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1 Introduction 

Media servers are a special variation of file servers with the requirement to deliver Part of all of their 
services within a certain time-frame. This basic requirement can be addressed at a variety of hardware 
and software levels that comprise a media server. Consequently, the range of research issues that con- 
tribute to media server design is wide. While many research groups deal with multimedia servers as a 
database issue, this chapter of the book concentrates on multimedia servers' content Storage and move- 
ment and does not consider its management. 

A basic, application-specifc distinction is made in these design of such media servers: data retrieval 
can either be controlled strictly by the client, which requests and sends pieces of content files, or a client 
can tune in to a server-controlled sending of data, which might have been initiated by that client. Figure 
1 demonstrates the requestlresponse behaviour of both approaches. 
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Figure 1: Pull and push server models 
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A media server that is operated in the first mode is called a pul1 server, a server that is operated in the 
second mode is call apush server. Another, frequently used expression for the push server is the term 
data pump, as this characterizes in a simple way its specialization in retrieving data from disk and deliv- 
ering it to the network efficiently. Pul1 servers are surely the more appropriate choice for editing multi- 
media content in a LAN environment: linear retrieval is frequent but not the mle, pieces of content are 
rearranged, temporal and spatial cross-connections are introduced. F'ush servers are the obvious choice 
for broadcast or multicast distribution of content over wide areas, with no or infrequent User interaction. 
Applications that are not as clear-cut in there requirements may be solvable with either of the two 
approaches. 

Pull and push servers are often considered competing concepts. Media server implementations, how- 
ever, show that these worlds are not h r  apart from each other because major parts of a server can be 
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operated in modes that can be used in pul1 as well as push rnode. A recently implemented rnixture of 
these approaches is the definition of play lists, client-defined lists that refer to pieces of content which is 
stored on the Server; these play lists are supposed to be sent to the client in a sequence [RTSP]. In the 
following, consider do not seperate these two approaches any more. 



2 Architectures 

Media Servers are responsible for the timely delivery of content to an 
delivered 

end-system. To achieve this goal, each component of the media server I data 
must conform to the bounds of time and space to fulfil its tasks. This 
attracts the research in a variety of areas: disk layout strategies, disk 
scheduling, file Systems, data placement, memory management or 
CPU scheduling. Figure 2 shows the order in which media server 
components are involved in delivering the content. Some of the tasks 
that are seperated in that figure are historically implemented in a sin- 
gle sy stem component. 

The network attachmenr is typically a network adapter or a similar 
device that connects the media server to the customers. The conrenr 
direcrov is the entity responsible for verifying whether content is 
available on the media server and whether the requesting client is 
allowed to access the data. The memov managenient is a separate 
entity because although a typical content file of multimedia applica- 
tions is too large to be kept in the main memory for a long time, the 
caching of content data in main memory improves the performance 
considerably for some applications. T h e j l e  system handles all infor- 
mation concerning the organization of the content on the media 
server. This includes such issues as the assignment of sufficient stor- Figure 2: Media server archi- 
age space during the upload phase, probably the transparent segmen- tecture 
tation of the content file, the consistency of the data on disk, and the 
location of the elements of a segmented content file during retrieval operations. The storage manage- 
ment is the abstraction of driver implementations that communicate directly with the disk controller. 
The storage management is concerned with disk scheduling policies and the layout of files. The disk 
controller handles the access to data on the storage device. Research on the disk controller level 
includes the increase of head movement speed, 110 bandwidth, the largest and smallest units that can be 
read at a time and the granularity of addressing. 

Of Course, optimizing one of the components is not sufficient. The components must cooperate cor- 
rectly even when the system grows. Such a growth means that the system or some of its components 
will be replaced or extended. In many cases an extensions means that a task is distributed onto multiple 
components, probably onto heterogeneous components, and that it may become necessary to replicate 
Part of the data to access it from all components of the distributed system. [TF95] provides a formaiiza- 
tion of the options for distributing parts of a video server. This formalization deviates from the reality 
with the generalization of the content directory's Position in a distributed system. Obviously, the content 
directory must always can consistent and all-knowing in order to answer requests correctly. Figure 3 
demonstrates the two alternative approaches to generalizing component distribution while a consistent 
content directory is maintained. Figure 3 (a) uses an internal content directory which, for consistancy 
reasons, can exist only once per media server. However, although the content directory appears consis- 
tent to all other components, it may still be distributed internally and achieve the appearance of a single 
component by presenting the same interface on all nodes of the media server. Figure 3 (b) shows all 
options for distributing components when the approach of an external content directory is adopted. A 
client of such a system contacts the external content server first to identify itself and to issue the request. 
After that initial request, two alternatives for proceeding with the retrieval operation are possible. If the 
response of the content server is returned to the client and the client is responsible for issuing the actual 
request for data in another call (Figure 4 (a)), additional security mechanisms must be applied because 
authentication of the client is checked by the content server. Alternatively, the content server can accept 
all requests directed to the media server, but instead of answering itself, it can immediately order the 
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Figure 3: Media server's distribution options 

appropriate nodes of the media server to deliver the content data (Figure 4 (b)). This approach is 
restricted because it requires one of two things: either the client must be able to receive the content data 
from a different server than the target of its request, or each server node must deliver the content using 
the address of the content server. 

Content 

(a) two-step retrieval (a) request redirection 
Figure 4: Extemal content retrieval options 

Content directories are typically handled by means of multimedia databases which are not subject of 
this Paper. 



3 Storage Devices 

The storage subsystem is a major component of any information System. Due to the immense storage 
space requirements of continuous media, conventional magnetic storage devices are often not sufficient. 
Tapes, still in use in some traditional systems, are inadequate for multimedia systems because they can- 
not provide independently accessible streams, and random access is slow and expensive. 

3.1 Disk Layout 

The layour of disks determines the way in which content on a disk is addressed, how much storage 
space on the media is actually addressable and usable und the density of stored content on the media. 
This has a major influence on the speed of read and write operations on that disk as well as on the 
capacity of the disk. 

Since disks are typically used as random-access media, it would be inefticient to organize data in a 
single track -a single spiral of data- as it has been the case for CD-Roms until just recently. The single- 
track technique requires all accessible information to be recorded in terms of distance from the track 
start, and an access mechanism requires a translation of this number to the position that the read head of 
the disk has to assume, which must be expressed as a combination of distance from the Center or the 
edge of the disk, to which the head must be moved, and the angular distance, which requires a partial 
rotation of the disk below the head before the data can be accessed. An additional drawback is the com- 
plex handling of operations on files such as delete or append operations. Due to the serial nature of the 
single-track approach, deletion of files leaves empty space in the track that can hardly be filled with an 
identically-sized new file. Similarly, data written in append operations is probably located far apart from 
the original pieces of the file. Segmentation of the medium and a continuous degradation of read- and 
write-performance are the result. 

Figure 5: Tracks and Sectors 

The location is more easily expressed by partitioning the medium in tracks and sector as depicted in 
Figure 5. The granularity of disk access is restricted to one sector on one track. The advantage of this 
scbeme is the easy mapping of location information to head movement and disk rotation, and with this 
scheme the disk can also hide defective parts of the media by reassigning tracks to spare regions of the 
medium. This scheme has a disadvantage as it looses storage space. When files are generally much 
smaller than the chosen sector size, large parts of the sector remain unused unless data is appended to 
the file. If such an append operation is executed, however, it can be bandled efiiciently. 



Additionally, constant rotation speed as well as constant recording and reading speed is typical for 
both single-track and multi-track disk layout schemes. This does not take into account the fact that the 
storage capacities of the medium are the Same for identically-sized areas in the inner and the outer 
regions of the disk. Since both rotation and recording speed are kept constant, a sector in track 1 holds 
the Same arnount of data as a sector in track 200 although the capacity of the area covered by the sector 
in track 200 is twice the capacity of the area covered by track 1. Early microcomputers' floppy disk 
drives addressed this issue by varying sector sizes or by variable rotation speed. For disk drives, neither 
approach is followed. 

3.2 Zone Bit Recording 

The current approach to overcome this is Zone Bit Recording [REF]. It makes an approach on the 
recovery of some of the lost space while both sector sizes and rotation speed are kept constant. Figure 6 
shows a sketch of the distribution of sectors on a disk when ZBR is used. The fact that the rotation 
speed remains constant while more equally-sized sectors are present in the outer tracks of the disk are 
addressed by a variable reading and writing speed of the disk. The figure is slightly misleading because 
it hides the fact that zoned disks do not have different numbers of sectors for each track, but only a small 
number of zones with different layouts. 

Figure 6: Sector arrangement on a Zoned disk 

For the typical use of disks for the storage of discrete content, ZBR disks have the advantage of using 
the physical medium on the disk more efiiciently. Access to data on the outer tracks remains equally fast 
as access to content on the inner tracks, and since sector sizes remain constant, no additional complexity 
is visible. When the disks are used for the delivery of continuous media streams such as video, addi- 
tional considerations are necessary. 

Assuming that the disk holds videos of various popularities [BGW97], the movement of popular 
video files to the outer tracks can reduce the average seek time when multiple Users retrieve videos and 
thus, increase the number of video streams that can be delivered concurrently. The reason for this is that 
an outer track is read as fast as an inner track but that the amount of sectors of an outer track is higher 
than that of an inner track. 

In [KLC97], the allocation of complete tracks to videos in this way is proposed. This allows for the 
fast transfer of frequently requested data from the outer zones to main memory buffers and it is consis- 
tent with the approach of storing video contiguously on disk to reduce seek times. However, from these 
buffers, a continuous playout must be guaranteed and thus, this video data must be kept in memory until 



it is delivered to the network. This raises the question whether this approach wastes buffers space. The 
more relevant effect of storing blocks of popular videos in outer tracks is gained in conjunction with 
algorithms such as SCAN or SCAN-EDF (see Section 6). Since most data of popular videos is stored in 
outer tracks, the probability that data must be retrieve from inner tracks as well as the average distance 
of disk head movements is reduced. 

Altematively, trackpairing is proposed in [BY95]. In this approach, two consecutive parts of a video 
data are stored first on an outer and than an inner track. A pair of outer and inner tracks forms a logical 
track, where all logical tracks on a disk have identical average throughput. In [CT97], this approach is 
modified to Segment group pairing scheme, in which identically-sized U 0  units of a video are stored in 
outer and inner zones of the ZBR disk in such a way that the average throughput of a pair of groups 
remains constant. 

The variable block size scheme, or VARB scheme introduced in [GKS95] is another scheme to 
exploit zoned disks. The main difference is the ignorance of disk sector size in favour of self-defined 
blocks. Blocks of a content file are stored on disk in a round robin manner in such a way that the time 
for reading a block is always the Same. This implies that blocks are larger in the outer zones, where seg- 
ments are read faster than in the inner zones. As a result of this arrangement, assuming that data has to 
be delivered to the client in a constant bit-rate manner, the time between retrieval operations on a Single 
stream become variable. The fixed block size scheme, or FIXB, was also introduced in [GKS95]. It is a 
scheme for use with zoned disks but in this case, blocks of the Same size are stored in all zones. 

3.3 File Structure 

We commonly distinguish two methods of file organization. In sequential storage, each file is organized 
as a simple sequence of bytes or records. Files are stored consecutively on the secondary storage media 
as shown in Figure 7. They are separated from each other by a well defined "end of file" bit Pattern, 
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Figure 7: Contiguous and non-contiguous storage 

character or character sequence. A file descriptor is usually placed at the beginning of the file and is, in 
some Systems, repeated at the end of the file. Sequential storage is the only possible way to organize the 
storage on tape, but it can also be used on disks. The main advantage is its efficiency for sequential 
access, as well as for direct access [Kra88]. Disk access time for reading and writing is minimized. 

With multimedia data, neither contiguous placement nor random placement of disk blocks is an opti- 
mal solution. Contiguous placement can be implemented easily but has the drawbacks of creating large 
empty arrays and thus, fragmentation on the disk. Insertion and deletion operations are extremely costly 
when data is moved to keep continuity and defragment the disk. This makes contiguous placement 
unaffordable for media Servers that are also used in editing or frequent upload operations. Random 
placement, in contrast, implies that random seeks from one file block to the next must be made very 
often, even when only a small amount of data is required. 



A few approaches address this problem. One approach is the selection of large block sizes. Since 
continuous media content is typically large, the percentage of lost space due to partially unused blocks 
at the end of the file is acceptable. The media Server takes advantage of this by the reduced management 
for all operations because less addressing information needs tobe kept, and because big amounts of data 
can be transferred to the main memory without seek penalties. In [RW94], Reddy and Wyllie introduce 
constrained placement (at the disk controller or Storage management level), which introduces the tech- 
nique of placing blocks on disk in such a way that ihey are in a reasonable distance from each other, 
meaning that the seek-time between a block and its consecutive block is within acceptable bounds. 
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Figure 8: R :AID levels ([CLG+94]) 

4 Disk Controller 

4.1 Data Placement 

Striping 

If a system grows large enough to make the usage of multiple disks affordable, an issue that concerns 
many home-used PC nowadays, the means of accessing these disks must be taken into account. The 
simple approach is to arrange file systems in a convenient way on either of the disks and gain perfor- 
mance by put the more frequently used data on the fastest disks. Although this is sufficient if the amount 
of disk space is the only concern, this is not the most effective way in which multiple disks can be used. 
Striping techniques have been developed that take more than just the amount of available space into 
account. 

RAID 

The original way of combining disks in a more efficient way is the "Redundant Arrays of Inexpensive 
Disks", or RAID ([PGK88]). RAID addresses both performance and security problems to various 
extents in its various sub-specifications, which are called RAID-Levels. Seven RAID levels are defined 
(0-6), each of which makes a different approach at combining performance enhancement with security 
enhancements. Some of these levels can be implemented in software while others require hardware sup- 
port. 

A RAID-0 disk array is nonredundant, so basically, the name R A D  is even misleading in this case. It 
is a purely performance-oriented RAID-level. It does not introduce any redundancy (or security) into 
the system but allows file systems to spread out across multiple disks, e.g. to achieve higher through- 
put for the delivery of data to applications that can consume data quickly but are throttled by the 
read-performance of a single disk. 



RAID-1 irnplernents mirroring or shadowing by storing all data twice. This is the traditional 
approach to data security. Whenever data is written to the RAID systern, each block is stored on two 
disks that are rnirrors of each other. When data is retrieved, this systern can be used to retrieve data 
frorn the disk with the lower access delay. In case of a disk failure, all requests are handled by the 
rnirror of that disk. The recreation of a rnirror disk after a failure is a copy operation from the remain- 
ing disk. The Storage efficiency is low in this level, but the nurnber of read transactions is high. 
RAID-2 implements error correcting codes similar to ECC mernory. For all of the prirnary data 
disks, the Hamming codes ([PW72]) are cornputed and stored on additional parity disks. When a 
disk fails, the parity information on multiple parity disks identifies correctly the failed disk and in 
conjunction with all remaining data disks, the data of the failed disk can be reconstmcted with a sin- 
gle parity disk. Since parity information must be modified on multiple parity disks at each write 
operation, this is a rather expensive RAID level and rnust be irnplemented in hardware. 
RAID-3 irnplernents bit-interleaved parity, which requires only a single parity disk. In this scherne, 
the fact is exploited that the disk controller can easily detect when a disk fails. Thus, the identifica- 
tion of the failed disk that is possible with level 2 is not needed and only the recreation of lost infor- 
rnation remains an issue. This recreation is possible after the failure of one data disk by cornputing 
the sum of each bit on all of the remaining data disks and the parity disk rnodulo 2. As in level 2, the 
constant maintenance of this parity information restricts the write performance to that of the parity 
disk and requires hardware support for the parity calculation. 
RAID-4 is named block-interleaved parity. Instead of looking at each bit individually, the term srrip- 
ing unit is introduced for this RAID level. A stripe extends across all data disks of the disk amay and 
is cornposed of data blocks of arbitrary size, the striping unit, on each disk. If a write operation is 
srnaller than the striping unit, all data is written to one disk, otherwise striping units of more disks 
are rnodified. A block of new parity data on the parity disk is than cornputed frorn all striping units in 
the affected stripe. As with level 3,  this RAID level is bound by the performance of the single parity 
disk that is affected by all write operations. 
RAID-5 reduces this perforrnance bottleneck by implementing block-interleaved distributed-parity. 
Instead of keeping the parity information of a stripe on a specific parity disk, parity blocks are 
equally distributed over the disks in the stripe units. The decision for placement of these parity 
blocks affects the performance of the System, as shown in [LK91]. In case of a disk failure, the miss- 
ing data can be reconstructed as in level 4, without any additional consideration whether the recon- 
structed data is original data and parity data. 
RAID-6, called P+Q redundancy, uses Reed-Solornon codes to protect against the failure of two 
disks by increasing the basic size of the array by two redundant disks.These codes provide a better 
rneans of reconstructing the original data in case of a disk failure. This is relevant because the parity- 
protected levels all require the no read fails until the failed disk has been replaced. However, in large 
installations, additional errors become more probable, and protections against this are neceassry. 
Level 6 provides this protection for a failure of up to two cornplete disks by distribution redundant 
data in a similar way to level 5. 
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Figure 10: Varieties of group creation 

The performance of the various RAlD levels is shown in Table 1. 

Table 1: Throughput and storage efficiency of RAID levels 
The efficiency is relative to RAID 0, G is the number of disks in a group. 
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RAID was not developed to Support multimedia applications, although the higher throughput of striped 
disks is an asset in that case. For the scalability of Multimedia Server, however, the throughput is only 
one issue among many. An increase in the scale of throughput is typically not necessary for a MM 
Server to handle new data formats and to deliver that data as quickly as possible to a client. Rather, the 
number of clients that are requesting data concurrently increases, which increases not only the amount 
of data that has to be delivered but also the number of files that have to be retrieved in parallel. This 
implies an increased number of seek operations per unit time, a scaling issue which is not covered by 
RAID technology. Similarly, since multimedia data requires time-conforming delivery of data streams, 
the buffer requirements at the server grow when disk throughput is considerably higher than the deliv- 
ery rate. A buffer allocated for each single client is filled in a shori read burst due to the high throughput 
of the parallel disks, and subsequently, this data is delivered at the requesied rate from that buffer. With 
an increasing number of disks to suppori more clients, the larger data blocks delivered per read burst as 
well as the increased number of parallel streams contribute to a quick increase in buffer requirements. 
Figure 9 illustrates the increase of buffer sizes that have to be made available to buffer a single reti-ieval 
operation when the size of a RAlD stripe group grows. A variety of techniques have been developed to 
address also this issue. 
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Figlcre 9: Growth of buffer requirements 

Multiple RAID 

The most intuitive of these techniques is the creation of subgroups of disks into independant logical disk 
arrays. This limits the number of disks across which a file is striped to the size of such a group. 

Declustering 

In declustering, groups are not made up from complete disks. Rather than this, the stripe units of each 
disk are considered. Stripe units are logically connected into a stripe that spans only a subset of the 
disks (using the typical RAID protection mechanism). The number of disks for any such stripe is fixed 
and the same, but the disks on which a stripe is located differs. In such a way, all load is better distrib- 
uted then with Multiple RAID and the V 0  throughput of all disks is exploited even if only a limited 
number of stripes is accessed. 

Dynarnic Declustering 

In dynamic declustering, this scheme is extended to assign stripes not statically to a set of disks but 
rather, decide for each file the size and location of the stripes used. This scheme has two drawbacks: it a 
very management-intensive and it can not be used with protection mechanisms. It is a lot more manage- 
ment-intensive because a selection of a stripe must be made for each write operation. This selection 
must be augmented by the application because the file system disk controller is not Ware of the through- 
put requirements of a content file.However, this scheme allows for an adaptation of the buffer size to the 
bandwidth requirements of the content file. When a server is supposed to deliver a mixed workload 
which ranges from bulk data to various continuous media formats, this can be worthwhile. A second 
drawback is that the group assignment in software makes it diificult to compute parity information in 
the disk controller. Special hardware and special interfaces would be necessary. 

Weighted Striping 

Weighted striping (VD971) takes into account that it is unlikely for a real-world system to operate a 
multimedia server for a long time without adding or replacing part of the disks with newer or cheaper 
models. Since this introduces an inhomogenity in the performance of the disks in the system, the 
throughput of a stripe may be limited by the least performant disk. In the variable size weighted stnp- 
irlg, the size of stripe units are varied depending on the throughput of each disk in the stripe group. 



stream A, required at time t=l 
stream A, required at time t=4 
stream A. required at time t=7 

stream A, req'd at time t=i 
stream A. req'd at time t=4 
1 stream A, req'd at time t=7 

stream A, req'd at time t=l 
stream A, req'd at time t=4 
strearn A, reqtd at time t=7 

Figure 11: Split Stripe retrieval 

However, the replacement of a single disks with a new disk, with different performance characteristics, 
requires a memory-intensive restriping of a all data bytes of the stripe rather than the reconstruction of a 
single stripe unit. Because of this, the constant size weightedstriping is also proposed, which intends to 
level die throughput demands on single disks in the stripe in the long tenn. A video is split into units as 
large as one stripe unit, and these units are distributed onto the disks in such a way that disks with a 
higher throughput hold more units than disks with a lower throughput. The number of assigned units is 
equivalent to the throughput of the disks. 

Split-Stripe Retrieval 

Introduced in [TF95], this technique trics to address the problem of buffer requirements by allowing 
read operations for more than one stream in a single read operation to a stripe, i.e. while a full stripe is 
read in every cycle, the results of this read operation do not necessarily fill only the buffer for a single 
stream. Figure 11 gives a sketch of the retrieval operations. While the smallest addressable unit in RAID 
is the stripc. split stripc retrieval requires the addressing of the stripe unit, which may be as small as a 
single sector on a single disk. 

Cyclic Retrieval 

An enhancement of this technique is to allow not only the addressing in a read operation tobe indepen- 
dent of the stripe unit that is read with the stripe but to perform read operations on stripe units without 
the need for retrieving full stripes in one operation. This cyclic retrieval technique allows for a much 
smaller buffers per stream because the maximum required buffer size per stream is not the size of a 
stripe but that of a single stripe unit and not a full stripe. 

4.2 Reorganization 

The addition of new disks to a media server can result in an overall performance increase for that server 
if the U 0  bandwidth of those new disks can be exploited. For quite a while now, hot-swappable and hot- 
pluggable disks are available from hardware vendors. Since the newly added disks can be considered 
initially empty, a reorganization of content that is already located on the server must be iniatiated in that 
case. In the best case, such a reorganization is handled without disrupting the service. 

One scheme for reorganizing a media server after the addition of a disk ( n + l )  to a stripe group ( I  .. 
n) without disrupting the service is the movement of segments of a content file to rearrange them in such 
a way that consecutive segments are ordered according to the index of the disk in the stripe group (inod- 
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Figure 12: Lazy reorganization of stripe groups 

ulo n+l) .  [GK96] presents lazy and eager on-line reorganization. Lazy reorganization is activated only 
when a content file is retrieved by a client. If a Segment of the content file is retrieved which should be 
relocated to the new disk based the placement formula for segments in stripe groups, a write operation 
to the new disk is performed in the cycle following the read operation. Figure 12 visualizes the rear- 
rangement. This scheme has the drawback that the reorganization is executed only for those content 
files that are accessed by a client. If a file is never retrieved, it is also never reorganized. With eager reor- 
ganization, idle time of the system is used to reorganize content. Since the order to segments in this 
approach is not bound by the playout order, multiple segments can be rearranged at a time, if sufficient 
buffer space in main memory is available. Assuming sufficient buffer space, the reorganization would 
be performed as shown in Figure 13. The time tbat is necessary to perform the reorganization can fur- 
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Figure 13: Eager reorganization of stripe groups 

ther be reduced by preloading tbe segments that are targetted at tbe new disks hefore the insertion of 
those disks into the system. The original segments are then removed from their previous location and 
the otber blocks are reorganized. 

The random duplicated assignmenr approach proposed in [Kor971 is based on the assumption of a 
system which is built on a growing number of heterogenous disks and delivers variable bit-rate data 
streams. Such a system is on average not degraded by randomly placing blocks two times on different 
disks of the system and retrieving them from the less loaded disk. In case of replacement of a single 
disk, content can be reconstructed by replicating data blocks onto that disk when only a single copy of 
these hlocks is available in the system, in case of adding a new disk, blocks can be from any of the disks 



that are already available in the system and they can be moved to the new disk in case that they have not 
been moved there from a different disk earlier. 



5 Storage Management 

Whereas strictly sequential storage devices (e.g., tapes) do not have a scheduling problem, for random 
access storage devices, every file operation may require movements of the readlwrite head. This opera- 
tion, known as "to seek", is very time consuming. Disk management tries to reduce the effects of such 
operations. Still, the actual time to read or write a disk block is determined by: 

The seek time (the time required for the movement of the readlwrite head). 
The latency time or rotational delay (the time during which the transfer cannot proceed until the right 
block or sector rotates under the readlwrite head). 
The actual data transfer time needed for the data to copy from disk into main memory. 

Usually the seek time is the largest factor of the actual transfer time. Most systems try to keep the cost 
of seeking low by applying special algorithms to the scheduling of disk readlwrite operations. The 
access of the storage device is a problem greatly influenced by the file allocation method. For instance, 
a program reading a contiguously allocated file generates requests which are located close together on a 
disk. Thus head movement is limited. Linked or indexed files with blocks, which are widely scattered, 
cause many head movements. In multi-prograrnming systems, where the disk queue may often be non- 
empty, faimess is also a criterion for scheduling. The approaches to optimize these are called disk 
scheduling algorithms. 

5.1 Disk Management 

Disk access is a slow and costly transaction. In traditional systems, a common technique to reduce disk 
access are block caches. Using a block cache, blocks are kept in memory because it is expected that 
future read or write operations access these data again. Thus, performance is enhanced due to shorter 
access time. Another way to enhance performance is to reduce disk arm motion. Blocks that are likely 
to be accessed in sequence are placed together on one cylinder. To refine this method, rotational posi- 
tioning can be taken into account. Consecutive blocks are placed on the same cylinder, but in an inter- 
leaved way as shown in Figure 14. Another important issue is the placement of the mapping tables (e.g., 

Interleaved Storage 

3rd file I I I I I 

1st f. 1 I 1 2nd file : 

Non-interleaved Storage 
3rd file I I I I I 

1st f. - I 2nd file 1 

Figure 14: lnrerleaved and non-interleaved storage 

I-nodes in UNIX) on the disk. If they are placed near the beginning of the disk, the distance between 
them and the blocks will be, on average, half the number of cylinders. To improve this, they can be 
placed in the middle of the disk. Hence, the average seek time is roughly reduced by a factor of two. In 
the same way, consecutive blocks should be placed on the same cylinder. The use of the same cylinder 
for the storage of mapping tables and referred blocks also improves performance. 



File Structure 

In conventional storage management systems, the main goal of the file organization is to make efficient 
use of the storage capacity (i.e., to reduce internal and external fragmentation) and to allow arbitrary 
deletion and extension of files. In multimedia systems, the main goal is toprovide a consranr und timely 
retrieval of data. Interna1 fragmentation occurs when blocks of data are not entirely filled. On average, 
the last block of a file is only half utilized. The use of large blocks leads to a larger waste of storage due 
to this internal fragmentation. External fragmentation mainly occurs when files are stored in a contigu- 
ous way. After the deletion of a file, the gap can only be filled by a file with the Same or a smaller size. 
Therefore, there are usually small fractions between two files that are not used, storage space for contin- 
uous media is wasted. 

As mentioned above, the goals for multimedia file systems can be achieved through providing 
enough buffer for each data stream and the employment of disk scheduling algorithms, especially opti- 
mized for real-time storage and retrieval of data. The advantage of this approach (where data blocks of 
single files are scattered) is flexibility. Extemal fragmentation is avoided and the same data can be used 
by several streams (via references). Even using only one stream might be of advantage; for instance, it 
is possible to access one block twice, e.g., when a phrase in a Sonata is repeated. However, due to the 
large seek operations during playback, even with optimized disk scheduling, large buffers must be pro- 
vided to smooth jitter at the data retrieval phase. Therefore, there are also long initial delays at the 
retrieval of continuous media. 

The much greater size of continuous media files and the fact that they will usually be retrieved 
sequentially because of the nature of the operation performed on them (such as play, pause, fast for- 
ward, etc.) are reasons for an optimization of the disk layout. Our own application-related experience 
has shown that continuous media streams predominantly belong to the write-once-read-many nature, 
and streams that are recorded at the same time are likely tobe played back at the Same time (e.g., audio 
and video of a movie, [LS93]). 

5.2 Traditional Disk Scheduling 

Most traditional storage systems apply one of the following scheduling algorithms: 

First-Come-First-Served (FCFS) 

With this algorithm, the disk driver accepts requests one-at-a-time and serves them in incoming order. 
This is easy to program and an intrinsically fair algorithm. However, it is not optimal with respect to 
head movement because it does not consider the location of the other queued requests. This results in a 
high average seek time. Figure 15 shows an example of the application of FCFS to a request of three 
queued blocks. 

Shortest-Seek-Time First (SSTF) 

At every point in time, when a data transfer is requested, SSTF selects among all requests the one with 
the minimum seek time from the current head position. Therefore, the head is moved to the closest track 
in the request queue. This algorithm was developed to minimize seek time and it is in this sense optimal. 
SSTF is a modification of Shortest Job First (SJF), and like SJF, it may cause starvation of some 
requests. Request targets in the middle of the disk will get immediate service at the expense of requests 
in the innermost and outermost disk areas. Figure 16 demonstrates the operation of the SSTF algorithm. 
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Figure 15: FCFS disk scheduling 
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Figure 16: SSTF disk sched~rling 

Like SSTF, SCAN orders requests to minimize seek time. In contrast to SSTF, it takes the direction of 
the current disk movement into account. It first serves all requests in one direction until it does not have 
any requests in this direction anymore. The head movement is then reversed and service is continued. 
SCAN provides a very good seek time because the edge tracks get better service times. Note that middle 
tracks still get a better service then edge tracks. When the head movement is reversed, it first serves 
tracks that have recently been serviced, where the heaviest density of requests, assuming a uniform dis- 
tribution, is at the other end of the disk. Figure 17 shows an example of the SCAN algorithm. 

This variation of the SCAN tries to reduce delays that are introduced into the SCAN scheme by requests 
that arrive after the SCAN has started. As a result of this, incoming requests may have to wait although 
the disk head passes by the requested position on the disk. The N-Step-SCAN approach gains fairness 
for the requests to data on outer tracks for a lower average response time. The scheme can be modified 
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Figure 18: N-srep-SCAN disk scheduling 

to move the disk head to the outermost position that is requested for the next SCAN instead of starting 
the next SCAN from the position of the last read track of the previous SCAN. One effect is that SCAN 
are not always performed in upwards-downwards order, but the direction of the movement can change. 
Another is that this approach, called Preseek-Sweep-Scheduling [REF] yields a lower average seek 
times. 

C-SCAN 

C-SCAN also moves the head in one direction, but it offers fairer service with more uniform waiting 
times. It does not alter the direction, as in SCAN. Instead, it scans in cycles, always increasing or 
decreasing, with one idle head movement from one edge to the other between two consecutive scans. 
The performance of C-SCAN is somewhat less than SCAN. Figure 19 shows the operation of the C- 
SCAN algorithm. 
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Figure 19: C-SCAN disk scheduling 

T-SCAN 

T-SCAN, introduced in [REF], uses a method called period transformation to prevent blocking of indi- 
vidual requests. Such a period transformation is actually a modification of the sizes by which individual 
requests are serviced. With the goal of supporting media streams without blocking, T-SCAN use one 
stream's request behaviour as a reference to to service all requests. That implies that, if the reference 
stream's requested rate is R I  and the block size that is requested per cycle is BI ,  and another streams 
requested rate is R2, that other stream is semiced with blocks of size of BI*R2/RI, no matter what the 
actual requests of the application are. In this way, requests are serviced in the order of their arrival using 
the SCAN mechanism, and all streams will be provided a fair share of the i/O bandwidth. However, 
without admission control, this scheme affects all serviced streams when the server gets overloaded. 

Traditional file systems are not designed for employment in multimedia systems. They do not, for 
example, consider requirements like real-time which are important to the retrieval of stored audio and 
video. To serve these requirements, new policies in the stmcture and organization of files, and in the 
retrieval of data from the disk, must be applied. The next section outlines the most important develop- 
ments in this area. 

5.3 Multimedia Disk Scheduling 

The main goals of traditional disk scheduling algorithms are to reduce the cost of seek operations, to 
achieve a high throughput and to provide fair disk access for every process. The additional real-time 
requirements introduced by multimedia systems make traditional disk scheduling algorithms, such as 
described previously, inconvenient for multimedia systems. Systems without any optimized disk layout 
for the storage of continuous media depend far more on reliable and efficient disk scheduling algorithms 
than others. In the case of contiguous storage, scheduling is only needed to serve requests from multiple 
streams concurrently. In [LS93], a round-robin scheduler is employed that is able to serve hard real-time 
tasks. Here, additional optimization is provided through the close physical placement of streams that are 
likely to be accessed together. 

The overall goal of disk scheduling in multimedia systems is to meet the deadlines of all time-critical 
tasks. Closely related is the goal of keeping the necessary buffer space requirements low. As many 
streams as possible should be served concurrently, but aperiodic requests should also be schedulable 
without delaying their service for an infinite amount of time. The scheduling algorithm must find a bal- 
ance between time constraints and efficiency. 
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Figure 20: EDF disk scheduling 

Earliest Deadline First 

Let us first look at the EDF scheduling strategy as described for CPU scheduling, but used for the file 
system issue as well. Here the block of the stream with the nearest deadline would be read first. The 
employment of EDF, as shown in Figure 20, in the strict sense results in poor throughput and excessive 
seek time. Further, as EDF is most often applied as a preemptive scheduling scheme, the costs for pre- 
emption of a task and scheduling of another task are considerably high. The overhead caused by this is 
in the Same order of magnitude as at least one disk seek. Hence, EDF must be adapted or comhined with 
file system strategies. 

SCAN-Earliest Deadline First 

CC. ir>nreboil\ ~rorrced rhur ricle-bu,eil files~sienr.~ collup>e SCAN-El)F i~rio SCAh'. 1)oes < r  l u~ i<  SCAhl- 
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The SCAN-EDF strategy is a combination of the SCAN and EDF mechanisms [RW93]. The seek opti- 
mization of SCAN and the real-time guarantees of EDF are combined in the following way: like in 
EDF, the request with the earliest deadline is always served first; among requests with the Same dead- 
line, the specific one ihat is first according to the scan direction is served first; among the remaining 
requests, this principle is repeated until no request with this deadline is left. 

Since the optimization only applies for requests with the Same deadline, its efficiency depends on 
how often it can be applied (i.e., how many requests have the Same or a similar deadline). To increase 
this probability, the following tricky technique can be used: all requests have release times that are mul- 
tiples of the period p. Hence, all requests have deadlines that are multiples of the period p. Therefore, 
the requests can be grouped together and be served accordingly. 

SCAN-EDF can be easily implemented. To do this, EDF must be modified slightly. If Di is the dead- 
line of task i and Ni is the track position, the deadline can be modified to be D,+ / ( N , ) .  Thus the deadline 
is deferred. The function f() converts the track number of i into a small perturbation of the deadline, as 



shown in the example of Figure 21. It must be small enough so that D; + f  ( N , )  s oj + f  ( N ~ )  holds for all 

Figure 21: SCAN-EDF disk scheduling wich N„ = 100 andflN,) = Nil 

D,  s o j ,  it was proposed to choose the following function [RW93]: 

N ;  
f ( N , )  = - 

Nmnx 
where N„ is the maximum track number on disk. Other functions might also be appropriate. 

We enhanced this mechanism by proposing a more accurate perturbation of the deadline which takes 
into account the actual position of the head (N). This position is measured in terms of block numbers 
and the current direction of the head movement (See also Figures 22 and 23):  

I .  If the head moves toward N„, i.e., upward, then 

Figure 22: Accurare EDF-SCAN algorithm, head moves upward 

(a) for all blocks N, located between the actual position N and Nm, the perturbation of the deadline is: 

N , - N  
f ( N i )  = - f o r a l l  N j > N  

N<,,"x 

(b) for all blocks Ni located between the actual position and tbe first block (no. 0):  

, 'Jrn", - Ni 
f ( N ; )  = - f o r  a l l  N i  < N  

Nmax 



2. If the head moves downward towards the first blocks, then 

if (Ni > N): f(Ni) 
b 

O Ni 4 N  Nmm - 
if (Ni < N): - f(Ni) 

Figure 23: Accurate EDF-SCAN algoritlim, head moves downward 

(a) for all blocks located between the actual position and Nm: 

Ni f ( ~ ~ )  = - f o r  oll N i  > N  
Nmex 

(b) for all blocks located between this first block with the block number 0 and the actual position: 

N N i  
/ ( N i )  = N„, f o r  oll N ,  i N 

Our algorithm is more computing-intensive than those with the simple calculation of [RW93]. In cases 
with only a few equal deadlines, our algorithm provides improvements and the expenses of the calcula- 
tions can be tolerated. In situations with many, i.e., typically more than five equal deadlines, the simple 
calculation provides sufficient optimization and additional calculations should be avoided. SCAN-EDF 
was compared with pure EDF and different variations of SCAN. It was shown that SCAN-EDF with 
deferred deadlines performed well in multimedia environments [RW93]. 
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Figure 24: Group sweeping scheduling a s  a disk access strategy 

Group Sweeping Scheduling 

With Group Sweeping Scheduling (GSS), requests are served in cycles, in round-robin manner 
([YCK92], [GH94]). To reduce disk arm movements, the set of n streams is divided into g groups. 
Groups are served in fixed order. Individual streams within a group are served according to SCAN; 
therefore, it is not fixed at which time or order individual streams within a group are served. In one 
cycle, a specific stream may be the first to be served; in another cycle, it may be the last in the same 
group. A smoothing buffer which is sized according to the cycle time and data rate of the stream assures 
continuity. If the SCAN scheduling strategy is applied to all streams of a cycle without any grouping, 
the playout of a stream cannot be started until the end of the cycle of its first retrieval (where all requests 
are served once) because the next service may be in the last slot of the following cycle. As the data must 
be buffered in GSS, the playout can be started at the end of the group in which the first retrieval takes 
place. Whereas SCAN requires buffers for all streams, in GSS, the buffer can be reused for each group. 
Further optimizations of this scheme are proposed in [CKY93]. In this method, it is ensured that each 
stream is served once in each cycle. GSS is a trade-off between the optimization of buffer space and arm 
movements. To provide the requested guarantees for continuous media data, we propose here to intro- 
duce a "joint deadline" mechanism: we assign to each group of streams one deadline, the "joint dead- 
line". This deadline is specified as being the earliest one out of the deadlines of all streams in the 
respective group. Streams are grouped in such a way that all of them comprise similar deadlines. Figure 
24 shows an example of GSS. 

Mixed Strategy 

CG: dont' know what to da with this scheme; never seen and never heard of;  to be delered or replaced ? 

In [Abbo84a]????, a mixed strategy was introduced based on the shortest seek (also called greedy strat- 
egy) and the balanced strategy. As shown in Figure 25, every time data are retrieved from disk they are 
transferred into buffer memory allocated for the respective data stream. From there, the application pro- 
cess removes them one at a time. The goal of the scheduling algorithm is: 
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Figure 25: Mixed disk scheduling strategy 

To maximize transfer efficiency by minimizing seek time and latency. 
To serve process requirements with a limited huffer space. 

With shortest seek, the first goal is served, i.e., the process of which data hlock is closest is served first. 
The halanced strategy chooses the process which has the least amount of huffered data for service 
hecause this process is likely to run out of data. The cnicial Part of this algorithm is the decision of 
which of the two strategies must he applied (shortest seek or halanced strategy). For the employment of 
shortest, seek two criteria must be fulfilled: the number of huffers for all processes should he balanced 
(i.e., all processes should nearly have the same number of huffered data) and the overall required hand- 
width should he sufficient for the number of active processes, so that none of them will try to immedi- 
ately read data out of an empty huffer. In [Ahho84a]????, the urgency is introduced as an attempt to 
measure hoth. The urgency is the sum of the reciprocals of the current "fullness" (amount of huffered 
data). This number measures hoth the relative balance of all read processes and the number of read pro- 
cesses. If the urgency is large, the halance strategy will be used; if it is small, it is safe to apply the 
shortest seek algorithm. 

Continuous Media File System 

CMFS Disk Scheduling is a non-preemptive disk scheduling scheme designed for the Continuous Media 
File System (CMFS) at UC-Berkeley [AOG91]. Different policies can he applied in this scheme. Here 
the notion of the slack time H is introduced. The slack time is the time during which CMFS is free to do 
non-real-time operations or workahead for real-time processes, because the current workahead of each 
process is sufficient so that no process would starve, even if it would not be served for H seconds. The 
considered real-time scheduling policies are: 

The Static/Minimal policy is hased on the minimal Workahead Augmenting Set (WAS). A process pi 
reads a file at a determined rate Ri. To each process, a positive integer Mi is assigned which denotes 
the time overhead required to read a hlock covering, for example, the seek time. The CMFS performs 
a Set of operations (i.e., disk operations required by all processes) hy seeking the next block of a file 
and reading Mi blocks of this file. Note, we consider only read operations; the Same also holds, with 
minor modifications, for write operations. This seek is done for every process in the System. The data 
read hy a process during this operation "last" M, whereA is the hlock size in hytes. The WAS is a 

Ri 
Set of operations where the data read for each process "last longer" than the worst-case time to per- 
form the operations (i.e., the sum of the read operations of all processes is less than tbe time read 
data last for a process). A schedule is derived from the Set that is workahead-augmenting and feasihle 
(i.e., the requests are served in the order given by the WAS). The Minimal Policy, the minimal WAS, 
is the schedule where the worst-case elapsed time needed to serve an operation set is the least (i.e., 



the Set is ordered in a way that reduces time needed to perform the operations, for example, by reduc- 
ing seek times). The Minimal Policy does not consider buffer requirements. If there is not enough 
buffer, this aigorithm causes a buffer overllow. The Static Policy modifies this schedule such that no 
block is read if this would cause a buffer overflow for that process. With this approach, starvation is 
avoided, but its use of short operations causes high seek overhead. 
With the Greedv Policy, a process is served as long as possible. Therefore, it computes at each itera- 
tion the slack time H. The process with the smallest workahead is served. The maximum number n of 
blocks for this process is read; n is determined by H (the time needed to read n blocks must be less 
than or equal to H) and the currently available buffer space. 
The Cyclical Plan Policy distributes the slack time among processes to maximize the slack time. It 
calculates Hand increases the minimal WAS with H milliseconds of additional reads; an additional 
read for each process is done immediately after the regular read determined by the minimal WAS. 
This policy distributes workahead by identifying the process with the smallest slack time and sched- 
ules an extra block for it; this is done until H i s  exhausted. The number of block reads for the least 
workahead is determined. This procedure is repeated every time the read has completed. 

The Aggressive version of the Greedy and the Cyclical Plan Policy calculates H o f  all processes except 
the least workahead process that is immediately served by both policies. If the buffer size limit of a pro- 
cess is reached, all policies skip to the next process. Non-real-time operations are served if there is 
enough slack time. Performance measurements of the above introduced strategy showed that Cyclical 
Plan increases system slack faster at low values of the slack time (which is likely to be the case at sys- 
tem setup). Wiih a higher system slack time, apart of the StaticMinimal Policy, all policies perform 
about the Same. 

All of the disk scheduling strategies described above have been implemented and tested in Prototype 
file systems for continuous media. Their efficiency depends on the design of the entire file system, the 
disk layout, tightness of deadlines, and last but not least, on the application that is behaving. It is not yet 
common sense which algorithm is the "best" method for the storage and retrieval of continuous media 
files. Further research must show which aigorithm serves the timing requirements of continuous media 
best and ensures that aperiodic and non-real-time requests are efficiently served. 

5.4 Replication 

Content replication is a means to answer two issues at the storage management level: availability in case 
of disk of machine failures, and limits to the number of concurrent access to individual titles because of 
limits on the throughput of the hardware. The failure handling argument is very similar at the storage 
management level as at the disk controller level, with the major difference that the storage management 
can apply various kinds of storage media to store replica (e.g. tapes, disks or main memory). Consider- 
ations on this issue have been elaborated in [RW94]. The alternatives for using replication to increase 
the number of concurrent deliveries of one file, however, are increased in this component. 

On-demand applications can be partitioned into two families by the aging characteristics of their 
content. The content of online archives is assumed to be relatively time-independent and it is accessed 
based on the current interests of the customers. The content of news-on-demand and video-on-demand 
systems is expected to exhibit a popularity life-cycle like a newspaper or a movie. For the latter, the 
existance of a single copy of the content on a media Server may not be sufficient to serve the necessary 
number of concurrent streams for a true on-demand systems from the storage subsystems where it is 
located. 

Static replication 

The simplest approach to replication that can be taken is the explicit duplication of content files, by stor- 
ing the file on multiple machines and providing the User with a choice of access points. This is fre- 



quently done in the Internet today: the content provider stores keeps copies of the original version up to 
date on Servers close to the User. Using the more elaborate manual options, the content is duplicated 
rnanually, and an application provides alternating copies of the file under the same name. 

A static placernent policy that uses such estirnated load information for the placernent of video 
objects is proposed in [DS95b]. This static placernent policy is cornplernentary to the proposed policy, 
as it reduces, but cannot elirnitate, dynamic irnbalances. 

Dynamic Segment Replication 

Dynamic segment replication as it is introduced in [DKS95] is designed for content which is accessed 
read-only and which can be split into equally-sized segrnents of a size that is conveniently handled by 
the file system. Fixing segrnent sizes as well as chosing segrnents that are large in cornparison to a disk 
block are decisions that are rnade to keep the irnplernentation overhead low. Since contiunous rnedia 
data is delivered in linear order, a load increase on a specific segrnent can be used as a trigger to repli- 
cate this segrnent and all following segments to other disks. Such segrnents are considered temporary 
segrnents in contrast to the original segrnents, which are permanent segments. One of the rnajor advan- 
tages of this replication policy is that it takes not only the request frequency of individual movies into 
account. Rather than this, the load of the disk is also considered. Specifically, the decision is made in the 
following way: each disk X has a pre-specified threshold for the number of concurrent read requests B, 
that must be exceeded by the surn of all segments' read operations in the current read cycle of the disk 
(where 'cycle' rneans the playout time of one segrnent) as well as by next read cycles to initiate the rep- 
lication algorithm. 

To simplify the calculation, the read requests are considered uniformly distributed over all replicas 
rather than taking requests to other segrnents on the sarne disk into account. In this way, the future load 
in t cycles for the i-th segment is predicted as ni-Jri where n i . ~  is the nurnber of viewers of segment i-t 
and ri is the nurnber of current replicas of the segrnent. For all segrnents j (jit) ,  it is assurned that the 
current arrival rate n,/ri will be rnaintained in the future. If the surn of the expected load for all segments 
on a disk exceeds B„ the replication is triggered. Then, the algorithrn rnust identify a segments for rep- 
lication. Since the the approach replicates segments only when they are retrieved from disk because of a 
client request, in order not to add additional load, replication can start only when a strearn starts reading 
a new segment. Hence, if the disk load exceeds B, at a segment boundary crossing, we must decide 
whether it is desirable to replicate this segment. Not in any case, but only if the replication of this seg- 
ment has the highest estirnated payoff among all the segrnents on the disk, it is replicated. If the gain in 
replicating a different segment is considerable, a boundary crossing to that segment is awaited. The esti- 
mated payoff pi is computed as 

where W is a weighting factor. W can be chosen big to put a stronger weight on long-term predictions; 
this is a good selection when the load on individual segments stays similar for a relatively long time. If 
the load on segments is fluctuating strongly, the expectation of future behaviour is unreliable and should 
have less relevance, expressed by a lower weight W. 

Threshold-Based Dynamic Replication 

The threshold-based dynamic replication introduced in [LLG98] considers whole movies rather than 
movie segments, and it takes all disks of the system into account to determine whether a movie should 
be replicated. It is assumed for this approach that the term 'disk' does not necessarily mean a single 
physical disk but a logical disk which may also be an array of physical disks with a single representa- 
tion to the Storage managernent. Still, it is assurned that the media server is large and consists of many 



such logical disks. The service capacity in number of concurrent streams of such a disk X is called B,, 
the average service capacity of all disks is called B .  

A replica of a movie is assumed to be stored completely on one of these disks. For each movie i of 
length mi, a probability to be selected in a new request Pi as well as an request arrival rate h must be 
computed from earlier requests. The replication threshold T, is than computed as T, = r n l n ( p , h m , . h ~ ) ,  

where h a constant value to limit the probability of replication. For each disk X, the measured current 
load L, is taken into account to compute the current available service capacity Ai for serving video i by 
calculating 

A, = C ( B , - L , )  - 
X E R r  

where Ri is the set of disks that carry replicas of i. If Ai<Ti, a replication of movie i is triggered. Sim- 
ilarly, [LLG98] proposes a decision for discarding replications when the number of concurrent requests 
n„ on a movie i at disk X decreases. The following condition is checked before a replica is removed: 

This inequality integrates two important conditions. The inequality 

implies that the replication is not triggered again immediately after a de-replication, and 

guarantees that all streams on disk X can be served from the remaining replicas. D is an additional 
threshold to reduce the probability of an oscillation between replication and de-replication further. 

The approach includes also the proposal to replicate a movie from the least loaded disk to the desti- 
nation disk because an overhead may be induced by an additional read operation on the source disk. For 
the selection of the destination disk out of the set of disks that do not yet hold a replica of the movie in 
question, multiple approaches are considered. The most complex one takes the number of current 
streams into account, but assumes that all ongoing replications are already finished and the streams are 
distributed onto the disks as if the replicas were already active. For the replication itself, various policies 
are proposed. 

Injected Sequential Replication adds additional read load to one disk because it behaves like an addi- 
tional client, by copying the movie at the normal play rate from the source disk to the target disk. 

Piggybacked Sequential Replication is identical to the replication used in the Dynamic Segment Repli- 
cation: the movie is written to the destination disk while it is delivered to one client from the same 
memory buffer. Since this scheme makes replication decisions for a movie always during admission 
control for new clients, this does not add complexity to identify the source copy of the operation. How- 
ever, the copy operation is affected when VCR operations on the movie are performced. 

Injected Parallel Replication use a multiple of the normal data rate of the movie to replicate the movie 
faster from the source disk to the destination disk. In order not to inhibit admission of new customers, 
this multiple of the normal data rate is limited. 

Piggybacked Parallel Replication copies at the normal rate of the movie, but not only from the position 
of the newly admitted client. Instead, later parts of the movie are copied at the same time from the buff- 
ers which serve clients that are already viewing the movie. Obviously, this approach needs unusual low 
level support because data is written in parallel to different positions in a not-yet complete file. 

Pigg>lbacked und Injected Parallel Replication combines the other parallel replication approaches to 
replicate parts by the injected approach of the movie that would have to be copied late in a piggybacked 
parallel replication mode because no client is expected to view those parts in the near future. 



5.5 Supporting Heterogenous Disks 

Approaches of measuring the performance of disks and assigning data to them based on their perfor- 
mance characteristics becomes relevant when large-scale systems are considered. Such systems are 
assumed to grow over a long period of time, and considering the availability of time for which a specific 
series of hard disks is produced today, the chance to maintain a server that consists of homogeneous 
disks is low. The simple approach is to identify the disks with the mallest WO-bandwidth and make this 
the reference bandwidth for all calculations. This approach would not collide with typical buffer man- 
agement strategies since the strategies to keep the playout buffers filled is so resource-conservative that 
even disk read times are taken into account for refill operations. 

Since both disk space and bandwidth have increased considerably in the past. the simple approach 
may be extremely pessimistic when the number of potentially supported streams is calculated. For 
example. an SSA storage system may deliver data at a rate of 100 MByteIs, while an typical SCSI-I1 
fasilwide RAID system connected to the same media server delivers only 20 MByteIs. Various means 
can be applied to reduce the impact of heterogenous storage systems. 

Bandwidth to Space Ratio 
m 
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V) 

bandwidth bandwidth 
n 

bandwidth bandwidth 

Figure 26: Bandwidth to space ratio deviation 

In [DS95b], not only the raw throughput of such logical disks is considered, but rather the ratio of 
throughput to storage capacity (bandwidth to space ration, or BSR). This approach assumes that 
approaches to replication such as the dynamic segment replication policy mentioned above take care of 
a smoothing the average number of concurrent streams from the same movie. However, if throughput 
requirements of movies' copies (the product of data rate and number of concurrent viewers) differ, the 
throughput requirements for equally-sized segments of that video differ, too, and locating popular, high 
data-rate movies on large but throughput-restricted disks wastes space in comparison with storing them 
on smaller or faster disks. The same argument holds for variable-sized movies if the threshold-based 
dynamic replication is used. The decision to replicate a video according to the BSR scheme is identical 
to that of the dynamic segment replication, but the destination disk is chosen according to least expected 
deviation of the movie's BSR (data rate*concurrent viewersnength) from the disk's BSR (maximum 
throughpuilsize). Figure 26 illustrates this BSR deviation. It is a detail of the BSR approach that as 
many replicas as possible are created to approach the identity of used to available throughput ratios 
among all disks of the system as good as possible. When the number of viewers for a movies changes, 
the best distribution is newly computed. 



6 File System 

Thejile sysrem is said to be the most visible part of an operating system. Most programs write or read 
files. Their program code, as well as User data, are stored in files. The organization of the file system is 
an important factor for the usability and convenience of the operating system. A file is a sequence of 
information held as a unit for storage and use in a computer system [Krak88]????. 

Files are stored in secondary storage, so they can be used by different applications. The life-span of 
files is usually longer than the execution of a program. In traditional file systems, the information types 
stored in files are sources, objects, libraries and executables of programs, numeric data, text, payroll 
records, etc. [PeSi83]????. In multimedia systems, the stored information also Covers digitized video 
and audio with their related real-time "read" and "write" demands. Therefore, additional requirements 
in the design and implementation of file systems must be considered. 

The file system provides access and control functions for the storage and retrieval of files. From the 
user's viewpoint, it is important how the file system allows file organization and structure. The internals, 
i.e., the organization of the file system, deal with the representation of information in files, their struc- 
ture and organization in secondary storage. 

6.1 Traditional File Systems 

Although there is no such term as a traditional file system, a couple of file systems can be considered 
traditional for their wide-spread use in computer systems for all-round operations. In the operating sys- 
tem family stemming from MS-DOS, the FAT filesystem is the original one, in the family of Unix (- 
like) operating System, the Berkeley Fast FileSystem is a typical representative. Log-stmctured filesys- 
tems provide some additional functionality but must be counted among these all-round filesystems 
rather than multimedia filesystems. 

FAT 

One way is to use linked blocks, where physical blocks containing consecutive logical locations are 
linked using pointers. The file descriptor must contain the number of blocks occupied by the file, the 
pointer to the first block and it may also have the pointer to the last block. A serious disadvantage of this 
method is the cost of the implementation for random access because all prior data must be read. In MS- 
DOS, a similar method is applied. A File Aliocation Table (FAT) is associated with each disk. One entry 
in the table represents one disk block. The directory entry of each file holds the block number of the first 
block. The number in the slot of an entry refers to the next block of a file. The slot of the last block of a 
file contains an end-of-file mark [Tane87]????. 

Berkeley FFS and relatives 

Another approach is to Store block information in mapping tables. Each file is associated with a table 
where, apart from the block numbers, information like owner, file size, creation time, last access time, 
etc., are stored. Those tables usually have a fixed size, which means that the number of block references 
is bounded. Files with more blocks are referenced indirectly by additional tables assigned to the files. In 
UNIX, a small table (on disk) called an i-node is associated with each file (See Figure 27). The indexed 
sequential approach is an example for multi-level mapping; here, logical and physical organization are 
not clearly separated [Krak88]????. 

Log-structured filesystem 

The log-structured file system was devised to ensure fast crash recovery, increased write performance 
and an option for versioning in the file system. The basic approach is to write data always asynchro- 
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Figure 27: The UNIX i-node [Tane87]???? 

nously to free space on the disk and to keep a log of all write operations on the disk. This ensures that in 
case of a machine crash, the information that was last written to disk can be identified from the log file, 
and the blocks that have most likely been conupted can be checked explicitly rather than checking the 
whole disk. If the block can not be recovered, a consistant state can always be recovered in spite of this 
by examining the log; even in case of a modify operation, the old block is still present on the disk and 
can be identified by the log. The effect of writing always target write operations to a contiguous free 
space on the disk makes writing to the disk also more efficient since head movement is large reduced. In 
case of a small number of concurrent write operation, this results also a largely contiguous files. 

Various ways to use a log-structured filesystem are conceivable. Figure 28 shows in-band logging as 
it was presented in [OD89] and a variation that uses a separate log partition, which was mentioned by 
[OD89] as an alternative approach. Obviously, write operations in in-band logging are faster because no 
seek operation to the log partition is necessary. On the other hand, log partitions may be located on sep- 
erate disks, close to the logged partition, or the log records can be kept in memory until sufficiently 
large block of log information has been collected to make the seek operation feasible. While in-band 
logging provides faster write operations, it suffers from the complexity of necessary compression oper- 
ations that perfom similar to a garbage collection. Using a separate log partition, superseeded informa- 
tion from an earlier write operation can be flushed everytime a new log information block is write and 
the log can be compressed to contain only the remaining relevant information. 

Directory Structure 

Files are usually organized in directories. Most of today's operating Systems provide tree-structured 
directories where the User can organize the files according to hislher personal needs. In multimedia sys- 
tems, it is important to organize the files in a way that allows easy, fast, and contiguous data access. 

6.2 Multimedia File Systems 

Compared to the increased performance of processors and networks, storage devices have become only 
marginally faster [Mu1191]????. The effect OE this increasing speed mismatch is the search for new stor- 
age structures, and storage and retrieval mechanisms with respect to the file System. Continuous media 
data are different from discrete data in: 

Real Time Characteristics 
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Figure 28: Disk operations in log-structured file systems 

As mentioned previously, the retrieval, computation and presentation of continuous media is time- 
dependent. The data must be presented (read) before a well-defined deadline with small jitter only. 
Thus, algorithms for the storage and retrieval of such data must consider time constraints, and addi- 
tional buffers to smooth the data stream must be provided. 
File Size 

Compared to text and graphics, video and audio have very large storage space requirements. Since 
the file system has to store information ranging from small, unstmctured units like text files to large, 
highly structured data units like video and associated audio, it must organize the data on disk in a 
way that efficiently uses the limited storage. For example, the storage requirements of uncompressed 
CD-quality stereo audio are 1.4 Mbitsls; low but acceptable quality compressed video still requires 
about 1MbiWs using, e.g., MPEG-1. 
Multiple Data Streams 

A multimedia system must support different media at one time. It does not only have to ensure 
that all of them get a sufficient share of the resources, it also must consider tight relations between 
different streams arriving from different sources. The retrieval of a movie, for example, requires the 
processing and synchronization of audio and video. 

There are different ways to support continuous media in file systems. Basically there are two 
approaches. With the first approach, the organization of files on disk remains as is. The necessary real- 
time support is provided through special disk scheduling algorithms and sufficient buffer to avoid jitter. 
In the second approach, the organization of audio and video files on disk is optimized for their use in 
multimedia systems. Scheduling of multiple data streams still remains an issue of research. 

In this section, the different approaches are discussed and examples of existing Prototypes are intro- 
duced. First, a brief introduction of the different storage devices employed in multimedia systems is 
given. Then, the organization of files on disks is discussed. Subsequently, different disk scheduling 
algorithms for the retrieval of continuous media are introduced. 

6.3 Example Multimedia File Systems 

Video File Server 

Continuous media data are characterized by consecutive, time-dependent logical data units. The basic 
data unit of a motion video is a frame. The basic unit of audio is a sample. Frames contain the data asso- 



ciated with a single video image, a sample represents the amplitude of the analog audio signal at a given 
instance. Further stmcturing of multimedia data was suggested in the following way [RaVi91, Rang93, 
StFr92]????: a strand is defined as an immutable sequence of continuously recorded video frames, 
audio samples, or both. It means that it consists of a sequence of blocks which contain either video 
frames, audio samples or both. Most often it includes headers and further information related to the type 
of compression used. The file system holds primary indices in a sequence of Primaty Blocks. They con- 
tain mapping from media block numbers to their disk addresses. In Secondap Blocks pointers to all pri- 
mary blocks are stored. The Header Block contains pointers to all secondary blocks of a strand. General 
information about the strand like, recording rate, length, etc., is also included in the header block. 

Media strands that together constitute a logical entity of information (e.g., video and associated 
audio of a movie) are tied together by synchronization to form a multimedia rope. A rope contains the 
name of its creator, its length and access rights. For each media strand in this rope, the strand D, rate of 
recording, granularity of storage and corresponding block-level are stored (information for the synchro- 
nization of the playback Start for all media at the strand interval boundaries). Editing operations on 
ropes manipulate pointers to strands only. Strands are regarded as immutable objects because editing 
operations like insert or delete may require substantial copying which can consume significant amounts 
of time and space. Intervals of strands can be shared by different ropes. Strands that are not referenced 
by any rope can be deleted, and storage can be reclaimed [RaVi91]????. The following interfaces are 
the operations that file Systems provide for the manipulation of ropes: 

RECORD [media] [requestID, mmRopeID] 
A multimedia rope, represented by mmRopelD and consisting of media strands, is recorded until a 
STOP operation is issued. 

PLAY [mrnRopelD, interval, media] requestID 
This operation plays a multimedia rope consisting of one or more media strands. 

STOP [requestID] 
This operation stops the retrieval or storage of the corresponding multimedia rope. 

Additionally, the following operations are supported: 
- INSERT [baseRope, position, media, withRope, withInterval] 
- REPLACE [baseRope, media, baseInterval, withRope, withInterval] 
- SUBSTRING [baseRope, media, interval] 
- CONCATE [mmRopeIDl , mrnRopeID2] 
- DELETE [baseRope, media, interval] 

Figure 29 provides an example of the INSERT operation, whereas Figure 30 shows the REPLACE 
operation. 

t INSERT 

Figure 29: INSERT operation 
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Figure 30: REPLACE operation 

The storage system is divided into two layers: 

The rope server is responsible for the manipulation of multimedia ropes. It communicates with 
applications, allows the manipulation of ropes and communicates with the underlying storage man- 
ager to record and play back multimedia strands. It provides the rope abstraction to the application. 
The rope access methods were designed similarly to UNIX file access routines. Status messages 
about the state of the play or record operation are passed to the application. 
The storage nzanager is responsible for the manipulation of strands. It places the strands on disk to 
ensure continuous recording and playback. The interface to the rope server includes four primitives 
for manipulating strands: 

1. "PlayStrandSequence" takes a sequence of strand intervals and displays the given time interval of 
each strand in sequence. 
2. "RecordStrand" creates a new strand and records the continuous media data either for a given 
duration or until StopStrand is called. 
3.  "StopStrand" terminates a previous PlayStrandSequence or RecordStrand instance. 
4. "DeleteStrand" removes a strand from storage. 

The experimental Video File Server introduced in [Rang93]???'? supports integrated storage and 
retrieval of video. The "Video Rope Server" presents a device-independent directory interface to users 
(Video Rope). A Video Rope is characterized as a hierarchical directory structure constructed upon 
stored video frames. The "Video Disk Manager" manages a frame-oriented motion video storage on 
disk, including audio and video components. 

Fellini 

The Fellini MultimediaStorage Server ([MN096]) has the goal to Support real-time as well as non-real- 
time data, but its file system is dedicated to the storage and retrieval of continuous media data. It orga- 
nizes data sirnilar to a Unix system, from which it is derived, but data and meta-information about the 
data are stored separately. 

The data stored on disk using the raw disk interface and it is addressed both in main memory and on 
disk in terms of pages. These pages are countable and they are sorted, intuitively, in the order of a nor- 
mal forward playout. Figure 31 shows the connection of buffer headers and the Current Buffer List 
(CBL). For each file on disk, one CBL exists as a representation of that file. The CBL header contains 
an ondisk id, representing the file uniquely to all clients, and an incore id, containing the Open file han- 
dle of the file on disk. This abstraction is necessary because a file should be opened only once for all 
concurrent accesses. Besides other information, the CBL header refers to a hash array that allows quick 
access to the buffer headers representing pages which are currently in main memory. At startup time, 
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Figure 31: Fellini's Current Buffer List 

the Fellini server allocates free buffers in main memory, pins* them and Stores their headers, with a 0 fix 
count, in the free list. 

When a Page is requested by a client for the first time, a buffer from the free list is chosen, inserted 
into the appropriate CBL list, and its fix count is increased to I .  When it is allocated again by another 
client, its fix count is increased. In order to share the buffers between the server and its clients, the 
buffer headers and buffers are located in shared memory. When a client stops using a page, its fix count 
is decreased. When the fix count reaches 0, the Page is not automatically deallocated. Only if a new 
Page is requested and the free list is empty, the CBL which has had not active clients for the longest 
time (a so-called aged CBL) is forced to release their Page with the highest logical Page number (the 
one that would be the last to be accessed by a new client that plays the file from the beginning to the 
end). If no aged CBLs are available, all CBLs are checked for unfixed pages, and such a Page is selected 
according to a weighting calculation that aims at identifying the pages that will not be used any more by 
any of the clients that are already in the system, and from that set, selecting the one with the highest 
page number (the one that would be last to be accessed by a newly arriving client at its queue at the 
given time). 

The management of the data on disk is handled in a way that makes the use of multiple disks trans- 
parent to the User. The information about the location of the data is maintained in file control blocks 
(FCBs) that are similar to Unix file i-nodes at the root of the directory uee. Subdirectories are not sup- 
ported. All FCBs of the system are stored in a single Unix file. This file is big enough to store FCBs for 
the entire space that is available to the Fellini server. 

Table 2: Indentification of Unix and Fellini APIs 

Unix API Fellini RT-API 

1 begin-stream fe-nr-open I 

1 read / retrievestream 1 f e - n i a d  I 
1 write 1 store-stream ( fe-nr-write I 

*. a memory Page is said to be pinned when the OS is forbidden to swap it out of the main memory 
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Table 2: Indentification of Unix and Fellini APIs 

To the rest of the system, the Fellini Server offers an API that is very similar to the Unix filesystem API 
for convenience. Table 2 identifies the Fellini function calls with their Unix couterparts. 

Unix API 

seek 

Symphony 

The Symphony file system ([SGRV97]) is a filesystem designed for the Storage and delivery of hetero- 
geneous data types. Particularly, Symphony addresses the following issues: 

Fellini RT-API 

seek-stream 

support real-time as well as non-real-time requests 
support multiple block sizes and control over their placement 
support a variety of fault-tolerance techniques 
provide a two-level meta data stmcture that alles type-specific information to be attached to each file 

Fellini non-RT-API 

fe-nr-seek 

To do this, the file system is divided into a data-type specific and a data-type independent layer. The 
data-type independent layer implements a scheduler that uses a modified SCAN-EDF approach to 
schedule real-time requests and adds non-real-time requests according to C-SCAN as long as no dead- 
lines for the real-time requests are violated. It offers to the data-type specific layer variable block sizes 
that are multiples of a minimal basic block sizc that is defined at file system creation time and an option 
to express a preferred, but not guaranteed, location of blocks in terms of disk and location on that disk. 
To locate variable-sized hlocks on disk efficiently, each block is addressed through an indirection as 
shown in Figure 32. Finally, the fault tolerant layer can optionally use parity information to deliver ver- 
ified data, or skip this check in favour of Speed. 
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Figure 32: Symphony's indirect block location 

The data-type specific layer offers a Set of modules (audio, video and text) for different kinds of data, 
where each of the modules makes use of the features provided by the underlying layer according to its 
requirements. 

E.g. the video module implements variable size data blocks by observing a video stream at writing 
time arid by deriving an approximation of a maximum block size from the Start of the stream. This block 
size is negotiated with the data-type independent layer, and subsequently, space that remain unoccupied 
because the actual block was smaller than the maximum block size is filled with data from the following 
block until the buffer space of a full block is saved. This allows for the continuous write as well as read 
operations at the cost of huffering one additional block size of memory per stream in the worst case. 
Concerning the placement policy, the video module prefers to stripe a file over as many disks as possi- 
ble to maxirnize the utilization of i/O bandwidth for the case of parallel retrieval operations. In addition 



to this, during retrieval operations it starts to cache video blocks in main memory for efficiency accord- 
ing to the Interval Caching Policy. 

Syrnphony Supports the typical Unix file operations and extends this interface by function calls that 
are necessary to support quality of service. These additional functions are ifsPeRodReadO, ifsperiod- 
icWri[e(), ij%QoSNegotiate(), ifsQosConfiim() and ifsgetMetaData(). 



7 Memory Management 

Memory management in media servers is mainly concerned with the assignment of part of the media 
server's main memory to the delivery of a multimedia stream. While straightforward implementations 
of media servers do not exploit all content's movement through the main memory of the media server 
but rather rely on the filesystem implementation to allocate sufficient bandwidth for a smooth delivery 
of each stream, a couple of approaches exist for the exploiteation of this phase of data delivery. One 
approach was demonstrated earlier with the Fellini server's file System ("Fellini" on Page 34). Others 
are listed in the following. 

Interval Caching Policy 

[DS93] introduces partial replication of multimedia files for load-balancing in multimedia Systems. It is 
b a e d  on the observation that if there werc a number of consecutive requests for the same video, and if 
the blocks read in by the first request were copied to another disk, it would be possible to switch the fol- 
lowing requests to the partial replica just created. 

Generalized Interval Caching Policy 

The Interval Caching Policy, proposed in [DS93], exploits the movement of data through the main 
memory of a video server by keeping the data of such streams in memory, which are followed tempo- 
rarly close by another stream of the Same object. This policy is refined in [DS95] to take into account 
that the interval caching policy does not handle short files appropriately when the media server is han- 
dling a mixed workload rather than a videos. 

Batching 

Batching is an approach introduced in [DSST94] to exploit the memory bandwidth and to save disk 
bandwidth in inedia servers by defining a temporal cycles called batching windows. All requests that 
arrive within such a cycle are collected and at the end of the cycle, all requests to the same content are 
serviced from the same file and buffer. This approach weakens the on-demand idea in comparison to the 
interval caching policy, but it recovers potentially large amounts of main memory because content can 
be discarded from the main memory irnmediately after playout and it will be re-loaded only after the 
next cycle. [DSS94] modifies this approach towards dynamic batching, which services requests as soon 
as a stream becomes available. Two selection policies, first come first serve (FCFS) and maximum 
queuc length (queue length is defined by the number of User who requested that file), are compared, and 
FCFS is shown to be the more performant. 

Piggybacking 

The aggregation of strcams that deliver the same content in close sequence without the use of batching 
window was proposed by means of piggybacking ([GLM96]), i.e. one stream of a content file that is 
shortly preceeding another stream of the same file should be joined with the later one. Tlie general 
means to do this is an increase in the speed of the later stream andlor a decrease in the speed of the ear- 
lier stream until they join. Various strategies for joining more than a pair of streams are then investi- 
gated in detail in LGLM961. 

Contcnt Insertion 

For the video-on-demand special case, [VL95] proposes the most radical extension of that scheme to 
date by oEcring content insertion to force larger numbers of streams into a time window which is small 
enough to allow the use of the piggybacking technique to join them into a single stream. Such inserted 



content from a content loop like an eternal advertisement show or from a continuous news show might 
be acceptable to the User to stay tuned. Alternatives might be a lengthening or shorting of introducing 
scenes of a movie. In [KVL97], it is then offered that this technique can also be used for providing a just 
as pragmatic and radical solution to problcms such as server overload or partial server failure by divert- 
ing Users into an advertisement loop or presenting other fill-in content until the ~ rob lem can be fixed or 
until an aggregation with an action stream can be performed. 
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