure 4.4c), because the routing tables of peers suddenly con-
tain outdated peer contacts, which lead to timeouts during the execution of parallel
lookups. Pastry and Chord show a stable response time, which is slightly decreasing
as routing with fewer peers in the overlay performs faster. The traffic per peer in
the overlay, as shown in Figure 4.4d, decreases with a higher ratio of peers leav-
ing the system. With fewer peers in the system, there is less traffic due to routing
table maintenance, and fewer hops are needed to reach a target peer, resulting in
decreased traffic per peer.

Massive Join

Similar to the massive leave scenario, Figure 4.5 shows the values for the success
ratio, recall, response time, and traffic right after the massive join of peers took
place. Figure 4.5a and 4.5b show the success ratio and recall for fractions of new



4 Structured Search Overlays 15

10 0 10 20 30 40 50 60 70 80
Percentage of Crashed Peers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 S

u
cc

e
ss

 R
a
ti

o

Chord

Kademlia

Pastry

(a) Success ratio of the SUTs after the mas-
sive leave of peers.

10 0 10 20 30 40 50 60 70 80
Percentage of Crashed Peers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
ca

ll

Chord

Kademlia

Pastry

(b) Recall of the SUTs after the massive
leave of peers.

10 0 10 20 30 40 50 60 70 80
Percentage of Crashed Peers

0

1

2

3

4

5

6

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 [

s]

Chord

Kademlia

Pastry

(c) Query response time of the SUTs after the
massive leave of peers.

10 0 10 20 30 40 50 60 70 80
Percentage of Crashed Peers

0

5

10

15

20

25

30

T
ra

ff
ic

 [
kb

it
/s

]

Chord

Kademlia

Pastry

(d) Traffic of the SUTs before the massive
leave of peers.

Fig. 4.4: Results for the massive crash scenario captured directly after the massive
crash of the peers

peers suddenly joining the system ranging from 0 to 100%. For all fractions the
three overlays deliver a high success ratio and recall of one.

From the response time point of view, all three overlays show a stable behavior.
Only the response time of Kademlia is slightly increasing, as shown in Figure 4.5c.
The same observation can be made for the traffic measured per peer, as shown in
Figure 4.5d. Only the traffic of Kademlia is increasing because with an increasing
number of peers, each peer in the system maintains more peers in his routing table,
which in turn results in more peers being queried during lookups.

Message Loss

In an environment with increasing message loss all three systems are capable of
handling a message loss of up to five percent. With a message loss above five per-



16 Christian Groß, Björn Richerzhagen, Max Lehn

0 20 40 60 80 100
Percentage of Newly Joined Peers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 S

u
cc

e
ss

 R
a
ti

o

Chord

Kademlia

Pastry

(a) Success ratio.

0 20 40 60 80 100
Percentage of Newly Joined Peers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
ca

ll

Chord

Kademlia

Pastry

(b) Recall.

0 20 40 60 80 100
Percentage of Newly Joined Peers

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 [

s]

Chord

Kademlia

Pastry

(c) Query response time.

0 20 40 60 80 100
Percentage of Newly Joined Peers

0

5

10

15

20

25

30

T
ra

ff
ic

 [
kb

it
/s

]

Chord

Kademlia

Pastry

(d) Traffic per peer.

Fig. 4.5: Results for the massive join scenario

cent, the performance of Chord with respect to the success ratio and recall starts
to deteriorate, as shown in Figure 4.6a and 4.6b. The overlay is not capable any
longer to compensate the messages loss by simply resending messages. The loss of
messages can also be recognized in the increase in the response time of all three
overlays due to message timeouts taking place, as shown in Figure 4.6c. Of all three
overlays, Chord shows the highest increase in the response time, which indicates
that the ring-based routing concept is more susceptible to message loss. Cost-wise,
the increase in the message loss results in an increase in the traffic per peer for the
Chord overlay, as shown in Figure 4.6d, as Chord actively retransmits messages. In
contrast to that, Kademlia does not use a retransmission scheme as it already uses
the concept of parallel lookups. As long as at least one of the α parallel request
messages reaches the target, the request can still be fulfilled.



4 Structured Search Overlays 17

1 2 5 10
Percentage of Msg Dropped

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 S

u
cc

e
ss

 R
a
ti

o

Kademlia Chord Pastry

(a) Success ratio of the SUTs after the mas-
sive leave of peers.

1 2 5 10
Percentage of Msg Dropped

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
ca

ll

Kademlia Chord Pastry

(b) Recall of the SUTs after the massive
leave of peers.

1 2 5 10
Percentage of Msg Dropped

0

2

4

6

8

10

12

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 [

s]

Kademlia Chord Pastry

(c) Query response time of the SUTs after the
massive leave of peers.

1 2 5 10
Percentage of Msg Dropped

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
ra

ff
ic

 [
kb

it
/s

]

Kademlia Chord Pastry

(d) Traffic of the SUTs before the massive
leave of peers.

Fig. 4.6: Results for the message loss scenario

4.6.3 Scalability

Figure 4.7 shows the results of the scalability benchmark with an increasing number
of peers. All systems provide an stable success ratio and recall of one, as shown in
Figures 4.7a and 4.7b. Furthermore, all three systems show a logarithmic increase
in the response time and traffic as shown in Figures 4.7c and Figure 4.7d.



18 Christian Groß, Björn Richerzhagen, Max Lehn

0 1000 2000 3000 4000 5000 6000 7000
Number of Peers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 S

u
cc

e
ss

 R
a
ti

o

Chord

Kademlia

Pastry

(a) Success ratio of the SUTs.

0 1000 2000 3000 4000 5000 6000 7000
Number of Peers

0.0

0.2

0.4

0.6

0.8

1.0

A
v
e
ra

g
e
 R

e
ca

ll

Chord

Kademlia

Pastry

(b) Recall of the SUTs.

0 1000 2000 3000 4000 5000 6000 7000
Number of Peers

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e
 [

s]

Chord

Kademlia

Pastry

(c) Query response time of the SUTs.

0 1000 2000 3000 4000 5000 6000 7000
Number of Peers

0

5

10

15

20

25

30

T
ra

ff
ic

 [
kb

it
/s

]

Chord

Kademlia

Pastry

(d) Traffic of the SUTs.

Fig. 4.7: Results for the increasing number of peers scenario

4.7 Summary and Conclusion

In applying the benchmarking methodology presented in Chapter 3, we were able to
derive a performance and cost profile of the three structured search overlays Chord,
Kademlia, and Pastry. The benchmark results reveal that in terms of churn, the
Kademlia overlay is much more stable due to the use of an iterative routing scheme.
The recursive routing scheme used by Pastry and Chord, on the other hand, suf-
fers from severe performance problems. Looking at the robustness, the sudden join
and leave of peers can be handled well by the three overlays. Only Chord shows a
significant decrease in the response time. Success ratio, response time, and traffic
of all overlays remain within reasonable boundaries. With respect to the robustness
against message loss, Kademlia and Pastry show a stable behavior for up to ten per-
cent of messages being dropped. The scalability benchmark confirmed that all three
overlays scale logarithmically with the number of peers.



REFERENCES 19

References

[1] K. Aberer et al. “The Essence of P2P: A Reference Architecture for Overlay
Networks”. In: International Conference on Peer-to-Peer Computing. IEEE,
2005.

[2] A. Binzenhofer. “On the Stability of Chord-based P2P Systems”. In: Global
Telecommunications Conference. 2005.

[3] Z. Cheng et al. “Exploring Millions of Footprints in Location Sharing Ser-
vices”. In: International AAAI Conference on Weblogs and Social Media.
2011.

[4] S. Kaune. “Performance and Availability in Peer-to-Peer Content Distribu-
tion Systems: A Case for a Multilateral Incentive Approach.” PhD thesis.
Technische Universtät Darmstadt, 2011.

[5] S. Kaune, M. Wählisch, and K. Pussep. “Modeling and Tools for Network
Simulation: Modeling the Internet Delay Space and its Application in Large
Scale P2P Simulations”. In: ed. by James Groß Klaus Wehrle Mesut Günes.
Springer, 2010.

[6] A. Kovacevic. “Peer-to-Peer Location-based Search: Engineering a novel
Peer-to-Peer Overlay Network”. PhD thesis. Technische Universität Darm-
stadt, 2009.

[7] J. Li et al. “A Performance vs. Cost Framework for Evaluating DHT Design
Tradeoffs Under Churn”. In: Annual Joint Conf. of the IEEE Computer and
Communications Societies. 2005.

[8] P. Maymounkov and D. Mazières. “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric”. In: Peer-to-Peer Systems. Lecture Notes
in Computer Science. Springer, 2002.

[9] K. Pussep, C. Leng, and S. Kaune. “Modeling User Behavior in P2P Sys-
tems”. In: Modeling and Tools for Network Simulation. Springer, 2010.

[10] A. Rowstron and P. Druschel. “Pastry: Scalable, Decentralized Object Lo-
cation, and Routing for Large-Scale Peer-to-Peer Systems”. In: Middleware
2001. Lecture Notes in Computer Science. Springer, 2001.

[11] X. Shen et al. Handbook of Peer-to-Peer Networking. Springer, 2009.
[12] M. Steiner, T. Najjary, and E. Biersack. “Analyzing Peer Behavior in KAD”.

In: Institut Eurecom, France, Tech. (2007).
[13] D. Stingl et al. “PeerfactSim.KOM: A Simulation Framework for Peer-to-

Peer Systems”. In: International Conference on High Performance Comput-
ing & Simulation. 2011.

[14] I. Stoica et al. “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications”. In: Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications. ACM, 2001.




