
@t89 Darmstadt University of Technology

Mediaservers

Cursten Griwodz, RulfSteinmetz

1 1 June 1998

Technical Report TR-KOM-1998-08

lndustrial Process and System Communications (KOM)

Departrnent of Electrical Engineering & Information Technology
Merckstraße 25 D-64283 Darrnstadt Gerrnany

Phone: +49 6151 166150
Fax: +49 6151 166152
Email: infoQK0M.t~-darrnstadt.de
URL: http://www.korn.e-technik.1~-darrnstadt.de/

1 Introduction ... 1
2 Architectures .. 3
3 Storage Devices .. 5

3.1 Disk Layout .. 5
3.2 Zone Bit Recording .. 6
3.3 File Structure .. 7

4 Disk Controller .. 9
4.1 Data Placement ... 9

. . 4.2 Reorganization .. 13

5 Storage Management .. 16
5.1 Disk Management ... 16
5.2 Traditional Disk Scheduling ... 17

.. 5.3 Multimedia Disk Scheduling 20
.. 5.4 Replication 26

....................................... 5.5 Supporting Heterogenous Disks 29
6 File System ... 30

... 6.1 Traditional File Systems 30
6.2 Multimedia File Systems .. 31
6.3 Example Multimedia File Systems 32

7 Memory Management 38
8 References .. 40

Mediaservers
Carsten ~ r iwodz l , ~ a l f ~ t e i n m e t z l , ~

I L

Industnal Process and System Communications GMD P S I
Dept. of Electncal Engineering & Information Tech- German National Research Center

nology for Information Technology
Darmstadt University of Technology Dolivostr. 15 . D-64293 Darmstadt . Gernan:

Merckstr. 25 . D-64283 Darmstadt . Germany

1 Introduction

Media servers are a special variation of file servers with the requirement to deliver Part of all of their
services within a certain time-frame. This basic requirement can be addressed at a variety of hardware
and software levels that comprise a media server. Consequently, the range of research issues that con-
tribute to media server design is wide. While many research groups deal with multimedia servers as a
database issue, this chapter of the book concentrates on multimedia servers' content Storage and move-
ment and does not consider its management.

A basic, application-specifc distinction is made in these design of such media servers: data retrieval
can either be controlled strictly by the client, which requests and sends pieces of content files, or a client
can tune in to a server-controlled sending of data, which might have been initiated by that client. Figure
1 demonstrates the requestlresponse behaviour of both approaches.

r7 rll r9 r10 r l1 r4

Pull e t t e e e
Model L L L L L

d3- d2- d4 d3- d2r d l
Client

Server

Server
Client

r
e Push

Figure 1: Pull and push server models

Model

A media server that is operated in the first mode is called a pul1 server, a server that is operated in the
second mode is call apush server. Another, frequently used expression for the push server is the term
data pump, as this characterizes in a simple way its specialization in retrieving data from disk and deliv-
ering it to the network efficiently. Pul1 servers are surely the more appropriate choice for editing multi-
media content in a LAN environment: linear retrieval is frequent but not the mle, pieces of content are
rearranged, temporal and spatial cross-connections are introduced. F'ush servers are the obvious choice
for broadcast or multicast distribution of content over wide areas, with no or infrequent User interaction.
Applications that are not as clear-cut in there requirements may be solvable with either of the two
approaches.

Pull and push servers are often considered competing concepts. Media server implementations, how-
ever, show that these worlds are not h r apart from each other because major parts of a server can be

I

operated in modes that can be used in pul1 as well as push rnode. A recently implemented rnixture of
these approaches is the definition of play lists, client-defined lists that refer to pieces of content which is
stored on the Server; these play lists are supposed to be sent to the client in a sequence [RTSP]. In the
following, consider do not seperate these two approaches any more.

2 Architectures

Media Servers are responsible for the timely delivery of content to an
delivered

end-system. To achieve this goal, each component of the media server I data
must conform to the bounds of time and space to fulfil its tasks. This
attracts the research in a variety of areas: disk layout strategies, disk
scheduling, file Systems, data placement, memory management or
CPU scheduling. Figure 2 shows the order in which media server
components are involved in delivering the content. Some of the tasks
that are seperated in that figure are historically implemented in a sin-
gle sy stem component.

The network attachmenr is typically a network adapter or a similar
device that connects the media server to the customers. The conrenr
direcrov is the entity responsible for verifying whether content is
available on the media server and whether the requesting client is
allowed to access the data. The memov managenient is a separate
entity because although a typical content file of multimedia applica-
tions is too large to be kept in the main memory for a long time, the
caching of content data in main memory improves the performance
considerably for some applications. T h e j l e system handles all infor-
mation concerning the organization of the content on the media
server. This includes such issues as the assignment of sufficient stor- Figure 2: Media server archi-
age space during the upload phase, probably the transparent segmen- tecture
tation of the content file, the consistency of the data on disk, and the
location of the elements of a segmented content file during retrieval operations. The storage manage-
ment is the abstraction of driver implementations that communicate directly with the disk controller.
The storage management is concerned with disk scheduling policies and the layout of files. The disk
controller handles the access to data on the storage device. Research on the disk controller level
includes the increase of head movement speed, 110 bandwidth, the largest and smallest units that can be
read at a time and the granularity of addressing.

Of Course, optimizing one of the components is not sufficient. The components must cooperate cor-
rectly even when the system grows. Such a growth means that the system or some of its components
will be replaced or extended. In many cases an extensions means that a task is distributed onto multiple
components, probably onto heterogeneous components, and that it may become necessary to replicate
Part of the data to access it from all components of the distributed system. [TF95] provides a formaiiza-
tion of the options for distributing parts of a video server. This formalization deviates from the reality
with the generalization of the content directory's Position in a distributed system. Obviously, the content
directory must always can consistent and all-knowing in order to answer requests correctly. Figure 3
demonstrates the two alternative approaches to generalizing component distribution while a consistent
content directory is maintained. Figure 3 (a) uses an internal content directory which, for consistancy
reasons, can exist only once per media server. However, although the content directory appears consis-
tent to all other components, it may still be distributed internally and achieve the appearance of a single
component by presenting the same interface on all nodes of the media server. Figure 3 (b) shows all
options for distributing components when the approach of an external content directory is adopted. A
client of such a system contacts the external content server first to identify itself and to issue the request.
After that initial request, two alternatives for proceeding with the retrieval operation are possible. If the
response of the content server is returned to the client and the client is responsible for issuing the actual
request for data in another call (Figure 4 (a)), additional security mechanisms must be applied because
authentication of the client is checked by the content server. Alternatively, the content server can accept
all requests directed to the media server, but instead of answering itself, it can immediately order the

(a) internal content directory

network
attachment

content
directory

memory
mgmt.

file system

storage
mgmt.

storage
device

(b) external content directory
Figure 3: Media server's distribution options

appropriate nodes of the media server to deliver the content data (Figure 4 (b)). This approach is
restricted because it requires one of two things: either the client must be able to receive the content data
from a different server than the target of its request, or each server node must deliver the content using
the address of the content server.

Content

(a) two-step retrieval (a) request redirection
Figure 4: Extemal content retrieval options

Content directories are typically handled by means of multimedia databases which are not subject of
this Paper.

3 Storage Devices

The storage subsystem is a major component of any information System. Due to the immense storage
space requirements of continuous media, conventional magnetic storage devices are often not sufficient.
Tapes, still in use in some traditional systems, are inadequate for multimedia systems because they can-
not provide independently accessible streams, and random access is slow and expensive.

3.1 Disk Layout

The layour of disks determines the way in which content on a disk is addressed, how much storage
space on the media is actually addressable and usable und the density of stored content on the media.
This has a major influence on the speed of read and write operations on that disk as well as on the
capacity of the disk.

Since disks are typically used as random-access media, it would be inefticient to organize data in a
single track -a single spiral of data- as it has been the case for CD-Roms until just recently. The single-
track technique requires all accessible information to be recorded in terms of distance from the track
start, and an access mechanism requires a translation of this number to the position that the read head of
the disk has to assume, which must be expressed as a combination of distance from the Center or the
edge of the disk, to which the head must be moved, and the angular distance, which requires a partial
rotation of the disk below the head before the data can be accessed. An additional drawback is the com-
plex handling of operations on files such as delete or append operations. Due to the serial nature of the
single-track approach, deletion of files leaves empty space in the track that can hardly be filled with an
identically-sized new file. Similarly, data written in append operations is probably located far apart from
the original pieces of the file. Segmentation of the medium and a continuous degradation of read- and
write-performance are the result.

Figure 5: Tracks and Sectors

The location is more easily expressed by partitioning the medium in tracks and sector as depicted in
Figure 5. The granularity of disk access is restricted to one sector on one track. The advantage of this
scbeme is the easy mapping of location information to head movement and disk rotation, and with this
scheme the disk can also hide defective parts of the media by reassigning tracks to spare regions of the
medium. This scheme has a disadvantage as it looses storage space. When files are generally much
smaller than the chosen sector size, large parts of the sector remain unused unless data is appended to
the file. If such an append operation is executed, however, it can be bandled efiiciently.

Additionally, constant rotation speed as well as constant recording and reading speed is typical for
both single-track and multi-track disk layout schemes. This does not take into account the fact that the
storage capacities of the medium are the Same for identically-sized areas in the inner and the outer
regions of the disk. Since both rotation and recording speed are kept constant, a sector in track 1 holds
the Same arnount of data as a sector in track 200 although the capacity of the area covered by the sector
in track 200 is twice the capacity of the area covered by track 1. Early microcomputers' floppy disk
drives addressed this issue by varying sector sizes or by variable rotation speed. For disk drives, neither
approach is followed.

3.2 Zone Bit Recording

The current approach to overcome this is Zone Bit Recording [REF]. It makes an approach on the
recovery of some of the lost space while both sector sizes and rotation speed are kept constant. Figure 6
shows a sketch of the distribution of sectors on a disk when ZBR is used. The fact that the rotation
speed remains constant while more equally-sized sectors are present in the outer tracks of the disk are
addressed by a variable reading and writing speed of the disk. The figure is slightly misleading because
it hides the fact that zoned disks do not have different numbers of sectors for each track, but only a small
number of zones with different layouts.

Figure 6: Sector arrangement on a Zoned disk

For the typical use of disks for the storage of discrete content, ZBR disks have the advantage of using
the physical medium on the disk more efiiciently. Access to data on the outer tracks remains equally fast
as access to content on the inner tracks, and since sector sizes remain constant, no additional complexity
is visible. When the disks are used for the delivery of continuous media streams such as video, addi-
tional considerations are necessary.

Assuming that the disk holds videos of various popularities [BGW97], the movement of popular
video files to the outer tracks can reduce the average seek time when multiple Users retrieve videos and
thus, increase the number of video streams that can be delivered concurrently. The reason for this is that
an outer track is read as fast as an inner track but that the amount of sectors of an outer track is higher
than that of an inner track.

In [KLC97], the allocation of complete tracks to videos in this way is proposed. This allows for the
fast transfer of frequently requested data from the outer zones to main memory buffers and it is consis-
tent with the approach of storing video contiguously on disk to reduce seek times. However, from these
buffers, a continuous playout must be guaranteed and thus, this video data must be kept in memory until

it is delivered to the network. This raises the question whether this approach wastes buffers space. The
more relevant effect of storing blocks of popular videos in outer tracks is gained in conjunction with
algorithms such as SCAN or SCAN-EDF (see Section 6). Since most data of popular videos is stored in
outer tracks, the probability that data must be retrieve from inner tracks as well as the average distance
of disk head movements is reduced.

Altematively, trackpairing is proposed in [BY95]. In this approach, two consecutive parts of a video
data are stored first on an outer and than an inner track. A pair of outer and inner tracks forms a logical
track, where all logical tracks on a disk have identical average throughput. In [CT97], this approach is
modified to Segment group pairing scheme, in which identically-sized U 0 units of a video are stored in
outer and inner zones of the ZBR disk in such a way that the average throughput of a pair of groups
remains constant.

The variable block size scheme, or VARB scheme introduced in [GKS95] is another scheme to
exploit zoned disks. The main difference is the ignorance of disk sector size in favour of self-defined
blocks. Blocks of a content file are stored on disk in a round robin manner in such a way that the time
for reading a block is always the Same. This implies that blocks are larger in the outer zones, where seg-
ments are read faster than in the inner zones. As a result of this arrangement, assuming that data has to
be delivered to the client in a constant bit-rate manner, the time between retrieval operations on a Single
stream become variable. The fixed block size scheme, or FIXB, was also introduced in [GKS95]. It is a
scheme for use with zoned disks but in this case, blocks of the Same size are stored in all zones.

3.3 File Structure

We commonly distinguish two methods of file organization. In sequential storage, each file is organized
as a simple sequence of bytes or records. Files are stored consecutively on the secondary storage media
as shown in Figure 7. They are separated from each other by a well defined "end of file" bit Pattern,

Contieuous Placement

ImmrmmmmImEa~m~~
I Ist file I I 2nd file 1 1 3rd file I

Non-conuguous Placement

immmmmm~imnmmmrmicl
Ist f.1

2nd file L I I I I i i
3rd file I

Figure 7: Contiguous and non-contiguous storage

character or character sequence. A file descriptor is usually placed at the beginning of the file and is, in
some Systems, repeated at the end of the file. Sequential storage is the only possible way to organize the
storage on tape, but it can also be used on disks. The main advantage is its efficiency for sequential
access, as well as for direct access [Kra88]. Disk access time for reading and writing is minimized.

With multimedia data, neither contiguous placement nor random placement of disk blocks is an opti-
mal solution. Contiguous placement can be implemented easily but has the drawbacks of creating large
empty arrays and thus, fragmentation on the disk. Insertion and deletion operations are extremely costly
when data is moved to keep continuity and defragment the disk. This makes contiguous placement
unaffordable for media Servers that are also used in editing or frequent upload operations. Random
placement, in contrast, implies that random seeks from one file block to the next must be made very
often, even when only a small amount of data is required.

A few approaches address this problem. One approach is the selection of large block sizes. Since
continuous media content is typically large, the percentage of lost space due to partially unused blocks
at the end of the file is acceptable. The media Server takes advantage of this by the reduced management
for all operations because less addressing information needs tobe kept, and because big amounts of data
can be transferred to the main memory without seek penalties. In [RW94], Reddy and Wyllie introduce
constrained placement (at the disk controller or Storage management level), which introduces the tech-
nique of placing blocks on disk in such a way that ihey are in a reasonable distance from each other,
meaning that the seek-time between a block and its consecutive block is within acceptable bounds.

RAlD Level 0 B@
RAlD Level 1 @B
RAlD Level 2

RAlD Level 3

66
66

RAlD Level 4 B@
RAlD Level 5

'X*:

RAlD Level 6

@B
@B

Figure 8: R :AID levels ([CLG+94])

4 Disk Controller

4.1 Data Placement

Striping

If a system grows large enough to make the usage of multiple disks affordable, an issue that concerns
many home-used PC nowadays, the means of accessing these disks must be taken into account. The
simple approach is to arrange file systems in a convenient way on either of the disks and gain perfor-
mance by put the more frequently used data on the fastest disks. Although this is sufficient if the amount
of disk space is the only concern, this is not the most effective way in which multiple disks can be used.
Striping techniques have been developed that take more than just the amount of available space into
account.

RAID

The original way of combining disks in a more efficient way is the "Redundant Arrays of Inexpensive
Disks", or RAID ([PGK88]). RAID addresses both performance and security problems to various
extents in its various sub-specifications, which are called RAID-Levels. Seven RAID levels are defined
(0-6), each of which makes a different approach at combining performance enhancement with security
enhancements. Some of these levels can be implemented in software while others require hardware sup-
port.

A RAID-0 disk array is nonredundant, so basically, the name R A D is even misleading in this case. It
is a purely performance-oriented RAID-level. It does not introduce any redundancy (or security) into
the system but allows file systems to spread out across multiple disks, e.g. to achieve higher through-
put for the delivery of data to applications that can consume data quickly but are throttled by the
read-performance of a single disk.

RAID-1 irnplernents mirroring or shadowing by storing all data twice. This is the traditional
approach to data security. Whenever data is written to the RAID systern, each block is stored on two
disks that are rnirrors of each other. When data is retrieved, this systern can be used to retrieve data
frorn the disk with the lower access delay. In case of a disk failure, all requests are handled by the
rnirror of that disk. The recreation of a rnirror disk after a failure is a copy operation from the remain-
ing disk. The Storage efficiency is low in this level, but the nurnber of read transactions is high.
RAID-2 implements error correcting codes similar to ECC mernory. For all of the prirnary data
disks, the Hamming codes ([PW72]) are cornputed and stored on additional parity disks. When a
disk fails, the parity information on multiple parity disks identifies correctly the failed disk and in
conjunction with all remaining data disks, the data of the failed disk can be reconstmcted with a sin-
gle parity disk. Since parity information must be modified on multiple parity disks at each write
operation, this is a rather expensive RAID level and rnust be irnplemented in hardware.
RAID-3 irnplernents bit-interleaved parity, which requires only a single parity disk. In this scherne,
the fact is exploited that the disk controller can easily detect when a disk fails. Thus, the identifica-
tion of the failed disk that is possible with level 2 is not needed and only the recreation of lost infor-
rnation remains an issue. This recreation is possible after the failure of one data disk by cornputing
the sum of each bit on all of the remaining data disks and the parity disk rnodulo 2. As in level 2, the
constant maintenance of this parity information restricts the write performance to that of the parity
disk and requires hardware support for the parity calculation.
RAID-4 is named block-interleaved parity. Instead of looking at each bit individually, the term srrip-
ing unit is introduced for this RAID level. A stripe extends across all data disks of the disk amay and
is cornposed of data blocks of arbitrary size, the striping unit, on each disk. If a write operation is
srnaller than the striping unit, all data is written to one disk, otherwise striping units of more disks
are rnodified. A block of new parity data on the parity disk is than cornputed frorn all striping units in
the affected stripe. As with level 3, this RAID level is bound by the performance of the single parity
disk that is affected by all write operations.
RAID-5 reduces this perforrnance bottleneck by implementing block-interleaved distributed-parity.
Instead of keeping the parity information of a stripe on a specific parity disk, parity blocks are
equally distributed over the disks in the stripe units. The decision for placement of these parity
blocks affects the performance of the System, as shown in [LK91]. In case of a disk failure, the miss-
ing data can be reconstructed as in level 4, without any additional consideration whether the recon-
structed data is original data and parity data.
RAID-6, called P+Q redundancy, uses Reed-Solornon codes to protect against the failure of two
disks by increasing the basic size of the array by two redundant disks.These codes provide a better
rneans of reconstructing the original data in case of a disk failure. This is relevant because the parity-
protected levels all require the no read fails until the failed disk has been replaced. However, in large
installations, additional errors become more probable, and protections against this are neceassry.
Level 6 provides this protection for a failure of up to two cornplete disks by distribution redundant
data in a similar way to level 5.

Multiple RAID @@@@@@@B
Declustering @@@B @@@B
Dynarnic
Declustering

Figure 10: Varieties of group creation

The performance of the various RAlD levels is shown in Table 1.

Table 1: Throughput and storage efficiency of RAID levels
The efficiency is relative to RAID 0, G is the number of disks in a group.

5 1 max(lIG,lI 1 (G- 1)lG (G- 1)IG

max(llG,lI 1

RAID was not developed to Support multimedia applications, although the higher throughput of striped
disks is an asset in that case. For the scalability of Multimedia Server, however, the throughput is only
one issue among many. An increase in the scale of throughput is typically not necessary for a MM
Server to handle new data formats and to deliver that data as quickly as possible to a client. Rather, the
number of clients that are requesting data concurrently increases, which increases not only the amount
of data that has to be delivered but also the number of files that have to be retrieved in parallel. This
implies an increased number of seek operations per unit time, a scaling issue which is not covered by
RAID technology. Similarly, since multimedia data requires time-conforming delivery of data streams,
the buffer requirements at the server grow when disk throughput is considerably higher than the deliv-
ery rate. A buffer allocated for each single client is filled in a shori read burst due to the high throughput
of the parallel disks, and subsequently, this data is delivered at the requesied rate from that buffer. With
an increasing number of disks to suppori more clients, the larger data blocks delivered per read burst as
well as the increased number of parallel streams contribute to a quick increase in buffer requirements.
Figure 9 illustrates the increase of buffer sizes that have to be made available to buffer a single reti-ieval
operation when the size of a RAlD stripe group grows. A variety of techniques have been developed to
address also this issue.

l ~ e ~ space
write usage

1 1

I RAID
level

I

0

small I large 1 read smaii write
1

I 1 I I

read

1

required at time t=l. buffered at time t=l
required at time t=4, buffered at time t=4
1 required at time t=7. buffered at time t=7

H required at time t=l ,
Z buffered at time t=l
1 required at time t=4,

buffered at time t=4

required at time t=1,
Z buffered at time t=l

1 required at time t=7,
buffered at time t=7

Figlcre 9: Growth of buffer requirements

Multiple RAID

The most intuitive of these techniques is the creation of subgroups of disks into independant logical disk
arrays. This limits the number of disks across which a file is striped to the size of such a group.

Declustering

In declustering, groups are not made up from complete disks. Rather than this, the stripe units of each
disk are considered. Stripe units are logically connected into a stripe that spans only a subset of the
disks (using the typical RAID protection mechanism). The number of disks for any such stripe is fixed
and the same, but the disks on which a stripe is located differs. In such a way, all load is better distrib-
uted then with Multiple RAID and the V 0 throughput of all disks is exploited even if only a limited
number of stripes is accessed.

Dynarnic Declustering

In dynamic declustering, this scheme is extended to assign stripes not statically to a set of disks but
rather, decide for each file the size and location of the stripes used. This scheme has two drawbacks: it a
very management-intensive and it can not be used with protection mechanisms. It is a lot more manage-
ment-intensive because a selection of a stripe must be made for each write operation. This selection
must be augmented by the application because the file system disk controller is not Ware of the through-
put requirements of a content file.However, this scheme allows for an adaptation of the buffer size to the
bandwidth requirements of the content file. When a server is supposed to deliver a mixed workload
which ranges from bulk data to various continuous media formats, this can be worthwhile. A second
drawback is that the group assignment in software makes it diificult to compute parity information in
the disk controller. Special hardware and special interfaces would be necessary.

Weighted Striping

Weighted striping (VD971) takes into account that it is unlikely for a real-world system to operate a
multimedia server for a long time without adding or replacing part of the disks with newer or cheaper
models. Since this introduces an inhomogenity in the performance of the disks in the system, the
throughput of a stripe may be limited by the least performant disk. In the variable size weighted stnp-
irlg, the size of stripe units are varied depending on the throughput of each disk in the stripe group.

stream A, required at time t=l
stream A, required at time t=4
stream A. required at time t=7

stream A, req'd at time t=i
stream A. req'd at time t=4
1 stream A, req'd at time t=7

stream A, req'd at time t=l
stream A, req'd at time t=4
strearn A, reqtd at time t=7

Figure 11: Split Stripe retrieval

However, the replacement of a single disks with a new disk, with different performance characteristics,
requires a memory-intensive restriping of a all data bytes of the stripe rather than the reconstruction of a
single stripe unit. Because of this, the constant size weightedstriping is also proposed, which intends to
level die throughput demands on single disks in the stripe in the long tenn. A video is split into units as
large as one stripe unit, and these units are distributed onto the disks in such a way that disks with a
higher throughput hold more units than disks with a lower throughput. The number of assigned units is
equivalent to the throughput of the disks.

Split-Stripe Retrieval

Introduced in [TF95], this technique trics to address the problem of buffer requirements by allowing
read operations for more than one stream in a single read operation to a stripe, i.e. while a full stripe is
read in every cycle, the results of this read operation do not necessarily fill only the buffer for a single
stream. Figure 11 gives a sketch of the retrieval operations. While the smallest addressable unit in RAID
is the stripc. split stripc retrieval requires the addressing of the stripe unit, which may be as small as a
single sector on a single disk.

Cyclic Retrieval

An enhancement of this technique is to allow not only the addressing in a read operation tobe indepen-
dent of the stripe unit that is read with the stripe but to perform read operations on stripe units without
the need for retrieving full stripes in one operation. This cyclic retrieval technique allows for a much
smaller buffers per stream because the maximum required buffer size per stream is not the size of a
stripe but that of a single stripe unit and not a full stripe.

4.2 Reorganization

The addition of new disks to a media server can result in an overall performance increase for that server
if the U 0 bandwidth of those new disks can be exploited. For quite a while now, hot-swappable and hot-
pluggable disks are available from hardware vendors. Since the newly added disks can be considered
initially empty, a reorganization of content that is already located on the server must be iniatiated in that
case. In the best case, such a reorganization is handled without disrupting the service.

One scheme for reorganizing a media server after the addition of a disk (n + l) to a stripe group (I ..
n) without disrupting the service is the movement of segments of a content file to rearrange them in such
a way that consecutive segments are ordered according to the index of the disk in the stripe group (inod-

read
cycles

read
segments

reorganized
Segments

I@@@$@
Figure 12: Lazy reorganization of stripe groups

ulo n+l) . [GK96] presents lazy and eager on-line reorganization. Lazy reorganization is activated only
when a content file is retrieved by a client. If a Segment of the content file is retrieved which should be
relocated to the new disk based the placement formula for segments in stripe groups, a write operation
to the new disk is performed in the cycle following the read operation. Figure 12 visualizes the rear-
rangement. This scheme has the drawback that the reorganization is executed only for those content
files that are accessed by a client. If a file is never retrieved, it is also never reorganized. With eager reor-
ganization, idle time of the system is used to reorganize content. Since the order to segments in this
approach is not bound by the playout order, multiple segments can be rearranged at a time, if sufficient
buffer space in main memory is available. Assuming sufficient buffer space, the reorganization would
be performed as shown in Figure 13. The time tbat is necessary to perform the reorganization can fur-

read
cycles

read
segments

reorganized
segments

Figure 13: Eager reorganization of stripe groups

ther be reduced by preloading tbe segments that are targetted at tbe new disks hefore the insertion of
those disks into the system. The original segments are then removed from their previous location and
the otber blocks are reorganized.

The random duplicated assignmenr approach proposed in [Kor971 is based on the assumption of a
system which is built on a growing number of heterogenous disks and delivers variable bit-rate data
streams. Such a system is on average not degraded by randomly placing blocks two times on different
disks of the system and retrieving them from the less loaded disk. In case of replacement of a single
disk, content can be reconstructed by replicating data blocks onto that disk when only a single copy of
these hlocks is available in the system, in case of adding a new disk, blocks can be from any of the disks

that are already available in the system and they can be moved to the new disk in case that they have not
been moved there from a different disk earlier.

5 Storage Management

Whereas strictly sequential storage devices (e.g., tapes) do not have a scheduling problem, for random
access storage devices, every file operation may require movements of the readlwrite head. This opera-
tion, known as "to seek", is very time consuming. Disk management tries to reduce the effects of such
operations. Still, the actual time to read or write a disk block is determined by:

The seek time (the time required for the movement of the readlwrite head).
The latency time or rotational delay (the time during which the transfer cannot proceed until the right
block or sector rotates under the readlwrite head).
The actual data transfer time needed for the data to copy from disk into main memory.

Usually the seek time is the largest factor of the actual transfer time. Most systems try to keep the cost
of seeking low by applying special algorithms to the scheduling of disk readlwrite operations. The
access of the storage device is a problem greatly influenced by the file allocation method. For instance,
a program reading a contiguously allocated file generates requests which are located close together on a
disk. Thus head movement is limited. Linked or indexed files with blocks, which are widely scattered,
cause many head movements. In multi-prograrnming systems, where the disk queue may often be non-
empty, faimess is also a criterion for scheduling. The approaches to optimize these are called disk
scheduling algorithms.

5.1 Disk Management

Disk access is a slow and costly transaction. In traditional systems, a common technique to reduce disk
access are block caches. Using a block cache, blocks are kept in memory because it is expected that
future read or write operations access these data again. Thus, performance is enhanced due to shorter
access time. Another way to enhance performance is to reduce disk arm motion. Blocks that are likely
to be accessed in sequence are placed together on one cylinder. To refine this method, rotational posi-
tioning can be taken into account. Consecutive blocks are placed on the same cylinder, but in an inter-
leaved way as shown in Figure 14. Another important issue is the placement of the mapping tables (e.g.,

Interleaved Storage

3rd file I I I I I

1st f. 1 I 1 2nd file :

Non-interleaved Storage
3rd file I I I I I

1st f. - I 2nd file 1

Figure 14: lnrerleaved and non-interleaved storage

I-nodes in UNIX) on the disk. If they are placed near the beginning of the disk, the distance between
them and the blocks will be, on average, half the number of cylinders. To improve this, they can be
placed in the middle of the disk. Hence, the average seek time is roughly reduced by a factor of two. In
the same way, consecutive blocks should be placed on the same cylinder. The use of the same cylinder
for the storage of mapping tables and referred blocks also improves performance.

File Structure

In conventional storage management systems, the main goal of the file organization is to make efficient
use of the storage capacity (i.e., to reduce internal and external fragmentation) and to allow arbitrary
deletion and extension of files. In multimedia systems, the main goal is toprovide a consranr und timely
retrieval of data. Interna1 fragmentation occurs when blocks of data are not entirely filled. On average,
the last block of a file is only half utilized. The use of large blocks leads to a larger waste of storage due
to this internal fragmentation. External fragmentation mainly occurs when files are stored in a contigu-
ous way. After the deletion of a file, the gap can only be filled by a file with the Same or a smaller size.
Therefore, there are usually small fractions between two files that are not used, storage space for contin-
uous media is wasted.

As mentioned above, the goals for multimedia file systems can be achieved through providing
enough buffer for each data stream and the employment of disk scheduling algorithms, especially opti-
mized for real-time storage and retrieval of data. The advantage of this approach (where data blocks of
single files are scattered) is flexibility. Extemal fragmentation is avoided and the same data can be used
by several streams (via references). Even using only one stream might be of advantage; for instance, it
is possible to access one block twice, e.g., when a phrase in a Sonata is repeated. However, due to the
large seek operations during playback, even with optimized disk scheduling, large buffers must be pro-
vided to smooth jitter at the data retrieval phase. Therefore, there are also long initial delays at the
retrieval of continuous media.

The much greater size of continuous media files and the fact that they will usually be retrieved
sequentially because of the nature of the operation performed on them (such as play, pause, fast for-
ward, etc.) are reasons for an optimization of the disk layout. Our own application-related experience
has shown that continuous media streams predominantly belong to the write-once-read-many nature,
and streams that are recorded at the same time are likely tobe played back at the Same time (e.g., audio
and video of a movie, [LS93]).

5.2 Traditional Disk Scheduling

Most traditional storage systems apply one of the following scheduling algorithms:

First-Come-First-Served (FCFS)

With this algorithm, the disk driver accepts requests one-at-a-time and serves them in incoming order.
This is easy to program and an intrinsically fair algorithm. However, it is not optimal with respect to
head movement because it does not consider the location of the other queued requests. This results in a
high average seek time. Figure 15 shows an example of the application of FCFS to a request of three
queued blocks.

Shortest-Seek-Time First (SSTF)

At every point in time, when a data transfer is requested, SSTF selects among all requests the one with
the minimum seek time from the current head position. Therefore, the head is moved to the closest track
in the request queue. This algorithm was developed to minimize seek time and it is in this sense optimal.
SSTF is a modification of Shortest Job First (SJF), and like SJF, it may cause starvation of some
requests. Request targets in the middle of the disk will get immediate service at the expense of requests
in the innermost and outermost disk areas. Figure 16 demonstrates the operation of the SSTF algorithm.

30

'6.
50 V

Order of Satisfied Requests

Figure 15: FCFS disk scheduling

24 7
30

l 6
50 F
42 45 7 ,

45

l2 7 30
50

45
42

40

12

20

Figure 16: SSTF disk sched~rling

Like SSTF, SCAN orders requests to minimize seek time. In contrast to SSTF, it takes the direction of
the current disk movement into account. It first serves all requests in one direction until it does not have
any requests in this direction anymore. The head movement is then reversed and service is continued.
SCAN provides a very good seek time because the edge tracks get better service times. Note that middle
tracks still get a better service then edge tracks. When the head movement is reversed, it first serves
tracks that have recently been serviced, where the heaviest density of requests, assuming a uniform dis-
tribution, is at the other end of the disk. Figure 17 shows an example of the SCAN algorithm.

This variation of the SCAN tries to reduce delays that are introduced into the SCAN scheme by requests
that arrive after the SCAN has started. As a result of this, incoming requests may have to wait although
the disk head passes by the requested position on the disk. The N-Step-SCAN approach gains fairness
for the requests to data on outer tracks for a lower average response time. The scheme can be modified

24
30
16 -V

42 7
45

Head Moves
Downwards

22 2v Head Moves Upwards

Figure 17: SCAN disk scheduling

24
30

42 F

Head Moves
Starts Downwards

Head Moves Upwards

Figure 18: N-srep-SCAN disk scheduling

to move the disk head to the outermost position that is requested for the next SCAN instead of starting
the next SCAN from the position of the last read track of the previous SCAN. One effect is that SCAN
are not always performed in upwards-downwards order, but the direction of the movement can change.
Another is that this approach, called Preseek-Sweep-Scheduling [REF] yields a lower average seek
times.

C-SCAN

C-SCAN also moves the head in one direction, but it offers fairer service with more uniform waiting
times. It does not alter the direction, as in SCAN. Instead, it scans in cycles, always increasing or
decreasing, with one idle head movement from one edge to the other between two consecutive scans.
The performance of C-SCAN is somewhat less than SCAN. Figure 19 shows the operation of the C-
SCAN algorithm.

45 1 3u

Upwards
40

Moves Upwa~ds

Figure 19: C-SCAN disk scheduling

T-SCAN

T-SCAN, introduced in [REF], uses a method called period transformation to prevent blocking of indi-
vidual requests. Such a period transformation is actually a modification of the sizes by which individual
requests are serviced. With the goal of supporting media streams without blocking, T-SCAN use one
stream's request behaviour as a reference to to service all requests. That implies that, if the reference
stream's requested rate is R I and the block size that is requested per cycle is BI , and another streams
requested rate is R2, that other stream is semiced with blocks of size of BI*R2/RI, no matter what the
actual requests of the application are. In this way, requests are serviced in the order of their arrival using
the SCAN mechanism, and all streams will be provided a fair share of the i/O bandwidth. However,
without admission control, this scheme affects all serviced streams when the server gets overloaded.

Traditional file systems are not designed for employment in multimedia systems. They do not, for
example, consider requirements like real-time which are important to the retrieval of stored audio and
video. To serve these requirements, new policies in the stmcture and organization of files, and in the
retrieval of data from the disk, must be applied. The next section outlines the most important develop-
ments in this area.

5.3 Multimedia Disk Scheduling

The main goals of traditional disk scheduling algorithms are to reduce the cost of seek operations, to
achieve a high throughput and to provide fair disk access for every process. The additional real-time
requirements introduced by multimedia systems make traditional disk scheduling algorithms, such as
described previously, inconvenient for multimedia systems. Systems without any optimized disk layout
for the storage of continuous media depend far more on reliable and efficient disk scheduling algorithms
than others. In the case of contiguous storage, scheduling is only needed to serve requests from multiple
streams concurrently. In [LS93], a round-robin scheduler is employed that is able to serve hard real-time
tasks. Here, additional optimization is provided through the close physical placement of streams that are
likely to be accessed together.

The overall goal of disk scheduling in multimedia systems is to meet the deadlines of all time-critical
tasks. Closely related is the goal of keeping the necessary buffer space requirements low. As many
streams as possible should be served concurrently, but aperiodic requests should also be schedulable
without delaying their service for an infinite amount of time. The scheduling algorithm must find a bal-
ance between time constraints and efficiency.

Requests with:

deadline blocknumber

Figure 20: EDF disk scheduling

Earliest Deadline First

Let us first look at the EDF scheduling strategy as described for CPU scheduling, but used for the file
system issue as well. Here the block of the stream with the nearest deadline would be read first. The
employment of EDF, as shown in Figure 20, in the strict sense results in poor throughput and excessive
seek time. Further, as EDF is most often applied as a preemptive scheduling scheme, the costs for pre-
emption of a task and scheduling of another task are considerably high. The overhead caused by this is
in the Same order of magnitude as at least one disk seek. Hence, EDF must be adapted or comhined with
file system strategies.

SCAN-Earliest Deadline First

CC. ir>nreboil\ ~rorrced rhur ricle-bu,eil files~sienr.~ collup>e SCAN-El)F i~rio SCAh'. 1)oes < r l u~ i< SCAhl-
El>Fdr~scrrprio~i ,rill tnuke hetrje?

The SCAN-EDF strategy is a combination of the SCAN and EDF mechanisms [RW93]. The seek opti-
mization of SCAN and the real-time guarantees of EDF are combined in the following way: like in
EDF, the request with the earliest deadline is always served first; among requests with the Same dead-
line, the specific one ihat is first according to the scan direction is served first; among the remaining
requests, this principle is repeated until no request with this deadline is left.

Since the optimization only applies for requests with the Same deadline, its efficiency depends on
how often it can be applied (i.e., how many requests have the Same or a similar deadline). To increase
this probability, the following tricky technique can be used: all requests have release times that are mul-
tiples of the period p. Hence, all requests have deadlines that are multiples of the period p. Therefore,
the requests can be grouped together and be served accordingly.

SCAN-EDF can be easily implemented. To do this, EDF must be modified slightly. If Di is the dead-
line of task i and Ni is the track position, the deadline can be modified to be D,+ / (N ,) . Thus the deadline
is deferred. The function f() converts the track number of i into a small perturbation of the deadline, as

shown in the example of Figure 21. It must be small enough so that D; + f (N ,) s oj + f (N ~) holds for all

Figure 21: SCAN-EDF disk scheduling wich N„ = 100 andflN,) = Nil

D, s o j , it was proposed to choose the following function [RW93]:

N ;
f (N ,) = -

Nmnx
where N„ is the maximum track number on disk. Other functions might also be appropriate.

We enhanced this mechanism by proposing a more accurate perturbation of the deadline which takes
into account the actual position of the head (N). This position is measured in terms of block numbers
and the current direction of the head movement (See also Figures 22 and 23):

I . If the head moves toward N„, i.e., upward, then

Figure 22: Accurare EDF-SCAN algorithm, head moves upward

(a) for all blocks N, located between the actual position N and Nm, the perturbation of the deadline is:

N , - N
f (N i) = - f o r a l l N j > N

N<,,"x

(b) for all blocks Ni located between the actual position and tbe first block (no. 0):

, 'Jrn", - Ni
f (N ;) = - f o r a l l N i < N

Nmax

2. If the head moves downward towards the first blocks, then

if (Ni > N): f(Ni)
b

O Ni 4 N Nmm -
if (Ni < N): - f(Ni)

Figure 23: Accurate EDF-SCAN algoritlim, head moves downward

(a) for all blocks located between the actual position and Nm:

Ni f (~ ~) = - f o r oll N i > N
Nmex

(b) for all blocks located between this first block with the block number 0 and the actual position:

N N i
/ (N i) = N„, f o r oll N , i N

Our algorithm is more computing-intensive than those with the simple calculation of [RW93]. In cases
with only a few equal deadlines, our algorithm provides improvements and the expenses of the calcula-
tions can be tolerated. In situations with many, i.e., typically more than five equal deadlines, the simple
calculation provides sufficient optimization and additional calculations should be avoided. SCAN-EDF
was compared with pure EDF and different variations of SCAN. It was shown that SCAN-EDF with
deferred deadlines performed well in multimedia environments [RW93].

Disk Access Requests in One Cycle with Deadline I deadline I blocknumberb

Group 1 Group 2 Group 3

t

Figure 24: Group sweeping scheduling a s a disk access strategy

Group Sweeping Scheduling

With Group Sweeping Scheduling (GSS), requests are served in cycles, in round-robin manner
([YCK92], [GH94]). To reduce disk arm movements, the set of n streams is divided into g groups.
Groups are served in fixed order. Individual streams within a group are served according to SCAN;
therefore, it is not fixed at which time or order individual streams within a group are served. In one
cycle, a specific stream may be the first to be served; in another cycle, it may be the last in the same
group. A smoothing buffer which is sized according to the cycle time and data rate of the stream assures
continuity. If the SCAN scheduling strategy is applied to all streams of a cycle without any grouping,
the playout of a stream cannot be started until the end of the cycle of its first retrieval (where all requests
are served once) because the next service may be in the last slot of the following cycle. As the data must
be buffered in GSS, the playout can be started at the end of the group in which the first retrieval takes
place. Whereas SCAN requires buffers for all streams, in GSS, the buffer can be reused for each group.
Further optimizations of this scheme are proposed in [CKY93]. In this method, it is ensured that each
stream is served once in each cycle. GSS is a trade-off between the optimization of buffer space and arm
movements. To provide the requested guarantees for continuous media data, we propose here to intro-
duce a "joint deadline" mechanism: we assign to each group of streams one deadline, the "joint dead-
line". This deadline is specified as being the earliest one out of the deadlines of all streams in the
respective group. Streams are grouped in such a way that all of them comprise similar deadlines. Figure
24 shows an example of GSS.

Mixed Strategy

CG: dont' know what to da with this scheme; never seen and never heard of; to be delered or replaced ?

In [Abbo84a]????, a mixed strategy was introduced based on the shortest seek (also called greedy strat-
egy) and the balanced strategy. As shown in Figure 25, every time data are retrieved from disk they are
transferred into buffer memory allocated for the respective data stream. From there, the application pro-
cess removes them one at a time. The goal of the scheduling algorithm is:

---Control Data
I -Media Data

I
I

US

. . Buffers -- -

Disk Scheduline

Figure 25: Mixed disk scheduling strategy

To maximize transfer efficiency by minimizing seek time and latency.
To serve process requirements with a limited huffer space.

With shortest seek, the first goal is served, i.e., the process of which data hlock is closest is served first.
The halanced strategy chooses the process which has the least amount of huffered data for service
hecause this process is likely to run out of data. The cnicial Part of this algorithm is the decision of
which of the two strategies must he applied (shortest seek or halanced strategy). For the employment of
shortest, seek two criteria must be fulfilled: the number of huffers for all processes should he balanced
(i.e., all processes should nearly have the same number of huffered data) and the overall required hand-
width should he sufficient for the number of active processes, so that none of them will try to immedi-
ately read data out of an empty huffer. In [Ahho84a]????, the urgency is introduced as an attempt to
measure hoth. The urgency is the sum of the reciprocals of the current "fullness" (amount of huffered
data). This number measures hoth the relative balance of all read processes and the number of read pro-
cesses. If the urgency is large, the halance strategy will be used; if it is small, it is safe to apply the
shortest seek algorithm.

Continuous Media File System

CMFS Disk Scheduling is a non-preemptive disk scheduling scheme designed for the Continuous Media
File System (CMFS) at UC-Berkeley [AOG91]. Different policies can he applied in this scheme. Here
the notion of the slack time H is introduced. The slack time is the time during which CMFS is free to do
non-real-time operations or workahead for real-time processes, because the current workahead of each
process is sufficient so that no process would starve, even if it would not be served for H seconds. The
considered real-time scheduling policies are:

The Static/Minimal policy is hased on the minimal Workahead Augmenting Set (WAS). A process pi
reads a file at a determined rate Ri. To each process, a positive integer Mi is assigned which denotes
the time overhead required to read a hlock covering, for example, the seek time. The CMFS performs
a Set of operations (i.e., disk operations required by all processes) hy seeking the next block of a file
and reading Mi blocks of this file. Note, we consider only read operations; the Same also holds, with
minor modifications, for write operations. This seek is done for every process in the System. The data
read hy a process during this operation "last" M, whereA is the hlock size in hytes. The WAS is a

Ri
Set of operations where the data read for each process "last longer" than the worst-case time to per-
form the operations (i.e., the sum of the read operations of all processes is less than tbe time read
data last for a process). A schedule is derived from the Set that is workahead-augmenting and feasihle
(i.e., the requests are served in the order given by the WAS). The Minimal Policy, the minimal WAS,
is the schedule where the worst-case elapsed time needed to serve an operation set is the least (i.e.,

the Set is ordered in a way that reduces time needed to perform the operations, for example, by reduc-
ing seek times). The Minimal Policy does not consider buffer requirements. If there is not enough
buffer, this aigorithm causes a buffer overllow. The Static Policy modifies this schedule such that no
block is read if this would cause a buffer overflow for that process. With this approach, starvation is
avoided, but its use of short operations causes high seek overhead.
With the Greedv Policy, a process is served as long as possible. Therefore, it computes at each itera-
tion the slack time H. The process with the smallest workahead is served. The maximum number n of
blocks for this process is read; n is determined by H (the time needed to read n blocks must be less
than or equal to H) and the currently available buffer space.
The Cyclical Plan Policy distributes the slack time among processes to maximize the slack time. It
calculates Hand increases the minimal WAS with H milliseconds of additional reads; an additional
read for each process is done immediately after the regular read determined by the minimal WAS.
This policy distributes workahead by identifying the process with the smallest slack time and sched-
ules an extra block for it; this is done until H i s exhausted. The number of block reads for the least
workahead is determined. This procedure is repeated every time the read has completed.

The Aggressive version of the Greedy and the Cyclical Plan Policy calculates H o f all processes except
the least workahead process that is immediately served by both policies. If the buffer size limit of a pro-
cess is reached, all policies skip to the next process. Non-real-time operations are served if there is
enough slack time. Performance measurements of the above introduced strategy showed that Cyclical
Plan increases system slack faster at low values of the slack time (which is likely to be the case at sys-
tem setup). Wiih a higher system slack time, apart of the StaticMinimal Policy, all policies perform
about the Same.

All of the disk scheduling strategies described above have been implemented and tested in Prototype
file systems for continuous media. Their efficiency depends on the design of the entire file system, the
disk layout, tightness of deadlines, and last but not least, on the application that is behaving. It is not yet
common sense which algorithm is the "best" method for the storage and retrieval of continuous media
files. Further research must show which aigorithm serves the timing requirements of continuous media
best and ensures that aperiodic and non-real-time requests are efficiently served.

5.4 Replication

Content replication is a means to answer two issues at the storage management level: availability in case
of disk of machine failures, and limits to the number of concurrent access to individual titles because of
limits on the throughput of the hardware. The failure handling argument is very similar at the storage
management level as at the disk controller level, with the major difference that the storage management
can apply various kinds of storage media to store replica (e.g. tapes, disks or main memory). Consider-
ations on this issue have been elaborated in [RW94]. The alternatives for using replication to increase
the number of concurrent deliveries of one file, however, are increased in this component.

On-demand applications can be partitioned into two families by the aging characteristics of their
content. The content of online archives is assumed to be relatively time-independent and it is accessed
based on the current interests of the customers. The content of news-on-demand and video-on-demand
systems is expected to exhibit a popularity life-cycle like a newspaper or a movie. For the latter, the
existance of a single copy of the content on a media Server may not be sufficient to serve the necessary
number of concurrent streams for a true on-demand systems from the storage subsystems where it is
located.

Static replication

The simplest approach to replication that can be taken is the explicit duplication of content files, by stor-
ing the file on multiple machines and providing the User with a choice of access points. This is fre-

quently done in the Internet today: the content provider stores keeps copies of the original version up to
date on Servers close to the User. Using the more elaborate manual options, the content is duplicated
rnanually, and an application provides alternating copies of the file under the same name.

A static placernent policy that uses such estirnated load information for the placernent of video
objects is proposed in [DS95b]. This static placernent policy is cornplernentary to the proposed policy,
as it reduces, but cannot elirnitate, dynamic irnbalances.

Dynamic Segment Replication

Dynamic segment replication as it is introduced in [DKS95] is designed for content which is accessed
read-only and which can be split into equally-sized segrnents of a size that is conveniently handled by
the file system. Fixing segrnent sizes as well as chosing segrnents that are large in cornparison to a disk
block are decisions that are rnade to keep the irnplernentation overhead low. Since contiunous rnedia
data is delivered in linear order, a load increase on a specific segrnent can be used as a trigger to repli-
cate this segrnent and all following segments to other disks. Such segrnents are considered temporary
segrnents in contrast to the original segrnents, which are permanent segments. One of the rnajor advan-
tages of this replication policy is that it takes not only the request frequency of individual movies into
account. Rather than this, the load of the disk is also considered. Specifically, the decision is made in the
following way: each disk X has a pre-specified threshold for the number of concurrent read requests B,
that must be exceeded by the surn of all segments' read operations in the current read cycle of the disk
(where 'cycle' rneans the playout time of one segrnent) as well as by next read cycles to initiate the rep-
lication algorithm.

To simplify the calculation, the read requests are considered uniformly distributed over all replicas
rather than taking requests to other segrnents on the sarne disk into account. In this way, the future load
in t cycles for the i-th segment is predicted as ni-Jri where n i . ~ is the nurnber of viewers of segment i-t
and ri is the nurnber of current replicas of the segrnent. For all segrnents j (jit) , it is assurned that the
current arrival rate n,/ri will be rnaintained in the future. If the surn of the expected load for all segments
on a disk exceeds B„ the replication is triggered. Then, the algorithrn rnust identify a segments for rep-
lication. Since the the approach replicates segments only when they are retrieved from disk because of a
client request, in order not to add additional load, replication can start only when a strearn starts reading
a new segment. Hence, if the disk load exceeds B, at a segment boundary crossing, we must decide
whether it is desirable to replicate this segment. Not in any case, but only if the replication of this seg-
ment has the highest estirnated payoff among all the segrnents on the disk, it is replicated. If the gain in
replicating a different segment is considerable, a boundary crossing to that segment is awaited. The esti-
mated payoff pi is computed as

where W is a weighting factor. W can be chosen big to put a stronger weight on long-term predictions;
this is a good selection when the load on individual segments stays similar for a relatively long time. If
the load on segments is fluctuating strongly, the expectation of future behaviour is unreliable and should
have less relevance, expressed by a lower weight W.

Threshold-Based Dynamic Replication

The threshold-based dynamic replication introduced in [LLG98] considers whole movies rather than
movie segments, and it takes all disks of the system into account to determine whether a movie should
be replicated. It is assumed for this approach that the term 'disk' does not necessarily mean a single
physical disk but a logical disk which may also be an array of physical disks with a single representa-
tion to the Storage managernent. Still, it is assurned that the media server is large and consists of many

such logical disks. The service capacity in number of concurrent streams of such a disk X is called B,,
the average service capacity of all disks is called B .

A replica of a movie is assumed to be stored completely on one of these disks. For each movie i of
length mi, a probability to be selected in a new request Pi as well as an request arrival rate h must be
computed from earlier requests. The replication threshold T, is than computed as T, = r n l n (p , h m , . h ~) ,

where h a constant value to limit the probability of replication. For each disk X, the measured current
load L, is taken into account to compute the current available service capacity Ai for serving video i by
calculating

A, = C (B , - L ,) -
X E R r

where Ri is the set of disks that carry replicas of i. If Ai<Ti, a replication of movie i is triggered. Sim-
ilarly, [LLG98] proposes a decision for discarding replications when the number of concurrent requests
n„ on a movie i at disk X decreases. The following condition is checked before a replica is removed:

This inequality integrates two important conditions. The inequality

implies that the replication is not triggered again immediately after a de-replication, and

guarantees that all streams on disk X can be served from the remaining replicas. D is an additional
threshold to reduce the probability of an oscillation between replication and de-replication further.

The approach includes also the proposal to replicate a movie from the least loaded disk to the desti-
nation disk because an overhead may be induced by an additional read operation on the source disk. For
the selection of the destination disk out of the set of disks that do not yet hold a replica of the movie in
question, multiple approaches are considered. The most complex one takes the number of current
streams into account, but assumes that all ongoing replications are already finished and the streams are
distributed onto the disks as if the replicas were already active. For the replication itself, various policies
are proposed.

Injected Sequential Replication adds additional read load to one disk because it behaves like an addi-
tional client, by copying the movie at the normal play rate from the source disk to the target disk.

Piggybacked Sequential Replication is identical to the replication used in the Dynamic Segment Repli-
cation: the movie is written to the destination disk while it is delivered to one client from the same
memory buffer. Since this scheme makes replication decisions for a movie always during admission
control for new clients, this does not add complexity to identify the source copy of the operation. How-
ever, the copy operation is affected when VCR operations on the movie are performced.

Injected Parallel Replication use a multiple of the normal data rate of the movie to replicate the movie
faster from the source disk to the destination disk. In order not to inhibit admission of new customers,
this multiple of the normal data rate is limited.

Piggybacked Parallel Replication copies at the normal rate of the movie, but not only from the position
of the newly admitted client. Instead, later parts of the movie are copied at the same time from the buff-
ers which serve clients that are already viewing the movie. Obviously, this approach needs unusual low
level support because data is written in parallel to different positions in a not-yet complete file.

Pigg>lbacked und Injected Parallel Replication combines the other parallel replication approaches to
replicate parts by the injected approach of the movie that would have to be copied late in a piggybacked
parallel replication mode because no client is expected to view those parts in the near future.

5.5 Supporting Heterogenous Disks

Approaches of measuring the performance of disks and assigning data to them based on their perfor-
mance characteristics becomes relevant when large-scale systems are considered. Such systems are
assumed to grow over a long period of time, and considering the availability of time for which a specific
series of hard disks is produced today, the chance to maintain a server that consists of homogeneous
disks is low. The simple approach is to identify the disks with the mallest WO-bandwidth and make this
the reference bandwidth for all calculations. This approach would not collide with typical buffer man-
agement strategies since the strategies to keep the playout buffers filled is so resource-conservative that
even disk read times are taken into account for refill operations.

Since both disk space and bandwidth have increased considerably in the past. the simple approach
may be extremely pessimistic when the number of potentially supported streams is calculated. For
example. an SSA storage system may deliver data at a rate of 100 MByteIs, while an typical SCSI-I1
fasilwide RAID system connected to the same media server delivers only 20 MByteIs. Various means
can be applied to reduce the impact of heterogenous storage systems.

Bandwidth to Space Ratio
m

large BSR deviation a
V)

bandwidth bandwidth
n

bandwidth bandwidth

Figure 26: Bandwidth to space ratio deviation

In [DS95b], not only the raw throughput of such logical disks is considered, but rather the ratio of
throughput to storage capacity (bandwidth to space ration, or BSR). This approach assumes that
approaches to replication such as the dynamic segment replication policy mentioned above take care of
a smoothing the average number of concurrent streams from the same movie. However, if throughput
requirements of movies' copies (the product of data rate and number of concurrent viewers) differ, the
throughput requirements for equally-sized segments of that video differ, too, and locating popular, high
data-rate movies on large but throughput-restricted disks wastes space in comparison with storing them
on smaller or faster disks. The same argument holds for variable-sized movies if the threshold-based
dynamic replication is used. The decision to replicate a video according to the BSR scheme is identical
to that of the dynamic segment replication, but the destination disk is chosen according to least expected
deviation of the movie's BSR (data rate*concurrent viewersnength) from the disk's BSR (maximum
throughpuilsize). Figure 26 illustrates this BSR deviation. It is a detail of the BSR approach that as
many replicas as possible are created to approach the identity of used to available throughput ratios
among all disks of the system as good as possible. When the number of viewers for a movies changes,
the best distribution is newly computed.

6 File System

Thejile sysrem is said to be the most visible part of an operating system. Most programs write or read
files. Their program code, as well as User data, are stored in files. The organization of the file system is
an important factor for the usability and convenience of the operating system. A file is a sequence of
information held as a unit for storage and use in a computer system [Krak88]????.

Files are stored in secondary storage, so they can be used by different applications. The life-span of
files is usually longer than the execution of a program. In traditional file systems, the information types
stored in files are sources, objects, libraries and executables of programs, numeric data, text, payroll
records, etc. [PeSi83]????. In multimedia systems, the stored information also Covers digitized video
and audio with their related real-time "read" and "write" demands. Therefore, additional requirements
in the design and implementation of file systems must be considered.

The file system provides access and control functions for the storage and retrieval of files. From the
user's viewpoint, it is important how the file system allows file organization and structure. The internals,
i.e., the organization of the file system, deal with the representation of information in files, their struc-
ture and organization in secondary storage.

6.1 Traditional File Systems

Although there is no such term as a traditional file system, a couple of file systems can be considered
traditional for their wide-spread use in computer systems for all-round operations. In the operating sys-
tem family stemming from MS-DOS, the FAT filesystem is the original one, in the family of Unix (-
like) operating System, the Berkeley Fast FileSystem is a typical representative. Log-stmctured filesys-
tems provide some additional functionality but must be counted among these all-round filesystems
rather than multimedia filesystems.

FAT

One way is to use linked blocks, where physical blocks containing consecutive logical locations are
linked using pointers. The file descriptor must contain the number of blocks occupied by the file, the
pointer to the first block and it may also have the pointer to the last block. A serious disadvantage of this
method is the cost of the implementation for random access because all prior data must be read. In MS-
DOS, a similar method is applied. A File Aliocation Table (FAT) is associated with each disk. One entry
in the table represents one disk block. The directory entry of each file holds the block number of the first
block. The number in the slot of an entry refers to the next block of a file. The slot of the last block of a
file contains an end-of-file mark [Tane87]????.

Berkeley FFS and relatives

Another approach is to Store block information in mapping tables. Each file is associated with a table
where, apart from the block numbers, information like owner, file size, creation time, last access time,
etc., are stored. Those tables usually have a fixed size, which means that the number of block references
is bounded. Files with more blocks are referenced indirectly by additional tables assigned to the files. In
UNIX, a small table (on disk) called an i-node is associated with each file (See Figure 27). The indexed
sequential approach is an example for multi-level mapping; here, logical and physical organization are
not clearly separated [Krak88]????.

Log-structured filesystem

The log-structured file system was devised to ensure fast crash recovery, increased write performance
and an option for versioning in the file system. The basic approach is to write data always asynchro-

Number of Links to file

Figure 27: The UNIX i-node [Tane87]????

nously to free space on the disk and to keep a log of all write operations on the disk. This ensures that in
case of a machine crash, the information that was last written to disk can be identified from the log file,
and the blocks that have most likely been conupted can be checked explicitly rather than checking the
whole disk. If the block can not be recovered, a consistant state can always be recovered in spite of this
by examining the log; even in case of a modify operation, the old block is still present on the disk and
can be identified by the log. The effect of writing always target write operations to a contiguous free
space on the disk makes writing to the disk also more efficient since head movement is large reduced. In
case of a small number of concurrent write operation, this results also a largely contiguous files.

Various ways to use a log-structured filesystem are conceivable. Figure 28 shows in-band logging as
it was presented in [OD89] and a variation that uses a separate log partition, which was mentioned by
[OD89] as an alternative approach. Obviously, write operations in in-band logging are faster because no
seek operation to the log partition is necessary. On the other hand, log partitions may be located on sep-
erate disks, close to the logged partition, or the log records can be kept in memory until sufficiently
large block of log information has been collected to make the seek operation feasible. While in-band
logging provides faster write operations, it suffers from the complexity of necessary compression oper-
ations that perfom similar to a garbage collection. Using a separate log partition, superseeded informa-
tion from an earlier write operation can be flushed everytime a new log information block is write and
the log can be compressed to contain only the remaining relevant information.

Directory Structure

Files are usually organized in directories. Most of today's operating Systems provide tree-structured
directories where the User can organize the files according to hislher personal needs. In multimedia sys-
tems, it is important to organize the files in a way that allows easy, fast, and contiguous data access.

6.2 Multimedia File Systems

Compared to the increased performance of processors and networks, storage devices have become only
marginally faster [Mu1191]????. The effect OE this increasing speed mismatch is the search for new stor-
age structures, and storage and retrieval mechanisms with respect to the file System. Continuous media
data are different from discrete data in:

Real Time Characteristics

in-band log separate log partition
truncate 0 iz:k * biocks

truncate 0 i z c k 0 blocks

Figure 28: Disk operations in log-structured file systems

As mentioned previously, the retrieval, computation and presentation of continuous media is time-
dependent. The data must be presented (read) before a well-defined deadline with small jitter only.
Thus, algorithms for the storage and retrieval of such data must consider time constraints, and addi-
tional buffers to smooth the data stream must be provided.
File Size

Compared to text and graphics, video and audio have very large storage space requirements. Since
the file system has to store information ranging from small, unstmctured units like text files to large,
highly structured data units like video and associated audio, it must organize the data on disk in a
way that efficiently uses the limited storage. For example, the storage requirements of uncompressed
CD-quality stereo audio are 1.4 Mbitsls; low but acceptable quality compressed video still requires
about 1MbiWs using, e.g., MPEG-1.
Multiple Data Streams

A multimedia system must support different media at one time. It does not only have to ensure
that all of them get a sufficient share of the resources, it also must consider tight relations between
different streams arriving from different sources. The retrieval of a movie, for example, requires the
processing and synchronization of audio and video.

There are different ways to support continuous media in file systems. Basically there are two
approaches. With the first approach, the organization of files on disk remains as is. The necessary real-
time support is provided through special disk scheduling algorithms and sufficient buffer to avoid jitter.
In the second approach, the organization of audio and video files on disk is optimized for their use in
multimedia systems. Scheduling of multiple data streams still remains an issue of research.

In this section, the different approaches are discussed and examples of existing Prototypes are intro-
duced. First, a brief introduction of the different storage devices employed in multimedia systems is
given. Then, the organization of files on disks is discussed. Subsequently, different disk scheduling
algorithms for the retrieval of continuous media are introduced.

6.3 Example Multimedia File Systems

Video File Server

Continuous media data are characterized by consecutive, time-dependent logical data units. The basic
data unit of a motion video is a frame. The basic unit of audio is a sample. Frames contain the data asso-

ciated with a single video image, a sample represents the amplitude of the analog audio signal at a given
instance. Further stmcturing of multimedia data was suggested in the following way [RaVi91, Rang93,
StFr92]????: a strand is defined as an immutable sequence of continuously recorded video frames,
audio samples, or both. It means that it consists of a sequence of blocks which contain either video
frames, audio samples or both. Most often it includes headers and further information related to the type
of compression used. The file system holds primary indices in a sequence of Primaty Blocks. They con-
tain mapping from media block numbers to their disk addresses. In Secondap Blocks pointers to all pri-
mary blocks are stored. The Header Block contains pointers to all secondary blocks of a strand. General
information about the strand like, recording rate, length, etc., is also included in the header block.

Media strands that together constitute a logical entity of information (e.g., video and associated
audio of a movie) are tied together by synchronization to form a multimedia rope. A rope contains the
name of its creator, its length and access rights. For each media strand in this rope, the strand D, rate of
recording, granularity of storage and corresponding block-level are stored (information for the synchro-
nization of the playback Start for all media at the strand interval boundaries). Editing operations on
ropes manipulate pointers to strands only. Strands are regarded as immutable objects because editing
operations like insert or delete may require substantial copying which can consume significant amounts
of time and space. Intervals of strands can be shared by different ropes. Strands that are not referenced
by any rope can be deleted, and storage can be reclaimed [RaVi91]????. The following interfaces are
the operations that file Systems provide for the manipulation of ropes:

RECORD [media] [requestID, mmRopeID]
A multimedia rope, represented by mmRopelD and consisting of media strands, is recorded until a
STOP operation is issued.

PLAY [mrnRopelD, interval, media] requestID
This operation plays a multimedia rope consisting of one or more media strands.

STOP [requestID]
This operation stops the retrieval or storage of the corresponding multimedia rope.

Additionally, the following operations are supported:
- INSERT [baseRope, position, media, withRope, withInterval]
- REPLACE [baseRope, media, baseInterval, withRope, withInterval]
- SUBSTRING [baseRope, media, interval]
- CONCATE [mmRopeIDl , mrnRopeID2]
- DELETE [baseRope, media, interval]

Figure 29 provides an example of the INSERT operation, whereas Figure 30 shows the REPLACE
operation.

t INSERT

Figure 29: INSERT operation

Rope 1 Rope2

(audio 1
1 video 0 0 0

Figure 30: REPLACE operation

The storage system is divided into two layers:

The rope server is responsible for the manipulation of multimedia ropes. It communicates with
applications, allows the manipulation of ropes and communicates with the underlying storage man-
ager to record and play back multimedia strands. It provides the rope abstraction to the application.
The rope access methods were designed similarly to UNIX file access routines. Status messages
about the state of the play or record operation are passed to the application.
The storage nzanager is responsible for the manipulation of strands. It places the strands on disk to
ensure continuous recording and playback. The interface to the rope server includes four primitives
for manipulating strands:

1. "PlayStrandSequence" takes a sequence of strand intervals and displays the given time interval of
each strand in sequence.
2. "RecordStrand" creates a new strand and records the continuous media data either for a given
duration or until StopStrand is called.
3. "StopStrand" terminates a previous PlayStrandSequence or RecordStrand instance.
4. "DeleteStrand" removes a strand from storage.

The experimental Video File Server introduced in [Rang93]???'? supports integrated storage and
retrieval of video. The "Video Rope Server" presents a device-independent directory interface to users
(Video Rope). A Video Rope is characterized as a hierarchical directory structure constructed upon
stored video frames. The "Video Disk Manager" manages a frame-oriented motion video storage on
disk, including audio and video components.

Fellini

The Fellini MultimediaStorage Server ([MN096]) has the goal to Support real-time as well as non-real-
time data, but its file system is dedicated to the storage and retrieval of continuous media data. It orga-
nizes data sirnilar to a Unix system, from which it is derived, but data and meta-information about the
data are stored separately.

The data stored on disk using the raw disk interface and it is addressed both in main memory and on
disk in terms of pages. These pages are countable and they are sorted, intuitively, in the order of a nor-
mal forward playout. Figure 31 shows the connection of buffer headers and the Current Buffer List
(CBL). For each file on disk, one CBL exists as a representation of that file. The CBL header contains
an ondisk id, representing the file uniquely to all clients, and an incore id, containing the Open file han-
dle of the file on disk. This abstraction is necessary because a file should be opened only once for all
concurrent accesses. Besides other information, the CBL header refers to a hash array that allows quick
access to the buffer headers representing pages which are currently in main memory. At startup time,

$9 buffer headers

fix count

'd

Figure 31: Fellini's Current Buffer List

the Fellini server allocates free buffers in main memory, pins* them and Stores their headers, with a 0 fix
count, in the free list.

When a Page is requested by a client for the first time, a buffer from the free list is chosen, inserted
into the appropriate CBL list, and its fix count is increased to I . When it is allocated again by another
client, its fix count is increased. In order to share the buffers between the server and its clients, the
buffer headers and buffers are located in shared memory. When a client stops using a page, its fix count
is decreased. When the fix count reaches 0, the Page is not automatically deallocated. Only if a new
Page is requested and the free list is empty, the CBL which has had not active clients for the longest
time (a so-called aged CBL) is forced to release their Page with the highest logical Page number (the
one that would be the last to be accessed by a new client that plays the file from the beginning to the
end). If no aged CBLs are available, all CBLs are checked for unfixed pages, and such a Page is selected
according to a weighting calculation that aims at identifying the pages that will not be used any more by
any of the clients that are already in the system, and from that set, selecting the one with the highest
page number (the one that would be last to be accessed by a newly arriving client at its queue at the
given time).

The management of the data on disk is handled in a way that makes the use of multiple disks trans-
parent to the User. The information about the location of the data is maintained in file control blocks
(FCBs) that are similar to Unix file i-nodes at the root of the directory uee. Subdirectories are not sup-
ported. All FCBs of the system are stored in a single Unix file. This file is big enough to store FCBs for
the entire space that is available to the Fellini server.

Table 2: Indentification of Unix and Fellini APIs

Unix API Fellini RT-API

1 begin-stream fe-nr-open I

1 read / retrievestream 1 f e - n i a d I
1 write 1 store-stream (fe-nr-write I

*. a memory Page is said to be pinned when the OS is forbidden to swap it out of the main memory

1 ciose

Table 2: Indentification of Unix and Fellini APIs

To the rest of the system, the Fellini Server offers an API that is very similar to the Unix filesystem API
for convenience. Table 2 identifies the Fellini function calls with their Unix couterparts.

Unix API

seek

Symphony

The Symphony file system ([SGRV97]) is a filesystem designed for the Storage and delivery of hetero-
geneous data types. Particularly, Symphony addresses the following issues:

Fellini RT-API

seek-stream

support real-time as well as non-real-time requests
support multiple block sizes and control over their placement
support a variety of fault-tolerance techniques
provide a two-level meta data stmcture that alles type-specific information to be attached to each file

Fellini non-RT-API

fe-nr-seek

To do this, the file system is divided into a data-type specific and a data-type independent layer. The
data-type independent layer implements a scheduler that uses a modified SCAN-EDF approach to
schedule real-time requests and adds non-real-time requests according to C-SCAN as long as no dead-
lines for the real-time requests are violated. It offers to the data-type specific layer variable block sizes
that are multiples of a minimal basic block sizc that is defined at file system creation time and an option
to express a preferred, but not guaranteed, location of blocks in terms of disk and location on that disk.
To locate variable-sized hlocks on disk efficiently, each block is addressed through an indirection as
shown in Figure 32. Finally, the fault tolerant layer can optionally use parity information to deliver ver-
ified data, or skip this check in favour of Speed.

lNode

Frame Map

Byte Map

Block Location

Figure 32: Symphony's indirect block location

The data-type specific layer offers a Set of modules (audio, video and text) for different kinds of data,
where each of the modules makes use of the features provided by the underlying layer according to its
requirements.

E.g. the video module implements variable size data blocks by observing a video stream at writing
time arid by deriving an approximation of a maximum block size from the Start of the stream. This block
size is negotiated with the data-type independent layer, and subsequently, space that remain unoccupied
because the actual block was smaller than the maximum block size is filled with data from the following
block until the buffer space of a full block is saved. This allows for the continuous write as well as read
operations at the cost of huffering one additional block size of memory per stream in the worst case.
Concerning the placement policy, the video module prefers to stripe a file over as many disks as possi-
ble to maxirnize the utilization of i/O bandwidth for the case of parallel retrieval operations. In addition

to this, during retrieval operations it starts to cache video blocks in main memory for efficiency accord-
ing to the Interval Caching Policy.

Syrnphony Supports the typical Unix file operations and extends this interface by function calls that
are necessary to support quality of service. These additional functions are ifsPeRodReadO, ifsperiod-
icWri[e(), ij%QoSNegotiate(), ifsQosConfiim() and ifsgetMetaData().

7 Memory Management

Memory management in media servers is mainly concerned with the assignment of part of the media
server's main memory to the delivery of a multimedia stream. While straightforward implementations
of media servers do not exploit all content's movement through the main memory of the media server
but rather rely on the filesystem implementation to allocate sufficient bandwidth for a smooth delivery
of each stream, a couple of approaches exist for the exploiteation of this phase of data delivery. One
approach was demonstrated earlier with the Fellini server's file System ("Fellini" on Page 34). Others
are listed in the following.

Interval Caching Policy

[DS93] introduces partial replication of multimedia files for load-balancing in multimedia Systems. It is
b a e d on the observation that if there werc a number of consecutive requests for the same video, and if
the blocks read in by the first request were copied to another disk, it would be possible to switch the fol-
lowing requests to the partial replica just created.

Generalized Interval Caching Policy

The Interval Caching Policy, proposed in [DS93], exploits the movement of data through the main
memory of a video server by keeping the data of such streams in memory, which are followed tempo-
rarly close by another stream of the Same object. This policy is refined in [DS95] to take into account
that the interval caching policy does not handle short files appropriately when the media server is han-
dling a mixed workload rather than a videos.

Batching

Batching is an approach introduced in [DSST94] to exploit the memory bandwidth and to save disk
bandwidth in inedia servers by defining a temporal cycles called batching windows. All requests that
arrive within such a cycle are collected and at the end of the cycle, all requests to the same content are
serviced from the same file and buffer. This approach weakens the on-demand idea in comparison to the
interval caching policy, but it recovers potentially large amounts of main memory because content can
be discarded from the main memory irnmediately after playout and it will be re-loaded only after the
next cycle. [DSS94] modifies this approach towards dynamic batching, which services requests as soon
as a stream becomes available. Two selection policies, first come first serve (FCFS) and maximum
queuc length (queue length is defined by the number of User who requested that file), are compared, and
FCFS is shown to be the more performant.

Piggybacking

The aggregation of strcams that deliver the same content in close sequence without the use of batching
window was proposed by means of piggybacking ([GLM96]), i.e. one stream of a content file that is
shortly preceeding another stream of the same file should be joined with the later one. Tlie general
means to do this is an increase in the speed of the later stream andlor a decrease in the speed of the ear-
lier stream until they join. Various strategies for joining more than a pair of streams are then investi-
gated in detail in LGLM961.

Contcnt Insertion

For the video-on-demand special case, [VL95] proposes the most radical extension of that scheme to
date by oEcring content insertion to force larger numbers of streams into a time window which is small
enough to allow the use of the piggybacking technique to join them into a single stream. Such inserted

content from a content loop like an eternal advertisement show or from a continuous news show might
be acceptable to the User to stay tuned. Alternatives might be a lengthening or shorting of introducing
scenes of a movie. In [KVL97], it is then offered that this technique can also be used for providing a just
as pragmatic and radical solution to problcms such as server overload or partial server failure by divert-
ing Users into an advertisement loop or presenting other fill-in content until the ~ rob lem can be fixed or
until an aggregation with an action stream can be performed.

8 References
[AOG91] D. P. Anderson, Y. Osawa, R. Govindan. Real-Time Disk Storage and Retrieval of Digital

AudiolVideo Data. TR UCBICSB 911646, University of Califomia, Berkely, September 1991.

[BGW97] Michael Bär, Carsten Gnwodz, Lars Wolf. Long-term Movie Popularity in Video-on-Demand
Systems. In Proceedings of the 5th ACM Int'l Multimedia Conference, pages 349-358.
Seattle, Nov. 9-13, 1997.

[BY95] Birk. Yitzhak. Track Pairing: A Novel Data Layout for VOD Servers with Multi-Zone
Reocrding Disks. i n Proceedings of the International Conference on Multimedia Computing
and Systems (ICMCS) 95, Washington D.C.,May 1995.

[Chu96] Soon M. Chung (Ed.). Multimedia Information Storage and Management. Kulwer Academic
Publishers, Norwell, Mass. 1996. ISBN 0-7923-9764-9.

[CKY93] Mon-Song Chen. Dilip D. Kandlur, Philip S. Yu. Optimization of the Grouped Sweeping
Scheduling (GSS) with Heterogeneous Multimedia Streams.Proceedings of ACM MM '93,
Anaheim, CA, August, 1993, pp. 235-242.

[CLG+94] Peter M. Chen, Edward K. Lee, Gai-th A. Gibson, Randy H. Katz, David A. Patterson. RAID:
High-Performance, Reliable Secondary Storage. ACM Computing Surveys, 26,2:145-185,
June 1994.

[CT97] Shenze Chen, Manu Thapar. A Novel Video Layout Strategy for Near-Video-on-Demand
Servers. in Proceedings of the International Conference on Multimedia Computing and
Systems (ICMCS) 97, pages 37-45, Ottawa, June 3-6, 1997.

[DKS95] Asit Dan, Martin Kienzle. and Dinkar Sitaram. A dynamic policy of Segment replication for
load-balancing in video-on-demand servers. Multimedia Systems, 3:93- 103, 1995.

[DS93] Asit Dan and Dinkar Sitaram. Buffer Management Policy for an On-Demand Video Server.
RC 19347, IBM Research Division, 1993.

[DS95] Asit Dan and Dinkar Sitaram. A Generalized Interval Caching Policy for Mixed Interactive
and Long Video Workloads. RC 20206 (89404). IBM Research Division, September 1995.

IDS95bI Asit Dan and Dinkar Sitaram. An Online Video Placement Policy based on Bandwidth to
Space Ratio (BSR). In Proceedings of the 1995 SIGMOD. San Jose, Califomia, May 22-25,
pages 376-385, 1995.

[DSS94] Asit Dan, Dinkar Sitaram, Perwez Shahabuddm. Dynamic Batching Policies for an On-
Demand Video Server. Multimedia Systems. ??? 1994.

[DSST94] Asit Dan, Penvez Shahabuddin, Dinkar Sitaram, Don Towsley. Channel Allocation under
Batching and VCR Control in Video-On-Demand Systems, IBM Research Report, RC 19588,
Sept. 1994.

[GH94] D. James Gemmell, Jiawei Han. Multimedia Network Filc Servers: Multi-Channel Delay
Sensitive Data Rettieval. Multimedia Systemes 1(6), pp. 240-252, 1994.

[GIZ96] Shahram Ghandeharizadeh, Doug Ierardi, and Roger Zimmermann. An Algorithm for Disk
Space Management to Minimize Seeks. Information Processing Letters, 1996.

[GLM96] Leana Golubchik, John C. S. Lui, Richard R. Muntz. Adaptive Piggybacking: A Novel
Technique for Data Sharing in Video-on-Demand Storage Servers. Multimedia Systems 4, pp.
140-155, 1996.

[GK96] Shahram Ghandeharizadeh and Dongho Kim. On-line Reorganization of Data in Scalable
Continous Media Servers. In Proceedings of Database and Expert Systems Applications
1996, Zunch, Switzerland, pages 751-768, 1996.

[GKS95] Shahram Ghandeharizadeh, Seon Ho Kim, and Cyms Shahabi. Continuous Display of Video
Ohjects Using Multi-Zone Disks. TR 94-592, USC, Apnl 1995.

Shahram Ghandeharizadeh, Roger Zimmermann, Weifeng Shi, Reza Rejaie, Doug Ierardi,
and Ta-Wei Li. Mitra: A Scalable Continuous Media Server. TR 96-628, USC, Febmaty
1996.

Roger L. Haskin, Frank B. Schmuck. The Tiger Shark File System. Online in Almaden.

J. Kim, Y. Lho, K. Chung. An Effective Video Block Placement Scheme on VOD Server
based on Multi-Zone Reocrding Disks. In Proceedings of the International Conference on
Multimedia Computing and Systems (ICMCS) 97, pages 29-36, Ottawa, June 3-6, 1997.

Jan Korst. Random Duplicated Assignment: An Alternative to Stnping in Video Servers. In
Proceedings of the 5th ACM Int'l Multimedia Conference, pages 219-226, Seattle, Nov. 9-13,
1997.

S. Krakowiak. Pnnciples of Operating Systems. MIT Press, Cambndge, 1998.

Rajesh Krishnan, Dinesh Venkatesh, Thomas D. C. Little. A Failure and Overload Tolerante
Mechanism for Continuous Media Servers. Proceedings of the ACM MM 97 Conference, pp.
131-142, 1997.

E. K. Lee, R. H. Katz. Performacen consequences of parity placement in disk arrays. In
Proceedings of the 4th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-IV). IEEE, New York, 190-199. 1991.

Peter W. K. Lie, John C. S. Lui, Leana Golubchik. Threshold-Based Dynamic Replication in
Large-Scale Video-on-Demand Systems. Accepted for RIDE 98.

P. Lougher, D. Shepherd. The Design of a Storage Service for Continuous Media. The
Computer Journal, 36(1), pp. 32-42, 1993.

Cliff Martin, P. S. Narayanan, Banu Ozden, Rajeev Rastogi, Avi Silberschatz. The Fellini
Multimedia Storage Server. In [Chu96j, pp. 117-146, 1996.

E. W. Peterson, E. J. Weldon. Error-Comecting Codes. 2nd ed. MIT Press, Cambndge, Mass,
1972. ????

Dinkar Sitaram, Asit Dan, and Philip S. Yu. lssues in the Design of Multiserver File Systems
to Cope with Load Skew. In Proceedings of 2nd Int'l Conference on Parallel and Distributed
Systems, San Diego, pages 214-221. IEEE Computer Society Press, hos Alamitos, 1993.

John Ousterhout, Fred Douglis. Beating the U 0 Bottleneck: A case for Log-Stmctured File
Systems. Operating Systems Review, 23(1), pp. 11-28, 1989.

David. A. Patterson, Garth Gibson, Randy H. Katz. A Case for Redundant Amays of
Inexpensive Disks (RAID). Proceedings of the 1988 ACM Conference on Management of
Data (SIGMOD), Chicago, IL, pp. 109-1 16, June 1988.

sorry, too tired

A. L. Narasimha Reddy, Jim Wyllie. Disk scheduling in a multimedia U0 System.
Proceedings of ACM MM '93, Anaheim, CA, August, 1993, pp. 225-223.

A. L. Narasimha Reddy, Jim Wyllie. U 0 lssues in a Multimedia System. COMPUTER. 27(3),
pp. 69-74, 1994.

Scott D. Stoller, John D. DeTreville. Storage Replication and Layout in Video-on-Demand
Servers. NOSSDAV95.

Prashant J. Shenoy, Pawan Goyal, Sriram S. Rao, Harrick M. Vin. Symphony: An Integrated
Multimedia File System. In Proceedings of SPIE/ACM Conference on Multimedia
Computing and Networking (MMCN'98), San Jose, CA, pp. 124-138, Jan 1998.

WilIiam H. Tetzlaff and Robert Flynn. Elements of Scalable Video Servers. In Proceedings of
COMPCON 1995, pages 239-248,1995.

[TPBG93] F. A. Tohagi, J. Pang, R. Baird, M. Gang. Streaming RAID - A Disk Array Managment
System for Video Files. Proceedings of ACM MM '93, Anaheim, CA, August, 1993, pp. 393-
400.

[VL951 D. Venkatesh, T. D. C. Littlc. Dynamic Service Aggregation for Efficient Use of Resources in .- ~

lnteractive Video Delivery. Proceedings of the 5th NOSSDAV conference, pp. 113-1 16, Nov.
1995.

[WD97] Yuewei Wang. David H. C. Du. Wcighted Striping in hlultimedia Servers. In Proceedings of
the International Conference on Multimedia Computing and Systems (ICMCS) 97, pages
102-1 09, Ottawa, June 3-6, 1997.

[YCK92] P. S. Yu, M.-S. Chen, D. D. Kandlur. Dcsign and Analysis of a Grouped Sweeping Scheme for
Multimedia Storage Management. 3rd Int'l Workshop on Network and Operating System
Support for Digitial Audio and Video (NOSSDAV92). San Diego, Nov. 1992.

[ZG97] Roger Zimmermann and Shahram Ghandeharizadeh. Continuous Display Using
Heterogeneous Disk-Subsystems. In Proceedings or ACM Multimedia 97, November 8-14,
Seattle, pages 0-0, 1997.

