
Monitoring and Management of Structured Peer-to-Peer Systems

Kalman Graffi, Dominik Stingl, Julius Rückert, Aleksandra Kovacevic, Ralf Steinmetz

Technische Universität Darmstadt, Multimedia Communications Lab KOM

Merckstraße 25, 64283 Darmstadt, Germany. Email: {graffi,stingl,sandra}@kom.tu-darmstadt.de

Abstract

The peer-to-peer paradigm shows the potential to pro-

vide the same functionality and quality like client/server

based systems, but with much lower costs. In order to

control the quality of peer-to-peer systems, monitoring and

management mechanisms need to be applied. Both tasks

are challenging in large-scale networks with autonomous,

unreliable nodes. In this paper we present a monitor-

ing and management framework for structured peer-to-peer

systems. It captures the live status of a peer-to-peer network

in an exhaustive statistical representation. Using princi-

ples of autonomic computing, a preset system state is ap-

proached through automated system re-configuration in the

case that a quality deviation is detected. Evaluation shows

that the monitoring is very precise and lightweight and that

preset quality goals are reached and kept automatically.

1 Introduction

The peer-to-peer (p2p) paradigm gained more and more

impact in the last years, both in research and industry. Start-

ing with file sharing and voice over IP, nowadays p2p-based

video streaming are widely in use. Even p2p-based so-

cial network platforms [18] have been proposed. The p2p

paradigm can provide the same functionality with similar

quality of service like client/server based solutions, but with

much lower costs. Costs are typically shared among the

participating nodes. P2p applications get more and more

mature, so that research question shifts from enabling new

applications to provision of quality of service. The quality

of service provided by a p2p system is the key factor for the

success of p2p systems in the future.

However, currently it is difficult both to monitor and

manage the quality of a p2p system. The quality of a p2p

system is characterized both by the performance (response

times, hop counts, ...) and costs (bandwidth consumption,

load distribution, ...). These metrics are typically evaluated

in research papers and thus are interesting in a running sys-

tem as well. Depending on the scenario in which the p2p

architecture is used (e.g. desktop PCs) and the application

it is used for (e.g. streaming), specific quality requirements

exist and it is important to see whether they are met or not.

This is important both for the users and for professional p2p

system providers as well.

Our vision of monitoring and management of structured

p2p systems assumes preset quality intervals for a set of

metrics (e.g. response time, average bandwidth usage and

variance of the bandwidth usage). In Figure 1(a) we depict

an example set of preset quality intervals. Please note that

this settings are scenario and application specific. Our work

aims at detecting the current state of the metrics in a running

system and in case of low quality to automatically improve

the system quality. We propose a solution for monitoring a

wide set of quality metrics in an exhaustive statistical repre-

sentation. This representation consists of the average, vari-

ance, standard deviation, minimum, maximum, count and

sum of a specific metric iterated over all peers in the p2p

network. This information is used to compare the current

state of the system to the preset quality goal. In the case

that a deviation is detected from the preset quality intervals

a process is initiated to automatically adapt the system con-

figuration to meet the given quality goals.

We sketch the monitoring and management framework

in Section 2 and present our lightweight solution for moni-

toring structured p2p systems in Section 3, which we evalu-

ate in Section 4. Using the principles of autonomic comput-

ing, as depicted in Figure 1(b), the monitoring information

is analyzed in terms of matching the preset quality intervals.

In the case that the analysis step detects a violation of the

quality bounds, a planning process is initiated, which deter-

mines how the configuration of the p2p system needs to be

adapted. In a next step, the derived adaptation command is

shared among all peers which is then locally adopted. The

steps of the management cycle are presented in Section 5.

The evaluation of the management approach is presented in

Section 6 and shows that preset quality intervals (e.g. re-

sponse time intervals) are automatically reached and kept.

2 Management Framework for P2P Systems

In this section we present our approach for monitoring

and managing structured p2p systems. The idea is depicted

in Figure 2. Using this framework for monitoring and man-

rst
Textfeld
Kalman Graffi, Dominik Stingl, Julius Rückert, Aleksandra Kovacevic, Ralf Steinmetz:
Monitoring and Management of Structured Peer-to-Peer Systems. In: 9th International Conference on Peer-to-Peer Computing 2009, p. 311--320, September 2009. ISBN 978-1-4244-5066-4.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.

(a) Example Quality Intervals (b) Autonomic Computing Steps

Figure 1. Overview on Autonomic Computing

aging structured p2p systems, users and system providers

are enabled to see a detailed view on the quality metrics of

a running system. Further, preset quality intervals (e.g. as

depicted in Figure 1(a)) are automatically met by the sys-

tem through the usage of a self-configuration process which

takes the current system state into account.

In order to reach this goal, we follow the approach of

autonomic computing, which has been presented in [8] and

is depicted in Figure 1(b). The cycle of autonomic comput-

ing consists of five steps which we describe in the follow-

ing. The figure describes which steps are needed to reach

and keep a preset quality state. We present our solution for

the core functionality, monitoring, in Section 3 and our ap-

proach for all five steps for p2p systems in Section 5.

Monitoring The main task of the monitoring step is to

retrieve a live view on the quality metrics of a p2p system.

Quality metrics of the system are related to the performance

(e.g. response time, data availability, hop count per lookup)

and the corresponding costs (e.g. bandwidth consumption,

local storage consumption). A wide set of metrics has been

discussed in literature. We aim at getting not only the aver-

age metric value in the p2p network (e.g. hop count), aver-

aged over all nodes. We also aim at getting the standard de-

viation, minimum, maximum, count and sum of all metrics

over all peers. This aim is very challenging, as we assume

a large-scale p2p network consisting of millions of nodes.

However, the monitoring mechanism must be lightweight

and its information precise and fresh.

Knowledge The knowledge plane is a container that is

filled with the system information, which is retrieved by the

monitoring component. The further components operate on

this information, thus the knowledge plane is the key point

for information access.

Analyze The analyze plane is programmed with preset

quality intervals, depicting the requirements of the current

p2p based application. A streaming application may require

response times below 100ms and a relative CPU consump-

tion up to 20%. Whereas a replication application may not

state any requirement on the response time, but on the band-

width consumption. However, the current quality metrics

need to be analyzed and compared to the preset quality in-

tervals, as depicted in Figure 1(a). In the case of a deviation

Figure 2. Managed Structured P2P System

the running system needs to be reconfigured and adapted

to approach the missed quality interval. The analyze plane

determines which metric needs to be de- or increased.

Plan Quality metrics cannot be lowered or raised di-

rectly, they result from the overall configuration of the sys-

tem. The plan plane decides which configurable parameter

needs to be changed in order to effect the invalid quality

metric. The planing phase takes into account the interde-

pendencies between parameters (e.g. routing table size) and

metrics (e.g. hop count). It decides which parameter has to

be changed and how.

Execute A newly derived configuration needs to be

adopted by all peers in the network. The execution step con-

sists of spreading the information quickly to all nodes and

locally apply the new settings on each node in a coordinated

fashion. This is a challenging task in a large-scale p2p net-

work with autonomous peers. Once the new configuration

is adopted system wide, the effects need to be monitored

and the autonomic computing cycle restarts.

The presented autonomic computing cycle (Figure 1(b))

shows the idea of our approach to monitor the quality of a

p2p system and to adapt it to reach preset quality standards.

3 Monitoring Structured P2P Systems

In this section we present our approach for monitoring

structured p2p systems. The monitoring framework has

a dedicated role in the autonomic computing cycle, as it

connects all peers in the network, gathers and aggregates

the system state and propagates new system configurations.

Our monitoring solution is an extension of our work in

[4]. That previouswork focused on enabling capacity-based

peer search in p2p system, considering characteristics of in-

dividual peers. In the following we describe the details of

our monitoring mechanism, which focuses on the retrieval

of the global system state. The other steps of the autonomic

computing cycle are discussed in Section 5.

Table 1. Monitored Metrics in the P2P System
General Metrics Monitoring and Overlay

number of online-peers monitoring: in-/out-traffic

average online-time overlay: in-/out-traffic

complete in-/out-traffic average bandwidth-consumption

average lookup-time in seconds succeeded and failed operations

in-/out-traffic of lookup-messages traffic of ping- and pong-msgs

number of join- and leave-messages

3.1 Goals and Assumptions

Goal of the monitoring is to gather a wide set of metrics

on the quality of the p2p system. Table 1 displays all met-

rics, which are currently measured in the implementation of

our monitoring architecture. The left column lists all met-

rics, which give a survey of a p2p system regardless the used

overlay or monitoring mechanism, while the right column

contains the metrics for the performance of the monitoring

mechanism as well as for the underlying overlay.

In order to deploy a monitoring infrastructure on top of

a p2p system, we assume a structured P2P overlay imple-

menting a DHT-protocol like Chord [15], Kademlia [12] or

Tapestry [21]. Additionally to this precondition, the DHT

must provide the functionality to address a node, which is

responsible for a particular key, as well as the ability for a

peer to determine, if it is responsible for a key. In the fol-

lowing, we list the names of the two functions:
• void route(key K, msg M, node Hint)
• boolean resp(key K)

These functions typically come with the DHT, but we like

to point out these requirements in detail. By using the pro-

vided methods of the DHT, the structure of the overlay is

transparent to the monitoring mechanism, while its design

can be kept as simple as possible.

3.2 Our Solution for Monitoring

In order to gather the status of all peers and aggregate

them to a global system status, an information architecture

needs to be established.

Figure 3 depicts the monitoring architecture. We chose

to establish a tree topology on top of the structured p2p

overlay, as it allows a directed information flow towards the

root. The structured p2p overlay provides the route func-

tionality, as described in the key based routing interface

(KBR) [3]. First, each peer in the network calculates its

position in the tree based on its peerID and afterward peri-

odically sends update messages about its status to its parent

node, which we call Coordinator. The update messages a

Coordinator receives contain aggregatable system statistics

which are aggregated and propagated one step further to-

wards the root. Please note that several aggregatable system

statistic messages result in a single message of the same size

after aggregation. The global view on all peers is merged at

the root and propagated back to all nodes as ACK to the

update messages. With this approach, we are able to moni-

tor large-scale networks with constantly low individual peer

costs, even at the root. Additionally, due to the usage of the

DHT, our solution inherits its robustness against churn.

3.2.1 A new ID space

Themonitoring architecture should be applicable on various

structured p2p overlays. Thus it must be independent of

the overlay-specific ID space SOID, which differs in size:

SOID = {0, ..., 2160 − 1} ⊂ Q in Chord [15], SOID =
{0, ..., 2128 − 1} ⊂ Q in Kademlia [12]. For that reason,

we introduce an unified ID space SID = [0, 1] ⊂ R. The

function fmap : SOID → SID fulfills following conditions:

• conserve the convexity of identifier subsets.

• sustain the set of keys, for which a peer is responsible.

• be invertible, so that a remapping of a monitoring-ID

always results in the same overlay-ID and that x =
f−1

map(fmap(x)) is applied.

As a concrete mapping function, we introduce

fmap : SOID → SID, fmap(id) =
id

highestID

where highestID denotes the highest possible ID of SOID .

Our monitoring mechanism operates only with IDs in

SID. However, before sending a message using the route

function of the KBR-compliant DHT the IDs are remapped.

3.2.2 The Monitoring Topology

The topology of the monitoring mechanism must be capa-

ble of collecting and disseminating the system related infor-

mation in an acceptable time as well as handling the churn

affected overlay network. We chose a tree topology, as it

allows a directed information flow towards the root. Be-

fore considering the creation of the tree, we explain some

terms which are also depicted in Figure 3. Regardless of

being a root, an inner node or a leaf, every node in the

tree is denoted as Coordinator. This Coordinator is re-

sponsible for an interval in the ID space, which is called

Domain. To determine the bounds of the Domain as well

as its corresponding Coordinator, we use a function fkey ,

which recursively splits the ID space in Domains and Sub-

Domains. In the beginning, the first Domain comprises the

complete ID space [0; 1]. To calculate the Coordinator of

a Domain that ranges from a to b, we pick the ID in the

middle, designated as Coordinator-Key, using the function

fkey(a, b) = a + b−a
2

. For the resulting Sub-Domains the

recursive process of identifying Coordinator-Keys is per-

formed as well. The division of a Domain into BF parts re-

sults in a b-tree with branching factor ofBF (hereBF = 2)
as shown in Figure 3.

After this overview of building the tree, we explain,

how a peer calculates its position in the tree. At first,

the peer determines the Coordinator-Key for the Domain,

which comprises the whole ID space SID. By using

the functionality resp(key) the peer can check, if it is re-

sponsible for the Coordinator-Key. In the case that it

is not responsible, it recursively traverses down the tree

and calculates the next smaller domain which contains its

peer ID. The whole procedure is repeated until the test-

ing for responsibility is positive. Being responsible for a

Coordinator-Keymakes the peer the Coordinator of the cor-

responding domain. The Parent-Coordinator is the peer

responsible for the Coordinator-Key one Domain higher.

Now every peer knows its own position in the tree and

the Coordinator-Key of its Parent-Coordinator by just us-

ing the function resp(key) provided by the DHT. Please

note, that this functionality is easy to provide by the

DHT and does not generate traffic overhead. Peers com-

municate only with their Parent-Coordinators and Parent-

Coordinators with their Sub-Coordinators correspondingly

in the tree. This is done using the route(key K, msg M, node

Hint) functionality of the KBR-compliant p2p overlay. We

assume, that the DHT caches contacts that have been used,

so that in most cases the Parent-Coordinator is contacted di-

rectly. Only in the case that the Parent-Coordinator left or

is not anymore responsible for the Coordinator-Key, a new

lookup is performed to find the new Parent-Coordinator.

When we consider the structure of the tree, displayed in

Figure 3, we observe a nearly uniform distribution of the

nodes. Typically peers (e.g. peer 0.74) are responsible for

two or more Coordinator-Keys in the tree. If messages are

sent up the tree, every Coordinator receives the data from

its corresponding Sub-Coordinator (e.g. peer 0.74 receives

messages from 0.875 and 0.84375). When the received data

is forwarded to the Parent-Coordinator, the peer with the ID

0.74 will send only one message from its highest Coordina-

tor position (0.75) to its Parent-Coordinator (0.5).

0.5

0.25

0.75

0.125 0.375

0 1

0.875

0.8125

0.84375

0.93750.0625 0.1875 0.3125 0.4375

0.96875

 ID
 0

.0
1

 ID
 0

.1
9

 ID
 0

.1
8
7
5

 ID
 0

.2

 ID
 0

.3

 ID
 0

.3
8

 ID
 0

.4
3
7
5

 ID
 0

.5
9

 ID
 0

.7
4

 ID
 0

.8
4
3
7
5

 ID
 0

.8
8

 ID
 0

.9
3

 ID
 0

.9
6
8
7
5

Responsibility
Interval

0.625

 ID
 0

.7

Domain D0 Domain D0

Domain D1Domain D1

Figure 3. Monitoring Tree Topology

3.2.3 The Communication Protocol

Communication in the tree only takes place between a node

and its Parent-Coordinator. In this subsection we present

the message contents. The term system statistics stands for

the periodical generation of statistics out of multiple met-

rics within the p2p system. The computation of the system

statistics requires the continuous measurement and send-

ing of metrics from every peer, which we denote as metric

updates. The measured and aggregated data is forwarded

upwards to the root, where further processing is executed.

During its way to the root, every Coordinator in the tree

aggregates the received data with its own measurements

Table 2. Aggregate Functions

Function Description

MIN(metric) Calculates the minimal value of a metric

MAX(metric) Calculates the maximal value of a metric

SUM(metric) Sums the values of a metric

SUMOFSQ(metric) Sums the squares of the values of a metric

COUNT(metric) Counts the number of metric values

AVG(metric) Calculates the average of a metric

STDDEV(metric) Calculates the standard deviation of a metric

Metric−Update

Metric−Update

Sub−Coordinator

Sub−Coordinator

Sub−Coordinator

Remove stale Sub−Coordinators (step 1)

Collect own metrics (step 2)

Aggregate the metrics (step 3)

Send metrics to Parent−Coordinator (step 4)

Parent−Coordinator

Receiving the ACK (step 5)

Receiving the ACK (step 5)

Remove stale Sub−Coordinators (step 1)

sends metrics

sends metrics

sends metrics

Update Period:
t_metricPeriod

Update Period:

t_metricPeriod

sends metrics

elapsed time for

executing the update

ACK for the update

sends metrics

Figure 4. The Metric Update Routine

and propagates it to the Parent-Coordinator until the root is

reached. An aggregate function returns a single value from

a set of input values, thus through aggregation of metrics at

every level, the size of the information remains constant.

For all of the metrics, not only the overall system average

shall be computed, but also a wide statistical representation.

Table 2 shows which statistical information is gathered for

every metric (see Table 1) by our monitoring mechanism.

The aggregate functions in our monitoring mechanism

all fulfill the hierarchical computation property, which is

introduced by [19] and demands commutativity and asso-

ciativity. The order of aggregation is free and aggregated

values can be further aggregated at higher levels.

Figure 4 depicts the protocol for information exchange

in the monitoring tree. We follow the rules for consistent

and reliable routing according to [2]:

• A peer of the overlay never processes a lookup mes-

sage, if it is not responsible for the transmitted key.

• When sending a message, a peer has to detect link fail-

ures or dead nodes.

To implement the first condition, our monitoring mecha-

nism only processes messages from Parent-Coordinators or

Sub-Coordinators. For the second condition, we introduce

per-hop ACKs as well as retransmission for missed per-hop

ACKs. If the transmission fails, the sender can directly

lookup the peer responsible for the receivers ID and resend

or choose another node for a later transmission.

Concerning the communication in the tree, we consid-

ered up to now the propagation of information towards the

root. Since the algorithm for calculating the position in the

monitoring tree only supplies the Parent-Coordinator, the

Sub-Coordinators, which are the children in the tree, should

also be known to the Coordinator. For this reason, every Co-

ordinator keeps track of the initiators of metric-update mes-

sages it receives. If a sender of a message is not the Parent-

Coordinator, the Coordinator can assume and check that

the sending peer is one of its Sub-Coordinators. The Co-

ordinator stores the ID of the sender including timestamp,

which is always refreshed if a new message of that sender

arrives. Through this timestamp, it can remove stale Sub-

Coordinators, which did not sent any messages during a

certain interval. By choosing a small interval, a Coordinator

can administer a very actual table of its Sub-Coordinators.

Please note that these timestamps are just locally used on

each Coordinator and do not need to be synchronized.

3.2.4 Collecting System-Statistics

We sketch the routine of the metric-updates, which is peri-

odically repeated at every peer (see Figure 4):

1) Every Coordinator checks the timestamps of the en-

tries in its Sub-Coordinator table. If the age of the entry

exceeds a given threshold called toldMetrics, the entry is

removed. This updating of the entries prevents the aggre-

gation of old metrics from Sub-Coordinators, which may

already have a new Coordinator or just went offline. The

value for the threshold toldMetrics can be chosen dynami-

cally depending on certain criteria (e.g. depth of a Coordi-

nator in the tree). We chose it as a multiple of the metric-

update interval tmetricPeriod. Several simulations with dif-

ferent multipliers have shown that a good value for the mul-

tiple of tmetricPeriod ranges between 1.5 and 2.

2) Every node locally measures its own metrics / status.

3) The own metrics of a node are aggregated with the

received ones of the Sub-Coordinators. Due to step 1, a

node only aggregates metrics of updates that it received in

the last update periods. Afterward, the aggregated metrics

are ready to be sent.

4) Before sending the aggregated metrics every node

calculates its position in the tree as well as its Parent-

Coordinator. After this position fixing in the tree the data

is sent as metric update to the Parent-Coordinator. The root

of the tree, which apparently has no parent, uses the aggre-

gated data for generating statistics of the whole p2p system.

5) Every metric update is answered with an ACK, which

contains the global system view aggregated at higher levels.

If the corresponding ACK is received, the current metric-

update terminates. Otherwise, a retransmission is initiated.

3.2.5 Discussion

This routine for the metric-updates is very fault-tolerant and

therefore predestined to run on churn affected overlay net-

works. If a Coordinator receives two updates from the same

Sub-Coordinator during one period, the metric information

about that Sub-Coordinator is updated locally. A character-

istic of the metric-updates is their invariant size. Through

the aggregation of the metrics at every level in the tree, the

size does not expand. Thus the monitoring tree is scalable as

new nodes do not result in increased load. Metric-updates

are also used for maintaining the tree. Thus, the struc-

ture of the tree is always kept up-to-date and references to

dead or old Coordinators are deleted. Lookups in the DHT

are just started in the case, that the peer known as Parent-

Coordinator is offline or not anymore responsible for the

Parent Coordinator’s key. Please note that we assume that

the underlying p2p overlay handles churn correctly and pro-

vides always correct routing.

Regarding churn, any Sub-Coordinator and Parent-

Coordinator may fail. In the case that a Sub-Coordinator

fails it will be dropped from monitoring after one update

period (by choosing toldMetrics between 1.5 and 2.0), still

for one period it is monitored falsely as existent. However,

this is a trade-off as some message loss or delay, which

leads to timeout, should not result in a falsely ignored on-

line peer. In the case of a failing Parent-Coordinator, effects

are minimal. Typically the connection is detected as bro-

ken through the lost connection or missing ACK and the

new Parent-Coordinator can be looked up. However, a new

peer may not have received update information from Sub-

Coordinators before transmitting its update to its Parent-

Coordinator. This update information may then describe

only the state of the single peer, instead of the correspond-

ing domain. In the next update interval, the new peer will

receive the updates of its Sub-Coordinators and is fully in-

tegrated in the tree.

Keeping this effect of reorganization in mind, we create

a monitoring tree which adapts its structure in a fast and ef-

ficient way to the underlying overlay, especially for small

values for the update period tmetricPeriod, which is respon-

sible for triggering the metric-updates as well as for the tree

maintenance. Finally, a global view on the quality of the

p2p system is propagated from the root to all nodes back

using the ACKs while no additional maintenance is needed

for this functionality.

4 Evaluation of the Monitoring Mechanism

In this section we present the evaluation results for our

monitoring mechanism both in terms of performance and

costs. We also show the effects of varying update intervals,

branching factor and refining the aggregation functions.

We implemented our monitoring and management

framework in PeerfactSim.KOM [9]. The simulator has also

been used and presented in previous works [7, 10] of the

community. Its granularity allows us to evaluate our moni-

toring mechanism with various DHTs. We used a network-

delay model based on global network positioning [13] and

a churn model adapted from Steiner et al. in [14], which

measured and analyzed the peer behavior in KAD [12].

We varied in our simulations the update interval times

(30sec, 60sec and 120sec) with a fixed tree branching factor

of 2. Then we varied the branching factor (tree degree 2, 4

and 8) with an update interval of 60sec. Finally we evalu-

ated various monitoring smoothing mechanisms that elim-

inate monitoring outliers and obviously false results. We

evaluated the parameter variations with 2500 nodes and 4

simulated hours. During the first hour all peers join the

overlay. After 90 minutes, the churn-generator is started,

which changes the network state of the peers in the system

according to the KAD measurements. We simulated two

KBR-compliant overlays: an idealDHT and Chord. The

idealDHT implements a DHT and dispatches messages di-

rectly to peers that were addressed. This is in contrast

to Chord, where churn may lead to overlay instabilities

which influence the evaluation of our monitoring mecha-

nism. Therefore we evaluate the parameter variations in an

idealDHT, where objectIDs are matched to peerIDs always

correctly and messages are always delivered correctly.

Figure 5(a) and Figure 5(b) show the number of nodes

in the network and the corresponding monitored number of

nodes. Figure 5(a) depicts the reference node count, the

unmodified and the exponential smoothed monitored data,

whereas Figure 5(b) depicts additionally a median based

smoothing mechanism. As we can see, especially taking

the relative errors depicted in Figure 6(a) and 6(b) in ac-

count, the monitoring is already very precise. However, the

unmodified monitoring has also some outliers, e.g. up to

second 3000. This is caused by replacement of nodes at

higher positions in the tree due to churn. The new nodes

that take place at the higher levels in the tree do not yet have

the correct view on their domain. It may happen that before

they receive a metric update from their Sub-Coordinators, a

false information is sent towards their Parent-Coordinator.

We address obvious outliers with smoothing mechanisms:

the median over an observation history and exponential

smoothing. In exponential smoothing a history of obser-

vations is considered as well, but with decreasing weights

for older values. A smoothed value sH for H observations

is recursively calculated using a current measurement mH

and the smoothed value of previous observations:

sH = αmH + (1 − α)sH−1, with α as smoothing factor.

In Figure 6(a) and 6(b) we show the relative error in

comparison to the reference data. The figure depicts a ref-

erence graph without refinement, a 5-value and 7-value me-

dian and exponential smoothing with three values (H=3,5,7)

of the metrics-history and α = 0.5. The figure shows that
the monitoring view gets smoother and is less affected by

churn of the root. With avoiding outliers, the refinement

mechanisms also introduce an additional delay in the infor-

mation propagation, thus the information is less fresh. Here

the exponential smoothing approach outperforms the me-

dian based solution in terms of precision and freshness. The

monitored view is very close to the real node count. The

node count is representative for all other metrics as well, as

the monitored values are directly retrieved from the status

of the peers and their freshness is independent of their se-

mantic. Refining the monitoring data enables us to use the

monitored status as input for our management framework.

In Figure 5(c) we show the age of the monitoring in-

formation that is received at the root, here we varied the

branching factor and the update intervals. A higher branch-

ing factor leads to a broader but lower tree. Thus as the

freshness of the information is directly linked to the height

of the tree, which is linked to the branching factor. A

smaller update interval leads to fresher results, as the moni-

toring information is more frequently updated at the root.

The corresponding costs of the traffic are depicted in

Figure 6(c). For all parameter variations, we see that the

bandwidth consumption is very low, less then 165 bytes

per second to retrieve a fresh global view on the quality of

the system. The ACK received from the Parent-Coordinator

contains the global view retrieved from higher layers. The

information about the global system view has always a con-

stant size due to the aggregation functions. Thus the system

wide monitoring comes with constantly low and predictable

costs. With increasing the update intervals and the branch-

ing factor, the bandwidth consumption falls proportionally.

Thus the trade-off between freshness and costs can be lin-

early adopted to the scenario requirements.

We took the most promising parameter settings and eval-

uated the monitoringmechanismwith this setting with 5000

peers. We used the branching factor BF = 4, an update in-
terval of 60sec and exponential smoothing with the param-

eters H = 5 and α = 0.5. We used the same churn model

as before and see, in Figure 7(a) how the node density in the

tree evolves. First the peers join and the tree gets deeper and

broader, whereas with peer failures the tree shrinks again.

Figure 7(b) shows the monitoring results for 2500 and 5000

nodes. The figure shows how precise and fresh the moni-

toring information is. Finally, Figure 7(c) shows the costs

occurring at each peer both as logged by the simulator and

monitored by our monitoring mechanism. The monitored

costs are very close to the real costs, which emphasizes

the precision of the monitoring mechanism. The permanent

out-bandwidth consumption is always below 100 bytes/s in

average per node. These low costs are equal at all peers,

as the aggregated information that needs to be sent is of the

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
u

m
b

e
r

o
f

P
e

e
rs

Simulation-Time [s]

Comparison of the different Smoothing Modes

Real Online-Peers
No Smoothing

ES (H=3,a=0.5)
ES (H=5,a=0.5)
ES (H=7,a=0.5)

(a) Node Count, Exponential Smoothing

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
u

m
b

e
r

o
f

P
e

e
rs

Simulation-Time [s]

Comparison of the different Smoothing Modes

Real Online-Peers
No Smoothing

MS (H=5)
MS (H=7)

(b) Node Count, Median over History

 0

 500

 1000

 1500

 2000

 2500

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
g

e
 o

f
D

a
ta

 [
s
]

Simulation-Time [s]

Average Age of received Data at the Root

BF=2,UI=60s
BF=4,UI=60s
BF=8,UI=60s
BF=2,UI=30s

BF=2,UI=120s

(c) Age of Monitoring Information

Figure 5. Monitoring Precision and Freshness

R
e

la
ti
v
e

 E
rr

o
r

[%
]

Simulation-Time [s]

Relative Error of the different Smoothing Modes

No Smoothing
ES (H=3,a=0.5)
ES (H=5,a=0.5)
ES (H=7,a=0.5)

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000

(a) Relative Error, Exponential Smoothing

R
e

la
ti
v
e

 E
rr

o
r

[%
]

Simulation-Time [s]

Relative Error of the different Smoothing Modes

No Smoothing
MS (H=5)
MS (H=7)

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000

(b) Relative Error, Median over History

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e
 o

f
M

o
n

it
o

ri
n

g
-T

ra
ff

ic
 [

b
y
te

s
/s

]

Simulation-Time [s]

Average Size of sent Monitoring-Traffic per Peer

BF=2,UI=60s
BF=4,UI=60s
BF=8,UI=60s

BF=2,UI=30s

BF=2,UI=120s

(c) Monitoring Traffic Overhead

Figure 6. Relative Monitoring Error and Traffic Overhead

same size in every tree level. Based on this, we argue that

the mechanism is both very lightweight and precise.

In this section we presented the evaluation of the pro-

posed monitoring mechanism. Now that we have shown

that the monitoring is both precise and cost effective, we

can use it in the autonomic computing framework for p2p

systems (as depicted in Figure 2). Our goal is to adapt the

p2p system to fulfill preset quality intervals. Now that we

are able to measure the quality status of a running p2p sys-

tem, we can compare it to the preset quality intervals and

initiate action upon deviation.

5 Managing Structured P2P Systems

As we have stated in the requirements, our goal is to en-

able p2p systems to automatically reach preset quality lev-

els. As shown in Figure 2 and Figure 1(b) the monitoring

information is used in the analysis plane to decide whether

the current system state is valid in terms of the preset quality

goals. In the case that a deviation is detected, the plan plane

decides on a new configuration for the system. The execute

part of the autonomic computing cycle adopts the changes

on each node individually and results in an improved system

state, which is controlled through monitoring. In the fol-

lowing we describe our solution for a p2p based autonomic

computing cycle which allows to manage the p2p system.

Knowledge Plane The knowledge plane is a container

for the monitoring information, while the analysis and plan

plane operate on it. The monitoring information is gathered

and merged at the root. By using the ACKs, it is propagated

to all nodes in the p2p system as well. However, we operate

on the monitoring information stored at the root providing

a coordinated management of the p2p system.

Analysis Plane We propose that the root is also respon-

sible for managing the analysis and planing step. We as-

sume that the preset system quality is known to all peers.

The root compares new received information about the cur-

rent system state to the preset intervals, as seen in Figure

1(a). In the case that deviance is detected, the analysis plane

contacts the plan plane to lower or raise the corresponding

metric. A distributed analysis and plan plane can also be

implemented, but is not elaborated due to space limitations.

Plan Plane The plan plane is operating in the root. Var-

ious mechanism can be used here to decide on the interde-

pendencies between metrics and parameters. Genetic algo-

rithms and machine learning can be used to determine rules

deciding which parameters in the system configuration to

change in order to lower or raise a specific metric. In our

case, for the simplicity of explanation, we integrated expert

knowledge and introduced static rules for planing and used

it only on one metric and parameter combination. In the

evaluation we focus on the metric hop count and the param-

eter routing table size. By modifying the routing tables of

all peers we can influence the average hop count in the sys-

tem. We also introduce a stabilization phase, as depicted

in Figure 8(a) to give the system time to adopt the changes

before initiating new changes. A stabilization phase is char-

acterized by the slope of the measurement history. If the

slope is below a certain threshold, we assume that previous

changes took effect. Thus a coordinated system adaption

process is implemented as depicted in Figure 8(b).

Structure of the Monitoring Tree

 50 100 150 200 250

Periode [m]

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

T
re

e
 L

e
v
e

l

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

(a) Tree Establishment

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2000 4000 6000 8000 10000 12000 14000 16000

N
u

m
b

e
r

o
f

P
e

e
rs

Simulation-Time [s]

Monitored Peer Count by the Root

Online Peers (5000)
Monitored (5000)

Online Peers (2500)
Monitored (2500)

(b) Precision of Monitoring View

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e
 o

f
S

e
n

t
T

ra
ff

ic
 [

b
y
te

s
/s

]

Simulation-Time [s]

Out-Bandwidth Consumption per Peer

Real Traffic (5000 peers)
Monitored Traffic (5000 peers)

(c) Monitoring Traffic Costs

Figure 7. Monitoring Evaluation with 5000 nodes

(a) Controlled Stabilization

 1

 10

 100

 1000

 100 200 300 400 500

H
o
p
 c

o
u
n
t

Simulation time [min]

Overlay hop count at query delivery

Average
Optimization init

Target interval

(b) Coordinated Adaptation

Figure 8. Adaptation and Stabilization

Execute Plane In order to adopt configuration changes

in the p2p system, two steps need to be supported: first, all

nodes must be informed about the changes and second, all

peers must adopt the configuration changes locally. Various

design decisions exist how the configuration changes can be

transmitted, either as fixed parameter settings or as policies

that need to be interpreted locally. We used execution poli-

cies, describing which metric should be affected in which

direction. These policies are derived at the root and prop-

agated via the ACKs in the monitoring mechanism to all

peers. Now these policies can be interpreted in relation to

the actually used p2p overlay, e.g. Kademlia provides other

techniques to lower the hop count than Chord. In the second

step, the peers must be locally able to adopt the new poli-

cies. In our evaluation we focused on the configurability of

Chord according to [11] and especially its ability to lower

hop counts by changing the routing table size. We extended

the original Chord implementation [15] in the simulations in

a way that the number of fingers can be configured. By set-

ting the routing table size, fingers are added/reduced, while

the ID space is always covered logarithmically.

To be precise, assuming that the routing table size of

a Chord node with peer ID n is set to s, then the k-

th finger is pointing to the peer responsible for the key

(n + p2
m∗(k−1)

s q) mod 2m, where 2m is the size of the ID

space. Here the routing table size s can be freely config-

ured. Chord nodes can adapt to change policies with the

goal to lower or raise the average hop count in the system.

In this section we have described how we use the mon-

itoring information to derive an execution policy for all

peers, in the case that a deviance to the preset quality inter-

vals exists. In the next section we show that the autonomic

computing cycle works fast and reliable.

Table 3. Simulation Setup
General Monitoring

Simulation time: 900min Update-Interval 300s

Number of nodes: 1000 Tree degree 2

Chord Management

FixFinger-Interval 10s Goal Hop Count [7,10]

Stabilize-Interval 10s History size 10

CheckPredecessor-Interval 30s Maximum Slope 0.2

6 Evaluation of the Management Cycle

We performed the evaluation of the autonomic comput-

ing cycle in the p2p system simulator PeerfactSim.KOM

[9], as it allows us to configure the simulated modules very

flexibly. We chose Chord [15] as p2p overlay due to its ref-

erence status for structured p2p overlays. Further we picked

the hop count as reference metric and defined the interval

[7, 10] as goal interval. In order to reach this goal, we modi-

fied the Chord overlay to allow the dynamic reconfiguration

of the routing table size. On top of Chord we applied our

monitoring and management layer as an additional layer, as

depicted in Figure 2. This layer uses the KBR-compliant

DHT Chord for the monitoring communication to establish

a monitoring tree. The tree is used to gather the system

state, which is analyzed at the root and an execution policy

is propagated back to all nodes in the tree using ACKs.

We chose the simulation setup as described in Table 3.

Between minute 1 and 90 all peers join and stabilize be-

tween minute 90 and 110. In this time the fingers are estab-

lished in Chord. Beginning from minute 110 the peers initi-

ate lookups in the overlay. This is done to generate overlay

traffic so that the average hop count per lookup request can

be estimated.

We have two initial setups for the Chord scenario, in both

the goal is to reach the preset quality interval of [7,10] for

the average hop count. First we start with a Chord config-

uration that is “too good”, i.e. the hop count is very low

and a lot of bandwidth is wasted for maintenance to provide

this good service. Figure 6 depicts this case, the workload

and the traffic characteristics are depicted in Figure 9(c). In

Figure 9(a) the hop count is monitored as too low, i.e. 5.7

which is not in [7,10]. At minute 170, 230 and 310 of the

simulation time the analysis plane detects that the metric

does not change (no slope) and the goal interval is still not

reached, thus the policy for increasing the routing table is

disseminated. The policy is then distributed in ca. 12 up-

date intervals to all peers in the system and directly adopted,

resulting in a decrease of the routing table size of 10%, as

depicted in Figure 9(b). The process is repeated until the

average hop count reaches the desired quality interval.

The second setup starts with a pre-configured routing ta-

ble that is too small (20 entries), corresponding workload

is depicted in Figure 10(c). The hop count related to that

routing table size is about 100. The monitoring information

is interpreted by the analysis plane and it is decided that the

hop count needs to be reduced to reach the interval [7,10].

In order to do so, the policy to decrease the hop count is

interpreted in Chord as command to double the routing ta-

ble size. This is done in two steps, as the first step already

lowers the hop count to 11. After the second adaptation

step, the desired interval for the hop count metric is met and

the mechanism does not initiate any further improvement

steps. Evaluation shows that the autonomic computing cy-

cle is functional and leads quickly to an approximation of a

desired quality state.

7 Related Work

IBM stated in 2001 that the only remaining chance for

overcoming the burden of complexity will be self-managing

autonomic systems [8]. They proposed the theory for the

autonomic computing cycle. Although self-organization of

p2p systems is old, the utilization of a global view on p2p

system which allows for direct analysis of the system state

and the initiation of adaptation processes is new.

Some monitoring solutions for p2p systems have been

proposed. DASIS [1] is an extension for the routing table of

p2p overlays that stores additional routing specific informa-

tion, it only provides few information of local nodes and is

strongly linked to the overlay. A strong linkage of overlay

and monitoring layer is also given in Astrolabe [16] and its

successor Willow [17]. Both provide not only monitoring

functionality but also overlay functionality which makes it

hard to use them with other p2p overlays. P2P-Diet [5] is

an extension for hybrid unstructured p2p overlays, which

allows for ad-hoc and continuous search for specific objects

(and peers). Information updates are broadcasted frequently

which leads to high overhead and maintenance costs. Our

monitoring mechanism focuses on structured p2p overlays

and is lightweight. T-MAN [6] uses proactive gossiping to

spread information in the network. Although this approach

is generally applicable in any overlay, the information is

hard to update and typically old. The freshness of the in-

formation in our monitoring solution is directly linked to

the height of the tree, which allows coordinated informa-

tion gathering and dissemination. SOMO [20] follows a

tree based approach as well and is inspiring. SOMO builds

a tree top down on the peers in the ID space, identifying

nodes in the tree using a stateless function. In SOMO the

information is pulled up towards the root, aggregated and

pushed back. Due to the pull based approach costs for iden-

tifying peers in lower regions are high. Our approach needs

less maintenance, especially because every node is able to

calculate its position in the tree. SDIMS [19] supports in-

formation aggregation as well. For every attribute a tree of

its own is built thus the load is stronger shared, but this also

makes it difficult to retrieve a global view combining vari-

ous metrics. Only a rich monitoring mechanism, applicable

for several p2p overlays enables the further steps of auto-

nomic computing to be implemented. Thus related work on

p2p related approaches for implementing autonomic com-

puting elements are rare, as this essential monitoring part

was either not evolved enough up to now or not used for the

purpose of self-configuration.

8 Conclusion and Future Work

In this paper we have presented a monitoring and man-

agement framework for structured p2p systems. Our mon-

itoring mechanism is applicable on any KBR-compliant

DHT overlay as it reuses core functionality of the KBR in-

terface. The monitoring mechanism provides a fresh and

detailed view on the quality of the system, which is pre-

sented as a statistical summary on an expandable number

of metrics. Using the functions of the underlying DHT, our

monitoring mechanism is lightweight (less than 100 bytes

per second) and still very robust and churn resistant.

From the management point of view we provided a

mechanism that enables the system to reach and hold pre-

set quality standards. Our proposed solution follows the

principles of autonomic computing. The monitoring infor-

mation is used to detect deviance from preset quality inter-

vals. Our solution analyzes the deviance, decides on ac-

tion to be taken and sends an execution policy using the

monitoring tree to all peers. The peers implement a corre-

sponding strategy (e.g. adapting the routing table size) in

a coordinated manner. The system waits until the changes

take effect and initiates further actions if the effects are not

sufficient. Thus a preset quality interval, e.g. for the av-

erage hop count, is reached and hold. Our solution fulfills

the requirements for a monitoring and management mecha-

nism for structured p2p systems in a fast and cost effective

way. This mechanism allows to manage complex p2p appli-

cations, as an optimal configuration for any given scenario

can be found automatically. The quality of the system is

maintained even under high dynamism of the scenario, like

changing user behavior, peer heterogeneity or churn.

For the future we apply our solution for Kademlia which

offers more parameters to effect the quality of the system.

Further, we investigate interdependencies between the pa-

rameters and metrics using machine learning, so that adap-

tation rules can be derived based on the live observations.

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600 700 800 900

H
o

p
 C

o
u

n
t

Simulation time [min]

Overlay hop count at query delivery

Average
Target interval

(a) Hop Count

 110

 120

 130

 140

 150

 160

 0 100 200 300 400 500 600 700 800 900

S
iz

e
 o

f
fi
n

g
e

r
ta

b
le

Simulation time [min]

Aggregated finger table size

Minimum
Maximum

Average

(b) Routing Table Size

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

M
e

s
s
a

g
e

 C
o

u
n

t

Simulation time [min]

Workload of the system

Forwarded msgs
Delivered msgs
Started queries

(c) Workload and Traffic Overhead

Figure 9. Adaptation of the Hop Count: Starting With a Too Low Hop Count

 1

 10

 100

 0 100 200 300 400 500 600 700 800 900

H
o

p
 C

o
u

n
t

Simulation time [min]

Overlay hop count at query delivery

Average
Target interval

(a) Hop Count

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800 900

S
iz

e
 o

f
fi
n

g
e

r
ta

b
le

Simulation time [min]

Aggregated finger table size

Minimum
Maximum

Average

(b) Routing Table Size

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900

M
e

s
s
a

g
e

 C
o

u
n

t

Simulation time [min]

Workload of the system

Forwarded msgs
Delivered msgs
Started queries

(c) Workload and Traffic Overhead

Figure 10. Adaptation of the Hop Count: Starting With a Too High Hop Count

References

[1] K. Albrecht, R. Arnold, M. Gähwiler, and R. Wattenhofer.

Aggregating Information in Peer-to-Peer Systems for Im-

proved Join and Leave. In Proc. of IEEE P2P ’04, pages

227–234. IEEE Computer Society, 2004.

[2] M. Castro, M. Costa, and A. Rowstron. Performance and

dependability of structured peer-to-peer overlays. Depend-

able Systems and Networks, 2004 International Conference

on, pages 9–18, June-1 July 2004.

[3] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-

ica. Towards a Common API for Structured Peer-to-Peer

Overlays. In Proc. of IPTPS ’03, 2003.

[4] K. Graffi, A. Kovacevic, S. Xiao, and R. Steinmetz. Sky-

Eye.KOM: An Information Management Over-Overlay for

Getting the Oracle View on Structured P2P Systems. In

Proc. of IEEE ICPADS’08, pages 279–286, 2008.

[5] S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET:

An Extensible P2P Service that Unifies Ad-Hoc and Contin-

uous Querying in Super-Peer Networks. In Proc. of ACM

SIGMOD ’04, pages 933–934. ACM Press, 2004.

[6] M. Jelasity and O. Babaoglu. T-Man: Gossip-based Overlay

Topology Management. In Proc. of ESOA’05, 2005.

[7] S. Kaune, T. Lauinger, A. Kovacevic, and K. Pussep. Em-

bracing the Peer Next Door: Proximity in Kademlia. In In

Proc. of IEEE P2P ’08, pages 343–350, 2008.

[8] J. O. Kephart and D. M. Chess. The Vision of Autonomic

Computing. Computer, 36(1):41–50, 2003.

[9] A. Kovacevic, S. Kaune, P. Mukherjee, N. Liebau, and

R. Steinmetz. Benchmarking Platform for Peer-to-Peer Sys-

tems. it - Information Technology, 49(5):312–319, 2007.

[10] A. Kovacevic, N. Liebau, and R. Steinmetz. Globase.KOM -

A P2P Overlay for Fully Retrievable Location-based Search.

In Proc. of IEEE P2P ’07, 2007.

[11] J. Li, J. Stribling, R. Morris, M. F. Kaashoek, and T. M. Gil.

A Performance vs. Cost Framework for Evaluating DHTDe-

sign Tradeoffs under Churn. In Proc. of INFOCOM, 2005.
[12] P.Maymounkov and D.Mazières. Kademlia: A Peer-to-Peer

Information System Based on the XOR Metric. In IPTPS

’02, pages 53–65, 2002.
[13] E. Ng and H. Zhang. Predicting Internet Network Distance

with Coordiantes-based Approaches. In Proc. of INFO-

COM’02, 2002.
[14] M. Steiner, T. En Najjary, and E. W. Biersack. Ana-

lyzing Peer Behavior in KAD. Technical Report EURE-

COM+2358, Institut Eurecom, 2007.
[15] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F.

Kaashoek, F. Dabek, and H. Balakrishnan. Chord: a Scal-

able Peer-to-Peer Lookup Protocol for Internet Applications.

IEEE/ACM Trans. Netw., 11(1):17–32, 2003.
[16] R. van Renesse, K. P. Birman, and W. Vogels. Astrolabe:

A Robust and Scalable Technology for Distributed System

Monitoring, Management, and Data Mining. ACM Trans.

Comput. Syst, 21(2):164–206, 2003.
[17] R. van Renesse and A. Bozdog. Willow: DHT, Aggregation,

and Publish/Subscribe in one Protocol. In Proc. of IPTPS

’04, pages 173–183. Springer, 2004.
[18] Wuala. http://www.wua.la/, 2008.
[19] P. Yalagandula and M. Dahlin. A Scalable Distributed In-

formation Management System. In SIGCOMM ’04, pages

379–390. ACM, 2004.
[20] Z. Zhang, S. Shi, and J. Zhu. SOMO: Self-Organized Meta-

data Overlay for Resource Management in P2P DHT. In

Proc. of IPTPS ’03, volume 2735. Springer, 2003.
[21] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and

J. Kubiatowicz. Tapestry: A Resilient Global-scale Over-

lay for Service Deployment. IEEE Journal on Sel. Areas in

Comm., 22(1):41–53, 2004.

