
Geodemlia: A Robust Peer-to-Peer Overlay
Supporting Location-Based Search

Christian Gross1, Dominik Stingl1, Björn Richerzhagen, Andreas Hemel, Ralf Steinmetz, David Hausheer2

Multimedia Communications Lab1, Peer-to-Peer Systems Engineering2,
Technische Universität Darmstadt

Email: {chrgross, stingl, richerzhagen, hemel, steinmetz, hausheer}@kom.tu-darmstadt.de

Abstract—Existing peer-to-peer overlay approaches for
location-based search have proven to be a valid alternative to
client-server-based schemes. One of the key issues of the peer-
to-peer approach is the high churn rate caused by joining and
leaving peers. To address this problem, this paper proposes a new
location-aware peer-to-peer overlay termed Geodemlia to achieve
a robust and efficient location-based search. To evaluate Geodem-
lia, a real world workload model for peer-to-peer location-based
services is derived from traces of Twitter. Using the workload
model, a system parameter analysis of Geodemlia is conducted
with the goal of finding a suitable parameter configuration. In
addition, the scalability and robustness of Geodemlia is compared
to a state-of-the-art tree-based approach by investigating the
performance and costs of both overlays under an increasing
number of peers, an increasing radius of area searches, an
increasing level of churn as well as for different peer placement
and search request schemes. The evaluation results reveal that
in contrast to the tree-based approach, Geodemlia provides on
average a 46% better success ratio as well as a 18% better
recall at a moderate higher traffic overhead of 13 bytes/s and an
increased average response time of 0.2 s.

Index Terms—Location-based search, area search, peer-to-
peer, overlay, geographical search

I. INTRODUCTION

Mobile communication is experiencing a remarkable tech-
nological progress. The wide deployment of smartphones,
equipped with localization capabilities, video cameras, and
wireless broadband Internet connectivity is the key enabling
factor of a new class of location-based services. Those services
enable users to publish location-based data, ranging from small
pieces of information including the users current location as
well as recommendations on nearby restaurants, places, or
shops [8] to large data objects such as images and videos [14],
[29]. By defining a particular region of interest, such location-
based information can then be found by others.

This unique combination of geographically distributed in-
formation and the interest in searching for it has resulted in a
variety of peer-to-peer-based (P2P) approaches for location-
based search. Those approaches include on the one hand
hierarchical tree-based concepts [3], [12], [18], [35]. These
concepts, however, suffer from load-balancing and scalability
problems as the upper levels of the tree denote a potenial
bottleneck in the system. Furthermore, the root peer of the
tree might fail due to churn in system such that stability

1,2 Authors supported by the German Research Foundation, Research
Group 733, “QuaP2P: Quality Improvement of Peer-to-Peer Systems” and
IT R&D program of MKE/KEIT of South Korea (10035587, Development of
Social TV Service Enabler based on Next Generation IPTV Infrastructure).

issues arise. On the other hand, there exist approaches using
space filling curves on top of a DHT [17]. Those approaches,
however, do not preserve the directionality and locality of the
multi-dimensional space, which both are important properties
enabling efficient search for location-based information [15].
Thereby, locality implies that neighbored location-based infor-
mation is stored on neighbored peers, whereas directionality
means that the mapping of location-based information onto
peers in the system preserves the orientation of the multi-
dimensional space. Hence, those approaches using space filling
curves require a high message overhead while searching for
location-based information. In addition, the robustness and
stability of the overlay including the persistent storage of data
as well as reliable location-based search are a key challenge
in any P2P-based approach due to the frequent joining and
leaving of peers. In this context robustness means that the
performance of the overlay should not drop below a certain
threshold with respect to recall and success ratio even under
a high churn rate.

To overcome these problems, the following contributions
are presented in this paper.

• First, a novel robust peer-to-peer (P2P) overlay called
Geodemlia enabling users to search for location-based
information around a given geographic location is pro-
posed. For the overlay to be robust, the design of the
overlay is inspired by the well known Kademlia over-
lay [21]. Location-based data in Geodemlia is stored
persistently even at high churn rates as it gets periodically
replicated onto the k peers that are closest to the point
in space that location-based information is associated
with. Furthermore, peer locations and location-based in-
formation are handled by Geodemlia in a way such that
the directionality and locality property are both fulfilled.
Geodemlia is designed to be deployed on static peers
connected via the Internet forming a P2P overlay, which
allows for the persistent storage and efficient area search
for location-based data that is generated and uploaded by
mobile devices. Hence, it serves as a P2P-based backend
for location-based services. Peers are then able to initiate
search requests for location-based information around
a given location, e.g., searching for italian restaurants
within a 2 km radius around a peer’s current location.

• Subsequently, a workload model for location-based ser-
vices is presented, which was derived from traces of

rst
Textfeld
Christian Groß, Dominik Stingl, Björn Richerzhagen, Andreas Hemel, Ralf Steinmetz, David Hausheer:Geodemlia: A Robust Peer-to-Peer Overlay Supporting Location-Based Search. In: IEEE: Proceedings of the 12th IEEE International Conference on Peer-to-Peer Computing, September 2012.

Twitter [13], containing 22 million location-based status
updates from 220,000 users. The workload model pro-
vides a realistic placement of peers and generation of
location-based search requests in simulations.

• Finally, the developed prototype is evaluated in var-
ious scenarios using the derived workload model
and compared to the hierarchical tree-based approach
Globase [18], using the same implementation. The eval-
uation results reveal that Geodemlia is robust at higher
churn rates and that area searches for location-based
information are carried out efficiently. Furthermore, it is
shown that, throughout the different evaluation scenarios,
Geodemlia provides on average a 46% better success ratio
as well as as 18% better recall at a moderate higher traffic
overhead of 13 bytes/s and an increased average response
time of 0.2 s.

The rest of this paper is structured as follows: Section II
presents the system model comprising the assumptions as well
as the functional requirements of the developed prototype.
Section III presents the design of Geodemlia followed by
Section IV dealing with the evaluation. Finally, related work is
discussed in Section V and a conclusion as well as an outlook
on future work are given in Section VI.

II. SYSTEM MODEL

The design of Geodemlia is based on the following assump-
tions: (i) Peers are located on a sphere, which represents the
shape of the earth, with each peer residing at exactly one point
on the sphere. The motivation for using a sphere model is
that most localization techniques return spherical coordinates,
which can be directly handled by Geodemlia. (ii) Each peer p
is able to determine its own location lp = (φ, ψ) with a
reasonable accuracy using well known localization techniques
such as GPS, IP locator services [9], or WiFi router foot-
prints [6]. Thereby, φ ∈ [−180◦, 180◦] denotes the longitude
and ψ ∈ [−90◦, 90◦] the latitude of a peer’s position on the
sphere. (iii) For calculating the distance d(l1, l2) between two
two arbitrary points l1 = (φ1, ψ1) and l2 = (φ2, ψ2) on the
sphere, the Haversine formula [28] shown in Equation 1 is
used.

d(l1, l2) = d(φ1, ψ1, φ2, ψ2) =

2r · arcsin
(√

a(φ1, φ2) + b(φ1, φ2)a(ψ1, ψ2)
) (1)

with
a(φ1, φ2) = sin2

(
φ2 − φ1

2

)
(2)

and
b(φ1, φ2) = cos (φ1) cos (φ2) (3)

(iv) All peers in the overlay are assumed to be connected over
TCP/IP such that two arbitrary chosen peers in the overlay
are able to exchange information with each other’s as long as
they know each others IP addresses and port. (v) Each stored
data object o is associated with a fixed geographical location
lo as well as a set of search tags s describing that information.
(vi) For each location-based search being initiated, a circular

shape of the search area is assumed, although it can have any
other parameterizable shape, e.g., a rectangle. (vii) Finally,
each peer p and data object o is assumed to have a random
identifier i ∈ [0, 2160−1].

The Geodemlia overlay provides the following interface:
• Given a FIND_NODES(ls, k, b) request containing a

point ls = (φs, ψs) on the sphere and an integer value
k, any peer p receiving this request should answer with
the k closest peers with respect to the query location ls
it knows about. In order to avoid already found peers
being returned multiple times by different peers, a bloom
filter b of size 160 bits containing the already found peers
is attached by the querying peer p to the request. Using
the bloom filter, a receiving peer q can determine which
peers the querying peer p already has received and can
add additional peers to its response.

• Given a STORE(o, lo) request containing an object o
with location lo, the overlay should store the object
persistently, meaning that neither high churn rates nor the
sudden failure of peers should lead to a loss of data. To
avoid storing and replicating outdated information, a peer
storing an data object can specify a maximum lifetime for
each object to be stored after which it will be discarded.
In this paper, however, objects are considered to be stored
with an infinite lifetime.

• Given an AREA_SEARCH(ls, r, s, b) request with the
parameters ls = (φs, ψs) denoting the longitude and
latitude of the point of interest, a radius r around that
point, and a search term s, the system should return
all stored objects at point lo = (φo, ψo) that fulfill the
condition d(ls, lo) < r and that match the search term s.
The search term s may represent abstract categories such
as restaurants, shops or keywords that describe the objects
that the user is currently interested in. In addition, the peer
attaches a bloom filter b that is computed from the IDs of
already found peers and data objects. Based on the bloom
filter, peers that receive an AREA_SEARCH(ls, r, s, b)
request can avoid including already received information
into their response.

III. SYSTEM DESIGN

In the following, the design of the Geodemlia prototype
is presented, including the description of the routing table
structure as well as of the methods for join, leave, area
search, and store. In addition, the details of the mechanism
for maintaining the routing table and stored data objects are
given.

A. Routing Table and Overlay Structure
In Geodemlia each peer divides the geographical space into

n predefined directions j ∈ [0, n − 1] based on the bearing
angle θ ∈ [−π, π] in radians clockwise from north as shown
in Figure 1. For determining in which direction j ∈ J a given
peer q ∈ P with position lq = (φq, ψq) is located, the peer
p ∈ P calculates the bearing angle θ using Equation 4.

θ = atan2(c, d) (4)

θ

Direction 0

Direction 1Direction 2

Direction 3

Bucket K2
1

Bucket K3
1

Bucket K2
0

Bucket K3
0

Bucket K2
2

Bucket K2
3

Bucket K3
2

Bucket K3
3

Figure 1. Routing table structure of a Geodemlia peer.

c = sin(φq − φp) · cos(ψq) (5)

d = cos(ψp) · sin(ψq)− sin(ψp) · cos(ψq) · cos(φq−φp) (6)

Based on the bearing angle θ, the direction j is calculated
using Equation 7.

j =

⌊
[(θ + 2π) mod 2π] · n

2π

⌋
(7)

E.g., given a bearing θ = 3
2π and a splitting factor n = 4,

Equation 7 would return j = 3, which is the upper left
quadrant.

The set of directions normally consist of the four cardinal
points, but segmentations into any other number of directions
are also possible. For each direction j, the space is further
divided into distance buckets Kj

i while for each bucket at
peer p in direction j the following condition holds:

∀q ∈ Kj
i ⊆ P : d(lp, lq) ∈ [2i, 2i+1[(8)

Each bucket Kj
i in Geodemlia stores a fixed number of k

peers. For each peer being stored in the routing table, the
following information is kept:

• the location lp = (φp, ψp) of the peer,
• its peer ID i ∈ [0, 2160−1], and
• the IP address and port under which the peer is reachable

via the underlay.
In total each peer maintains |J | · log2(dmax) ·k overlay contacts
with dmax being half of the circumference of the earth.

In organizing the routing table N(p) of a peer p as presented
above, the long-range connectivity property [1] shown in
Equation 9 of the overlay structure is fulfilled.

P [q ∈ N(p)] ∝ 1

d(lp, lq)2
(9)

This means that chances for a peer q being part of a peer
p’s routing table N(p) are inverse proportional to the distance
d(lp, lq) between them. In addition, the routing table structure
ensures that a peer has detailed knowledge about peers close
by and less knowledge about peers being further away. The
same property is fulfilled by a variety of structured over-
lays and ensures that routing converges within a logarithmic
amount of routing steps [1].

B. Find k-Closest Nodes
Finding the set of k closest peers with respect to a given

location ls is the most important and basic operation in
Geodemlia. A peer issuing a FIND_NODES(ls, k, b) request
with a given location ls and a number k of peers that should
be found closest to the location ls, first searches its routing
table for the k closest peers it knows about and puts them
in a list C of contacts to be queried. Afterwards, the peer
computes the bloom filter b from the IDs of peers in the list C.
Subsequently, it picks α peers from the list and sends them a
FIND_NODES(ls, k, b) request. Thereby, α denotes a system-
wide parameter defining the number of parallel lookups. Nodes
receiving that request, query their routing table for the k
peers closest to the location ls they know about and that have
not been included in the bloom filter b yet. Afterwards, the
peer returns a list of peers to the querying peer, which will
merge the newly discovered peers into its list C of peers to
be contacted, thereby ignoring already contacted peers. After
that, the querying peer recomputes the bloom filter b, again
chooses α yet not contacted peers from its list C and sends
out another FIND_NODES(ls, k, b) request. This procedure is
repeated until the querying peer does not discover any further
peers closer to the target location ls.

C. Store
As already mentioned in Section II, each data object is

assumed to be associated with a fixed geographical location
lo. In order to store a certain data object in the Geodemlia
overlay, the k closest peers with respect to lo have to be
found. Therefore, the STORE(o, lo) method internally utilizes
the FIND_NODES(lo, k, b) functionality of the overlay to find
the k closest peers. After finding the set of k closest peers,
the data object o is stored on them.

D. Area Search
One of the major differences between Geodemlia and

Kademlia is that it provides mean for searching for location-
based information given a search location ls, a radius r around
that location, and a search term s. As location-based data
objects o get stored on the peers closest to their location lo, the
area search procedure AREA_SEARCH(ls, r, s, b) has to find
the following two sets of peers: (i) All peers p whose location
lp falls into the given query area, (ii) the set of closest peers
that are located outside the query area but that are closest to it.
The idea behind these two sets of peers is that the search area
can be arbitrarily small such that no peer falls into the search
area. To cope with this problem and to increase the success of
area search request, the k closest peers surrounding the search
area are also included in the search process. In addition, the
search scheme ensures that even in scenarios with a sparse
peer distribution where no peer is located inside the search
area that data objects can be found.

A peer p issuing an AREA_SEARCH(ls, r, s, b) request,
checks its routing table for the set of the k closest peers to
the query location ls and puts them into a list C of peers
to be contacted. Furthermore, peer p initializes a list C of
peers that have not been contacted. Using the IDs of peers

in list C, the bloom filter b is computed and attached to the
search request. For each peer q ∈ C, the peer sends out an
AREA_SEARCH(ls, r, s, b) message. Each peer q receiving
the message, first checks whether its position lq falls into the
search area. If so, it adds all stored data objects to his answer
that match the search term s and that have peer been included
in the bloom filter b already. Furthermore, the peer q adds at
most k additional peers it knows being closest to the search
area that have not been included in the bloom filter. Both, the
matched data objects and the peers found are sent back to
the querying peer p. After receiving the response from q, peer
p first checks its list C whether it already has contacted the
additionally found peers that were included in the response.
If so, the additional found peers will be discarded. Otherwise,
the peer p adds them to its list C of peers to be queried. In
addition, it adds the received data objects o to its results list R,
removes peer q from the list C, and adds it to list of already
contacted peers C. Finally, peer p recomputes the bloom filter
including data objects from the result list R and peers from
the list C. The requesting peer p continues to query peers from
its list C, until it has contacted all found peers q ∈ C.

E. Join and Leave
Whenever a peer p in Geodemlia wants to join into the

network, it first determines its position lp on the sphere.
This can be done by using common localization techniques
such as IP address locator services, GPS, or WiFi footprints.
Subsequently, the joining peer contacts a bootstrap peer it
knows about. In order to find a suitable bootstrap peer,
common bootstrapping approaches can be used. An overview
on existing bootstrap protocols has been presented by Dickey
et al. [7] and, therefore, this issue will do not be further
discussed in detail in this paper.

For joining into the overlay, the joining peer adds
the bootstrap peer to its routing table and issues a
FIND_NODES(lp, k, b) request using its own position lp as
query position. During this process, the peer successively
discovers new peers for which the peer performs the following
steps for adding each received peer q to its routing table:
First, peer p determines the bucket Kj

i that q belongs to by
calculating the distance between itself and the peer q as well
as the bearing angle θ using Equation 4. The bearing angle θ
is needed in order to determine the direction j. Subsequently,
peer p checks whether bucket Kj

i has less then k peers in its
table. If so, peer q is added to the bucket. Otherwise, peer p
checks the liveness of the least recently contacted peer in the
bucket. If the peer fails to respond, the peer is removed and
the new peer is added to the bucket.

For leaving the system, a peer does not have to notify its
neighbors. Surrounding peers storing a reference to the leaving
peer will notice the absence of the peer, the next time they
update their routing table. In Geodemlia, peers leaving the
system will not delete their stored objects. The next time a
peer rejoins the overlay, the information will be available again
in the system.

F. Maintenance
Due to the system dynamics of joining and leaving peers,

the maintenance of the routing table and the replication of
stored data objects is necessary.

1) Routing Table Maintenance: A peer p’s routing table
gets updated in the following two cases: (i) Whenever a peer
discovers a new peer contact q during lookups or requests and
(ii) by regularly querying for a random location ls lying within
a given bucket Kj

i . For each newly discovered peer q a peer
p performs the following steps: (i) It calculates the bearing
angle θ and distance d(p, q) to that peer in order to determine
the bucket Kj

i . (ii) If the bucket Kj
i has less than k entries,

the peer is added to the bucket. If it is already full, peer p
pings the least recently seen peer s. If the the peer fails to
respond, s is removed from the routing table and the newly
discovered peer q is added to the tail of the bucket, similar to
the update procedure in Kademlia. In case that s responds, s
is moved to the tail of the bucket and the newly discovered
peer q is put into a cache list of unused overlay contacts.
By sorting peers in the bucket according to the time of the
last interaction, communication is biased towards long living
and more stable peers in the system. In addition, the system
becomes more robust against routing table flooding attacks.

2) Replication of Data: In order to ensure the long-term
availability of data in the system, stored location-based infor-
mation is replicated. Therefore, each peer periodically starts
the replication procedure every ∆tr minutes. For each stored
data object o it determines the set of k closest peers form its
routing table with respect to its location lo. A peer p starting
the replication procedure, contacts the set of k closest peers,
whether they have already stored the object o to be replicated.
All peers q from the list of k closest peers that do not have the
data object respond accordingly and get a copy of it. In order
to avoid all k peers storing a particular data object to start the
replication procedure simultaneously, a peer only replicates a
certain data object o that has not been replicated by any other
of the k other peers storing the data object o within the last
∆tr minutes. A peer p belonging to the set of k closest peers
storing a given data object o, will notice the replication of that
data object as it will be contacted by the peer first starting the
replication procedure and, thus, it will not replicate the data
object again. Hence, the system parameter k determines the
bucket size as well as the number of replicas of a data object
o. With respect to the consistency of data, in Geodemlia each
data object is generated only ones without the support for
consistent updates. In case that a peer wants to modify a data
object o, it creates a copy of it and stores it under a new
randomly chosen ID io.

IV. EVALUATION

In order to evaluate the performance of Geodemlia, the
overlay was implemented in the discrete event-based over-
lay network simulator PeerfactSim.KOM [10], [32]. On top
of the overlay, a location-based application was developed,
that produces a workload for the overlay by generating area
search requests. The goal of the evaluation is to determine

Table I
ENVIRONMENTAL AND SYSTEM PARAMETER SETUP. DEFAULT VALUES

USED IN SIMULATIONS ARE UNDERLINED.

Parameter Value
Environmental Parameters

Peer Distribution Germany
Size of Area 700 km x 900 km
Number of Peers 5,000
Number of Data Items 50,000
Payload per Data Item 10 KB
Underlay Delay Model Distance-based Delay Model [16]
Session Duration Weibull(λs, ks), λs = 169.5385 min,

ks = 0.61511
Intersession Times Weibull(λi, ki), λi = 413.6765 min,

ki = 0.47648
Simulation Duration 12 h
Radius of Query Area 2 km

System Parameters
Parallel Lookups α 3, 6, 9, 12
Bucket Size k 2, 3, 5, 10, 20
Number of Directions d 4, 6, 8
Republish Interval ∆tr 60 min
Length of the bloom filter b 160 bits

the performance and cost of Geodemlia during runtime. In
addition, the evaluation should demonstrate that the developed
overlay is robust in terms of high churn rates and that data is
kept persistently in the overlay.

Therefore, the evaluation consists of two parts: First, a de-
tailed performance and cost analysis is conducted, while vary-
ing different system parameters under a constant workload.
Subsequently, we investigate the performance of Geodemlia
under varying environmental conditions and compare the
resulting performance and costs with the hierarchical tree-
based approach Globase [18]. In order to obtain statistically
significant results, all simulations are repeated five times using
different seeds. Out of the series of different runs the average
as well as confidence intervals are computed.

A. System Parameter Analysis
For investigating the impact of different system parameters

on the performance and costs of Geodemlia, the environmental
parameters are set to the values shown in Table I. For
generating a certain dynamic in the system, the churn model
in [24] is used, which is partially based on measurements
conduced by Steiner et al. [31]. For determining the delay
between peers, the distance-based method proposed in [16] is
used. Table I also shows the different values for the varied
system parameters. The underlined values denote the default
value used in cases where the corresponding system parameter
is not varied.

In the evaluation scenario, 5,000 peers are distributed over
Germany using the distribution of peers shown in Figure 2(a),
which was extracted from measurements done by Cheng et
al. [5], who measured the logins of 220,000 Twitter users over
half a year resulting in 22 million checkins.

For setting up the system, the following procedure is used:
First, the 5,000 peers join the system in the first hour. After-
wards, each peer publishes ten data objects according to the
distribution of peers with each object having a size of 10 KB.
After publishing all data objects in the system, the peer churn

is enabled using the KAD churn model derived by Steiner
et al. [31]. Finally, the measurement and query period of
eight hours is started. For generating workload on the overlay,
peers execute area searches on the system. Query requests
generated by each peer are modeled as a Poisson process.
For determining the mean arrival rate of requests made per
hour by a particular peer, the CDF shown in Figure 2(b) is
used. The value is determined once per peer at the beginning
of the simulation and remains constant during the rest of the
simulation. For creating an area search request, a peer p first
has to chose a query location ls, for which the following
procedure is used: First, the peer draws a distance value
ds(lp, ls) relative to its location lp from the CDF shown in
Figure 2(c), which was extracted from measurements done
by Cheng et al [5]. Afterwards, it chooses a bearing angle
θ ∼ U(−π, π) denoting the direction in which the search
location ls is located. Based on these two parameters the
search location ls = (φs, ψs) is calculated.

1) Number of Parallel Lookups: First, the impact of a
variation of the number of parallel lookups is investigated.
Therefore, the value for the number of parallel lookups is set
to 3, 6, 9, and 12. Figure 3(a) shows the resulting average recall
for the area search operation together with the 95th confidence
intervals. Thereby, the recall is defined as the ratio of correctly
found data objects in the area divided by the total number of
data objects that should have been found in the area. As shown
in the figure, an increase in the number of parallel lookups
shows no impact on the recall.

Subsequently, in order to quantify the responsiveness of the
overlay the response time of executed area search requests is
measured using the following method: As Geodemlia uses an
iterative search approach, arriving responses to an area search
request are distributed over time. Therefore, the time until
the first data object arrives at the querying peer is measured
as well as the time until the last data object arrives. The
response times for the first and last data object to arrive at
a peer are shown in Figure 3(b) and Figure 3(c). Increasing
the number of parallel lookups reduces both the time for the
first and last data object being returned from the system as
the list of peers to be contacted during the search process
can be processed faster. Dealing with the costs shown in
Figure 3(d), increasing the number of parallel lookups only
leads to small increase in the overlay traffic per peer. But, with
an average traffic of about 0.13 kB/s the traffic of the overlay is
almost negligible. In summary, the query performance can be
increased by increasing the number of parallel lookups causing
only a marginal increase in the costs.

2) Size of Buckets: Next, the impact of the bucket size
is evaluated by varying the bucket size between 2 and 20.
Geodemlia shows a good performance with respect to the
recall because even with a bucket size of 2, Geodemlia
provides a recall close to one as shown in Figure 4(a). A
further increase in the bucket size k does not lead to a better
recall. A small bucket size also leads to a reduced response
time for the first data object being returned as shown in
Figure 4(b). The reason for this increase in the response time

(a) Distribution of peers.

10-4 10-3 10-2 10-1 100 101 102

checkins per hour

0.0

0.2

0.4

0.6

0.8

1.0

P[
x<

=
X]

(b) CDF of the requests per hour per peer.

10-2 10-1 100 101 102 103 104 105 106 107 108

distance in meters

0.0

0.2

0.4

0.6

0.8

1.0

P[
x<

=
X]

(c) CDF of the distances between search position
and peer position.

Figure 2. Peer distribution, peer activity, and distance of location-based queries extracted from the measurement data reported in [5].

alpha=3 alpha=6 alpha=9 alpha=12
Number of Parallel Lookups

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ar
ea

 S
ea

rc
h

Re
ca

ll

(a) Recall of area search requests.

alpha=3 alpha=6 alpha=9 alpha=12
Number of Parallel Lookups

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Re
sp

on
se

 T
im

e
Fi

rs
t D

at
a

Ob
je

ct
 [s

]

(b) Duration of area search requests
until the first data object is found.

alpha=3 alpha=6 alpha=9 alpha=12
Number of Parallel Lookups

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
sp

on
se

 T
im

e
La

st
 D

at
a

Ob
je

ct
 [s

]
(c) Duration of area search requests
until the last data object is found.

alpha=3 alpha=6 alpha=9 alpha=12
Number of Parallel Lookups

0.00

0.02

0.04

0.06

0.08

0.10

Tr
af

fic
 [k

b/
s]

(d) Overlay Traffic per Host.

Figure 3. Performance and costs of Geodemlia for a varying number of parallel lookups (α = 3, 6, 9, 12).

k=2 k=3 k=5 k=10 k=20
Bucket Size

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 S
ea

rc
h

Re
ca

ll

(a) Recall of area search re-
quests.

k=2 k=3 k=5 k=10 k=20
Bucket Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
sp

on
se

 T
im

e
Fi

rs
t D

at
a

Ob
je

ct
 [s

]

(b) Duration of area search re-
quests until the first data object
is found.

k=2 k=3 k=5 k=10 k=20
Bucket Size

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Re
sp

on
se

 T
im

e
La

st
 D

at
a

Ob
je

ct
 [s

]

(c) Duration of area search re-
quests until the last data object
is found.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Traffic [kb/s]

0.0

0.2

0.4

0.6

0.8

1.0

P[
X<

=
x]

k=2
k=3
k=5
k=10
k=20

(d) Overlay Traffic per Host.

Figure 4. Performance and costs of Geodemlia for a varying bucket sizes (k = 2, 3, 5, 10, 20).

is that in the current version of the overlay peers found during
the area search process are sorted according to their distance to
the search location ls and not according to their stability. With
a smaller bucket factor, peers kept in the buckets are those who
stay longer online due to Geodemlia preference towards stable
peers. With an increasing bucket factor, more unstable peers
are added to the routing table, which results in a more stale
neighbors being contacted during the search process. A similar
behavior can be observed for the last data object being returned
as shown in Figure 4(c). From the costs point of view, a larger
bucket factor k causes more traffic in the overlay as shown in
Figure 4(d). The reason for this traffic increase is that a peer
has to ping more peers in its routing table in order to check
whether they are still online. In addition, stored data objects
are replicated to a larger set of k closest peers which requires
more messages. Furthermore, a higher bucket factor leads to a
slightly more unbalanced distribution of traffic over the peers
in the overlay. To improve the load balancing capabilities of
the system, the virtual servers concept presented in [25] can

be applied by future versions of Geodemlia.
3) Number of Bucket Directions: Finally, the impact of the

number of bucket directions on the performance and costs
is investigated by increasing the number of directions in the
routing table from 4 over 6 to 8. With an increasing number of
dimensions Geodemlia shows a similar behavior with respect
to performance and costs then with an increasing number
of parallel lookups α. Therefore, the detailed results are not
presented in this paper.

B. Performance Comparison
After investigating the effect of different system parame-

ters, a performance and cost comparison between Geodemlia
and Globase is conducted. Both systems provide means for
searching for data or peers within a given area. Unfortunately,
the original Globase implementation does not include a mech-
anism for replicating data, which results in a loss of data
over time in the presence of churn. In order to allow for
a fair comparison between the two systems, only the peer
recall is calculated instead of the data object recall in order

to quantify the performance. For comparing both systems the
following scenarios are used: (i) Two scalability scenarios
where on the one hand the number of peers is increased from
1, 000 over 5, 000 to 10, 000 peers and on the other hand
(ii) the size of the query area is varied between 1km, 2km,
5km, 10km and 20km. (iii) The stability of both systems is
tested under different levels of churn by varying the mean
session time λs and inter-session time λi, which both are
linearly decreased from λ to 1

16λ. (iv) Finally, both systems are
compared using a uniform random peer distribution for peer
locations and search requests. Again, the underlined values
denote the default values. For the comparison of both systems,
the system parameter configurations shown in Table II are
used. The values for the system parameter configuration of
Globase have been taken from [19]. For the configuration of
Geodemlia, the best parameter setup derived in Section IV-A
is used.

Table II
SYSTEM PARAMETER CONFIGURATIONS.

System System Parameter Value

Globase

Load Threshold L1 60
Load Threshold L2 120
Number of Interconnections S1 20
Size of Cache S2 10
Timeout of Operations T1, T2 2 s

Geodemlia
Number of Parallel Lookups α 9
Bucket Size k 3
Number of Directions d 4

1) Number of Peers: In several experiments the number of
peers is increased from 100 to 10,000 peers. The correspond-
ing success ratio and recall of Globase and Geodemlia are
shown in Figure 5(a) and Figure 5(b). For a small numbers
of peers, Globase delivers a success ratio and recall close
to one but with an increasing number of peers, the success
ratio and recall of Globase are dropping. The reason for the
good performance of Globase with 100 peers is that only
one super-peer is responsible for the whole ID space as the
load threshold L2 is not exceeded. With 500 peers the load
threshold L2 is exceeded, which causes Globase to split up
the ID space and to assign super-peers to the resulting regions
of the ID space. This leads to the conclusion that Globase has
problems in reorganizing its tree structure in case that the load
threshold is exceeded. In contrast, the success ratio and recall
of Geodemlia both remain close to 1. The high recall and
success ratio of Geodemlia, however, come at slightly higher
costs with respect to an increased response time and traffic
overhead as shown in Figure 5(c) and 5(d). The reason for
this is that a querying peer in Globase only has to contact
the single peer responsible for the area that matches the given
search area, thus, resulting in significantly less traffic. The
response time as well as the traffic of Geodemlia increase
logarithmically with the number of peers in the system as the
measured traffic matches the logarithmic fitting curve, which
shows that Geodemlia is scalable. With both systems providing
response times below 100 ms and producing traffic in the range
of only a couple of bytes per second, they both demonstrate
that they are responsive and produce very low costs.

2) Radius of the Search Area: The impact of the size of the
search area radius is investigated by increasing it from 1 km
to 20 km. The success ratio and recall for different radii of
the query area are shown in Figure 6(a) and 6(b). Globase
shows a significant reduction in its performance as only 60%
of the queries are finished successfully and, those that return a
response only deliver only 63% of the data objects that should
have been found in the search area with an area search radius
of 20 km. The reason for this performance degradation is that
with a larger query area more nodes need to be contacted in
Globase to solve a query request. This involvement of a higher
number of nodes is more susceptible to churn leading to a
decreased recall. In contrast to the performance of Globase,
the recall of Geodemlia remains close to one.

Figure 6(c) shows the response time for the first data object
being returned, which for Geodemlia is rapidly dropping with
an increasing size of the query area. The reason for this drop
is that with a larger query area chances are higher that the
querying peer itself can partially answer a request on its own
due to the fact that most search requests are focusing on data
nearby. With a query area of 20 km, Geodemlia is even capable
of delivering the first data object faster than Globase. Globase
on the other hand, shows no change in the response time with
an increasing area search radius. From the area search traffic
point of view Geodemlia requires more bandwidth with an
increasing area size due to more peers being queried as shown
in Figure 6(d). With an increasing radius of the search area,
peers in Globase spent less traffic because querying peers only
have to contact a few peers that are responsible for the area
that intersects with the query area. In summary, the increased
performance of Geodemlia comes at the costs of an increasing
traffic for area search requests. On the other hand, as the traffic
is in the order of magnitude of a couple of bytes per second
per peer, this increase is tolerable. In addition, creating area
search requests with an radius of 20 km already exceeds the
typical workload of most location-based applications, as user
tend to query for information directly next to them.

3) Churn Rate: Finally, the stability of both overlays is
tested under an increasing churn rate. Therefore, the mean ses-
sion time λs and inter-session time λi are stepwise decreased
from λ to 1

16λ. For this experiment it was necessary to exclude
the root peer of Globase from the churn as the original imple-
mentation was not able to deal with a change of the root peer,
which resulted in an entire collapse of the overlay. Both the
success ratio and recall of Globase are slightly dropping with
an decreasing session time of the peers as shown in Figure 7(a)
and 7(b). In contrast, Geodemlia shows a stable behavior with
a high success ratio and recall even at a high churn level with
nodes having a mean session time of 1

16λ = 10 min. The
response time of Geodemlia for the first data object being
found increases with a decreasing session time of the peers
as shown in Figure 7(c), as potentially more stale peers are
contacted during the lookup process. Furthermore, the overlay
traffic slightly increases with a decreasing session time as
peers join the system more often, causing additional traffic.

The search performance of Globase highly depends on

100 500
1000

2500
5000

10000

Number of Peers

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
Ra

tio

Geodemlia
Globase

(a) Success ratio of area search re-
quests.

100 500
1000

2500
5000

10000

Number of Peers

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 S
ea

rc
h

Re
ca

ll

Geodemlia
Globase

(b) Recall of area search requests.

100 500
1000

2500
5000

10000

Number of Peers

0.00

0.02

0.04

0.06

0.08

0.10

Re
sp

on
se

 T
im

e
Fi

rs
t D

at
a

Ob
je

ct
 [s

]

Geodemlia
Globase

(c) Duration of area search requests
until the last data object is found.

0 2000 4000 6000 8000 10000
Number of Peers

0

5

10

15

20

25

Tr
af

fic
 [b

/s
] Geodemlia

0.02*log(x)+2.39
Globase
0.47*log(x)+0.12

(d) Overlay traffic per peer.

Figure 5. Comparison of Geodemlia and Globase for a varying number of peers.

1 2 5 10 20
Radius of Search Area [km]

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
tio

Geodemlia
Globase

(a) Success ratio of area search re-
quests.

1 2 5 10 20
Radius of Search Area [km]

0.0

0.2

0.4

0.6

0.8

1.0
Ar

ea
 S

ea
rc

h
Re

ca
ll

Geodemlia
Globase

(b) Recall of area search requests.

1 2 5 10 20
Radius of Search Area [km]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Re
sp

on
se

 T
im

e
Fi

rs
t D

at
a

Ob
je

ct
 [s

]

Geodemlia
Globase

(c) Duration of area search requests
until the first data object is found.

1 2 5 10 20
Radius of Search Area [km]

0

1

2

3

4

5

6

7

8

Se
ar

ch
 T

ra
ffi

c
[b

/s
]

Geodemlia
Globase

(d) Area search traffic per peer.

Figure 6. Comparison of Geodemlia and Globase for varying sizes of the search area.

lambda

lambda/2

lambda/4

lambda/8

lambda/16

Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
tio

Geodemlia
Globase

(a) Success ratio of area search re-
quests.

lambda

lambda/2

lambda/4

lambda/8

lambda/16

Average Session Time [min]

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 S
ea

rc
h

Re
ca

ll

Geodemlia
Globase

(b) Recall of area search requests.

lambda

lambda/2

lambda/4

lambda/8

lambda/16

Average Session Time [min]

0.00

0.05

0.10

0.15

0.20

0.25

Re
sp

on
se

 T
im

e
Fi

rs
t D

at
a

Ob
je

ct
 [s

]

Geodemlia
Globase

(c) Duration of area search requests
until the first data object is found.

lambda

lambda/2

lambda/4

lambda/8

lambda/16

Average Session Time [min]

0

5

10

15

20

25

30

Tr
af

fic
 [b

/s
]

Geodemlia
Globase

(d) Overlay traffic per peer.

Figure 7. Performance and costs of Geodemlia and Globase for varying levels of churn.

whether normal or super-peers are effected by the churn. If
only normal peers join and leave the overlay, the performance
remains stable as only the corresponding super-peer needs to
update its routing table. In case that super-peers leave the
system, a restructuring of the tree becomes necessary, which
causes a much higher traffic overhead. This also explains the
fluctuation in the traffic of Globase with a mean session time
of 1

2λ as shown in Figure 7(d).
4) Peer and Request Distribution: Finally, the impact of the

peer distribution on the performance and costs is investigated
for both systems with 5,000 peers. Therefore, the scheme
for placing peers and requests is varied such that requests
and peers are uniformly distributed. Peers generate requests
with a radius of 5 km. The resulting performance and costs
are compared to the scenario with peers and requests being
generated according to the Twitter trace files. With respect
to recall and success ratio, Geodemlia outperforms Globase
with recall and success ratio values close to 1 as shown in
Figure 8(a) and 8(b).

From the response time point of view, both system provide
and equal performance as shown in Figure 8(c). For the Twitter
scenario, however, Geodemlia delivers search results slightly

faster than Globase. On the other hand, Geodemlia produces
more traffic due to its iterative routing and search scheme as
shown in Figure 8(d).

Averaging the performance and costs of Geodemlia and
Globase observed in all three scenarios leads to the conclusion
that Geodemlia provides on average a 46% better success ratio
and 18% better recall than Globase at the cost of a minor
increase in the response time of 0.2 s for the first result being
returned and a 13 bytes/s higher overlay traffic per peer.

V. RELATED WORK

In the recent years a lot of research work has been done
in the area of location-based services, resulting a plethora
of different approaches for location-based search. These ap-
proaches can be grouped into two categories: (i) approaches
that utilize an underlying Distributed Hash Table (DHT) using
the key-value lookup functionality to support location-based
search [11], [15], [20], [22], [33], [36], [37]. In order to do
so, linearization techniques are required in order to map the
multi-dimensional space onto the one dimensional ID space
of the DHT. (ii) Approaches that were designed from scratch
for solving the problem of location-based search [2], [3], [12],

Random
Twitte

r

Workload Scheme

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
tio

Geodemlia
Globase

(a) Success ratio of area search re-
quests.

Random
Twitte

r

Workload Scheme

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 S
ea

rc
h

Re
ca

ll

Geodemlia
Globase

(b) Recall of area search requests.

Random
Twitte

r

Workload Scheme

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Re
sp

on
se

 T
im

e
Fi

rs
t D

at
a

Ob
je

ct
 [s

]

Geodemlia
Globase

(c) Duration of area search requests
until the first data object is found.

Random
Twitte

r

Workload Scheme

0

5

10

15

20

25

30

Tr
af

fic
 [b

/s
]

Geodemlia
Globase

(d) Overlay traffic per peer.

Figure 8. Performance and costs of Geodemlia and Globase for varying peer placement and request distributions.

[18], [23], [30], [34] from which most of them utilize a tree-
structure. According to Asaduzzaman et al. the unique combi-
nation of location-based search and the geographic distribution
of information providing peers suggests the development of
such a dedicated overlay supporting the locality of peers [3].

With respect to the first category, a variety of approaches
have been developed that utilize space filling curves [4], [17]
in order to solve the two elementary problems: (i) mapping a
multi-dimensional space onto a one dimensional ID space of
a DHT, while (ii) preserving the locality of peers. According
to Knoll et al. [17] finding an optimal mapping that solves
both problems is impossible. Therefore, the authors conducted
a performance study on various approaches for space filling
curves and found out that S-shaped curves as well as Lebesque
curves perform poorly whereas more complex approaches such
as the Hilbert curve show a better locality property. But still,
most of the approaches suffer from a poor locality preserving
property such as the Z-filling curves used in PlaceLab [4].

In addition to the space filling curves, a variety of ap-
proaches have been developed that utilize a tree structure and
map this structure onto a DHT. Harwood [11], Tang [33],
Nam [22], and Tanin [34] recursively split up the two dimen-
sional space using a space partitioning tree. To each region
a control point is assigned which is hashed onto the DHT
identifier space. The peer responsible for that ID is responsible
for that particular area of the geographical space. While tree
structures allow for a fast an efficient access to data, they are
susceptible to system dynamics such as the frequent join an
leaving of peers. Other approaches [15] present a grid based
splitting scheme for organizing the peer responsibilities of the
multi-dimensional space and map it onto the one dimensional
space of a DHT. While this scheme allows for the reuse of the
well known DHTs, it suffers from performance drawbacks [3].
Lopes et al. [20] proposes a space partitioning scheme using
the B+-algorithm for addressing the load balancing problems
of tree-based approaches such as PHT [4] and DST [37].
Although addressing the load balancing problem, the authors
did not evaluate their system under churn leaving the stability
and robustness characteristics of their system unclear.

The second category, containing the stand-alone approaches
for location-based search, can be further divided into the hier-
archical and flat approaches. One of the most cited approaches
for location-based search has been developed by Kovacevic et
al. [18]. Globase is a hierarchically structured overlay using

a super-peer concept. While the tree-structure allows for a
fast access within O(log(n)) routing steps, the tree structure
causes a higher maintenance overhead and is less robust in
terms of high churn rates. Especially, in terms of super-peers
failing, network partitions become likely. In addition, weak
peers might get selected as a super-peers which easily get
overloaded, resulting in the overlay to become unstable.

An approach very similar to Globase is RectNet developed
by Heutelbeck et al. [12]. RectNet uses a binary distributed
space partitioning tree which simplifies the recovery in case of
peer failures but reduces the search performance. Furthermore,
RectNet does not include any load-balancing capabilities,
resulting in overloaded peers in the higher levels of the tree.

Asaduzzaman et al. [3] propose an overlay called GeoP2P,
which uses a hierarchical splitting of the 2D-space. Based on
the splitting a binary tree is constructed. The splitting either
is done taking cluster information of peers into consideration
or by splitting the 2D space in equally sized regions. The
approach has the disadvantage that the splitting has to be
recomputed whenever larger amounts of peers join or leave the
system, which causes additional overhead. Furthermore, the
split and merge operation require some consensus algorithm
to determine the responsible peer, which leaves doubts of the
robustness of the system. Finally, the authors do not present
any evaluation results of their proposed system and just show
a brief theoretical analysis of the system performance.

Another location-aware overlay called GeoPeer has been
proposed by Araujo et al. [2], which uses a Delaunay trian-
gulation to build a connected lattice of peers. The use of a
Delaunay triangulation causes additional overhead as it has to
be recomputed every time a peer joins or leaves the system.
Furthermore, the system does not support persistent storage of
data due to the lack of a replication scheme. Geodemlia on the
other hand, comes with a built-in replication scheme, which
ensures the long-term availability of data. In addition, the
system causes less overhead in terms of high system dynamics
as routing tables are recomputed periodically and not every
time peers join or leave the system.

Picone et al. [23] proposed an overlay approach for location-
based search similar to the Geodemlia overlay as its design
is also inspired by the prominent Kademlia overlay. Unlike
Geodemlia, the overlay focuses on pure mobile scenarios,
which results in a different construction of the routing table. In
addition, the overlay focuses only on finding the closest peer

for a given location. Geodemlia extends this functionality by
also addressing area search functionality for finding peers and
data objects in a given region.

Song et al. present a system called FAN [30] support-
ing multi-dimensional attribute search. Therefore, peers are
mapped onto a d-dimensional Cartesian space. Subspaces
in FAN are managed by super-peers, which require higher
computational resources than regular peers. Searching in FAN
corresponds to finding the particular subspace that matches the
query criteria. The super-peer concept organizes the regions
in a hierarchical way, such that super peers might become a
bottleneck.

Finally, several attempts have been made in the area of
multi-dimensional DHTs such as CAN [26] and hypercube-
based systems like HyperCuP [27], which either suffer from
stability issues in terms of a small number of dimensions being
used or do not scale well. In contrast, Geodemlia has proven
to be scalable and robust in terms of churn.

VI. CONCLUSION

In this paper a novel overlay supporting location-based
search termed Geodemlia was presented, whose design is
inspired by the well known Kademlia overlay. The evaluation
results revealed that Geodemlia provides better robustness and
stability capabilities in comparison to a tree-based approach.
The latter causes less traffic, but maintaining the tree-structure
in the presence of churn is a difficult task.

For future work it is planned to further optimize Geodemlia
such that the overlay traffic can be further reduced. Addi-
tionally, it is planned to extend the performance and cost
comparison and include other approaches such as space filling
curves. Finally, it is planned to implement Geodemlia as a
real prototype and to evaluate it in a testbed such as G-Lab
or PlanetLab.

VII. ACKNOWLEDGMENTS

The authors would like to thank Zhiyuan Cheng from Texas
A&M University for providing them with the location sharing
services dataset.

REFERENCES

[1] K. Aberer, L. Alima, A. Ghodsi, S. Girdzijauskas, S. Haridi, and
M. Hauswirth, “The Essence of P2P: A Reference Architecture for
Overlay Networks,” in P2P. IEEE, 2005.

[2] F. Araujio and L. Rodrigues, “Geopeer: A Location-Aware Peer-to-Peer
System,” in Network Computing and Applications,. IEEE, 2004.

[3] S. Asaduzzaman and G. Bochmann, “GeoP2P: an Adaptive and Fault-
tolerant Peer-to-Peer Overlay for Location-Based Search,” in ICDCS,
2009.

[4] Y. Chawathe, S. Ramabhadran, S. Ratnasamy, A. LaMarca, S. Shenker,
and J. Hellerstein, “A Case Study in Building Layered DHT Appli-
cations,” ACM SIGCOMM Computer Communication Review, vol. 35,
no. 4, pp. 97–108, 2005.

[5] Z. Cheng, J. Caverlee, K. Lee, and D. Sui, “Exploring Millions of
Footprints in Location Sharing Services,” in ICWSM. AAAI, 2011.

[6] I. Constandache, R. Choudhury, and I. Rhee, “Towards Mobile Phone
Localization without War-Driving,” in INFOCOM. IEEE, 2010.

[7] C. Dickey and C. Grothoff, “Bootstrapping of Peer-to-Peer Networks,”
in SAINT. IEEE, 2008.

[8] T. D’Roza and G. Bilchev, “An Overview of Location-Based Services,”
BT Technology Journal, vol. 21, no. 1, pp. 20–27, 2003.

[9] geobytes.com, “IP Locator Service,” 2012, http://www.geobytes.com.

[10] C. Groß, M. Lehn, D. Stingl, A. Kovacevic, A. Buchmann, and R. Stein-
metz, “Towards a Common Interface for Overlay Network Simulators,”
in ICPADS. IEEE, 2010.

[11] A. Harwood and E. Tanin, “Hashing Spatial Content over Peer-to-Peer
Networks,” in Australian Telecommunications, Networks and Applica-
tions Conference. Citeseer, 2003.

[12] D. Heutelbeck and M. Hemmje, “A Peer-to-Peer Data Structure for
Dynamic Location Data,” PERCOM, 2006.

[13] B. A. Huberman, D. M. Romero, and F. Wu, “Social Networks that
Matter: Twitter under the Microscope,” CoRR, vol. abs/0812.1045, 2008.

[14] I. A. Junglas and R. T. Watson, “Location-Based Services,” Communi-
cations of the ACM, vol. 51, no. 3, pp. 65–69, 2008.

[15] V. Kantere, S. Skiadopoulos, and T. Sellis, “Storing and Indexing Spatial
Data in P2P Systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 21, no. 2, pp. 287–300, 2009.

[16] S. Kaune, M. Wählisch, and K. Pussep, Modeling and Tools for Network
Simulation: Modeling the Internet Delay Space and its Application in
Large Scale P2P Simulations. Springer, 2010, pp. 427–446.

[17] M. Knoll and T. Weis, “Optimizing Locality for Self-Organizing
Context-Based Systems,” Self-Organizing Systems, pp. 62–73, 2006.

[18] A. Kovacevic, N. Liebau, and R. Steinmetz, “Globase.KOM - A P2P
Overlay for Fully Retrievable Location-Based Search,” in P2P. IEEE,
2007.

[19] A. Kovacevic, “Peer-to-Peer Location-Based Search: Engineering a
Novel Peer-to-Peer Overlay Network,” Ph.D. dissertation, Technische
Universität Darmstadt, 2009.

[20] N. Lopes and C. Baquero, “Implementing Range Queries with a Decen-
tralized Balanced Tree over Distributed Hash Tables,” in International
Conference on Network-based Information Systems. Springer, 2007.

[21] P. Maymounkov and D. Mazieres, “Kademlia: A Peer-to-Peer Informa-
tion System Based on the XOR Metric,” Peer-to-Peer Systems, vol. 1,
pp. 53–65, 2002.

[22] B. Nam and A. Sussman, “DiST: Fully Decentralized Indexing for
Querying Distributed Multidimensional Datasets,” in Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2006.

[23] M. Picone, M. Amoretti, and F. Zanichelli, “Geokad: A P2P Distributed
Localization Protocol,” in PERCOM Workshop. IEEE, 2010.

[24] K. Pussep, C. Leng, and S. Kaune, “Modeling User Behavior in P2P
Systems,” in Modeling Tools for Network Simulation. Springer, 2010,
no. July, ch. Modeling User Behavior, pp. 447–461.

[25] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I, “Load
Balancing in Structured P2P Systems,” Peer-to-Peer Systems, vol. 1,
no. 4, pp. 100–103, Feb. 2003.

[26] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
Scalable Content-Addressable Network,” ACM SIGCOMM Computer
Communication Review, vol. 31, no. 4, pp. 161–172, 2001.

[27] M. Schlosser, M. Sintek, and S. Decker, “HyperCuP - Hypercubes,
Ontologies and Efficient Search on Peer-to-peer Networks,” Agents and
Peer-to-Peer, 2003.

[28] R. Sinnott, “Virtues of the Haversine,” Sky and Telescope, vol. 68, p.
158, 1984.

[29] E. Snekkenes, “Concepts for Personal Location Privacy Policies,” in
ACM Conference on Electronic Commerce, 2001.

[30] W. Song, R. Li, Z. Lu, and G. Yu, “FAN: A Scalable Flabellate
P2P Overlay Supporting Multi-Dimensional Attributes,” in Advanced
Information Networking and Applications (AINA). IEEE, 2008.

[31] M. Steiner, T. En-Najjary, and E. Biersack, “A Global View of KAD,”
in ACM SIGCOMM Conference on Internet Measurement. ACM, 2007.

[32] D. Stingl, C. Groß, J. Rückert, L. Nobach, A. Kovacevic, and R. Stein-
metz, “PeerfactSim.KOM: A Simulation Framework for Peer-to-Peer
Systems,” in HPCS. IEEE, 2011.

[33] Y. Tang and S. Zhou, “LHT: A Low-Maintenance Indexing Scheme over
DHTs,” in ICDCS. IEEE, 2008.

[34] E. Tanin and A. Harwood, “Using a Distributed Quadtree Index in Peer-
to-Peer Networks,” Journal on Very Large Data Bases, vol. 16, no. 2,
pp. 165–178, Apr. 2007.

[35] D. Tran and T. Nguyen, “Hierarchical Multidimensional Search in Peer-
to-Peer Networks,” Computer Communications, vol. 31, no. 2, pp. 346–
357, Feb. 2008.

[36] T. Zahn, G. Wittenburg, and J. Schiller, “Towards Efficient Range
Queries in Mobile Ad hoc Networks using DHTs,” in MobiShare. ACM,
2006.

[37] C. Zheng, G. Shen, S. Li, and S. Shenker, “Distributed Segment Tree:
Support of Range Query and Cover Query over DHT,” in IPTPS, 2006.

