GZ01] Carsten Gnwodz, Michael Zink;

Dvoamic Data Path Reconfiguration
Carsten Griwodz, Michae! Zink

namic Data Path Reconfiguration;international

Workshop on Multimedia Middleware 2001, 0ttawa, October 2001, S.72-71%

to be published ar International Workshep on Multimedia Middieware 2001

Dynamic Data Path Reconfiguration

Carsten Griwodzi, Michael Zink?

Loriff @ifi.uio.no
University of Oslo - Department of Informatics
Gaustadalléen 23 - 0371 Oslo, Norway

2michael.zink @ kom.tu-darmstadt,de
Darmstadt University of Technology - Industrial Process and Systetn Communications (KOM)
Merckstr. 25 - 64283 Darmstadt, Germany

1. INTRODUCTION AND MOTIVATION

When trying to build an awdio/video (AV) streaming infra-
structure one realizes that some functionality is needed in sev-
eral parts of the application. E.g., In case of video server and

. client, protocols like RTP/RTCP, RTSP and SDP are needed in
both parts, Therefore it is appropriate to implement these func-
tions in a reusable manner and to create a well-defined and
documented AP for each module. To use the infrastructure in
projects with non-research groups. it is necessary lo support
several decoders and several video servers for the diverse
encoding formats (e.g. H.263, MPEG-1, QuickTime). These
come with different APIs, leading o> an adaptation effort when-
ever a new lihrary is integrated.

While such ahstractions are typical for sireaming applica-
lions, a generie structure like that of the JMF [1) is rarely found
in tree. open source systems. Existing approaches unplement
either hard-coded sequences, or they consider framewaorks that
allow the specification of an end-to-end behavior for complex
multimedia systems. In the latter kind of systetns, functionality
is described at the level of cooperating distributed componznts
{2, 3]. It is typical far such frameworks to consider networking
as a component that 1s also under the control of the framework.

In an environment that ensures interoperability by specifying
protocols (such as the RTSP sireaming environment), we prefer
a local approach. The control of our framework extends only
over a single machine and RTSP is used explicitly for commu-
nication.

Diue to the interaction of RTP and RTCP, and the possibility
of recetving data from several sources at a single port, a
directed, non-cyclic graph of modules is an appropriate stream-
ing model. In case of RTP, an infrastructure is appropriate only
if dynamic reconfiguration of the data path is supported by the
moduies as well as the controlling framework. A packet that
arrives at an Interface from an unexpected sender must be han-
dled in an application-defined way: it may be appropriate to
discard the packet, to assign it to a default path, or to create an
additional stream for special processing,

Dynamic reconfiguration must also be supported in the
implementation of a proxy cache server: it is necessary to han-
dle user interaction it that cache implements a write-through
mode. The client receives data from the origin server through
the proxy cache, which writes the data to disk and forwards it
10 the client as well. If the client pauses and the application
decides 10 conunue the caching operation, the trunk of the
graph that forwards data (o \be client must be cut, while the

trunk that stores data on disk must be maintained. If the client
resumes viewing, the application must create a new graph,
which retrieves the data from the cache.

We explain our design decisions that are derived from these
Tequirements.

I1. DESIGN

Currently we implement components, called stream handlers
(SHs), that work at a granularity similar to the components of
the JMF and do not provide an abstraction from the network.
The SHs are modular media processing units that can be con-
nected dynamically by a controlling cntity, the graph manager,
te form a set of modules, which process data units sequentially.
The sequence of data units is calied the stream, the modules are
the SHs. As streaming graph we deiine a graph built from sev-
eral SHs through which data is “flowing” while it is processed
as necessary.

Our experience with the implementation of streaming appli-
cations showed us the need tor a generic architecture to handle
continous media streams. This became specifically clear during
the development of our experimental KOM-Player platform.
"I'he platform is used for investigations on AV distribution sys-
tems. Therefore is should not only offer support for different
encoding formats, transport protocols, but it must support a
variety of distribution mechanisms that we investigate. Such
distribution mechanisms may combine unicast and multicast
distribution or may apply segmentation and reordering for effi-
cient delivery, This led to our decision to build an environment
that is based on a stream handler architecture. 1t was our inten-
tion to create an SH architecture that meets the following
goals;

» Easy to extend: First of all the architecture should be a

basis for developers to build their own SHs,

» Well defined interfaces: The interfaces for each single
SH must be well defined to allow an easy interaction with
exiSIing ones.

* Reuseability: It should be casy to reuse already existing
functionality.

A. Concurrency

Advanced, open wmiddleware approaches that implement
functions by concatenating functional modules into arbitrary
graphs of independent components are able to attach schedul-
ing mechanisms (o arbitrary subgraphs [4]. While this
approach is highly flexible, it requires either an operating sys-

tem absiraction layer to allow arbitrary grouping. or informa-
tien about the potential grouping capabilities of modules. For
example, it is not straight-forward to support in the same thread
a module that listens to a BSD socket with a module that waits
for a POSIX semaphore (o fire without wasting resources. Our
implementation resfricis the flexthility of the graph manager
for combining stream handlers into processing units.

B. Stream and Streaming Graph

With our focus on delivery systems. we have not addressed
issues in determining the functionality of stream handlers that
may enable a graph manager (o create an appropriate streamng
graph. Rather, at this time we usg well-known sub-sequences
of SHs that are equired for a specific task, such as data for-
warding, wriling to and playout from disk, bufiering. or
sequencing. The graph managers are responsible for the setup
and destruction of the SHs, deteriine the interaction beween
the individual SHs and represent the interface towards the
apphication.

Specifically, a graph manager is required to deal with data
packets from unexpected sources, and it must split a graph or
merge graphs on behalf of the application. To handle opera-
tions such as user join or feave operations on multicast sireams,
the graph manager must be able to dynamically split and merge
the streaming graph by setting up ur removing SHs without
disrupting the active data forwarding of a stream.

C. Stream handlers in Gleaning capable proxy-cache

In multimedia middleware research, dynamic reconfigurai-
ton of stream graphs is currently investigated from the aspect
of the replacement of functions and of adaptation to changing
resource avatiability {51

Our requirements are orthogonal 10 these abilities and
smalier in scale: in an RTP/RTSP delivery system our proxies
must be able o handle gracefully within the data forwarding
path unexpectled new sireams from the uplink side, pause and
continue requests from the client side.

1. IMPLEMENTATION

The impiementation consists of three applications that are
sufficient tor building an experimental streaming media distri-
bution system: client, server and proxy-cache. Al three of
them exclusively use the SH architecture described in Section
T to ismplement their streaming functionality. As a starting
point the classes shown in Figure 1 were implemented.

A. Overview

'The implementation of the KOM-Player platform aims at the
development ol a research prototype in the area of wide-area
distribution systems for streaming media in the Internet. The
initial code base considered mainly the distribution of CBR
MPEG-1 system and MP3 streams, which were our imual tar-
get formats because they combine hardware- and OS-indepen-
dent playback capability with an apprupriale guality. Since
these encoding formats do not support the scalability of encod-
ing formats that can now and in the conceivable future be

SHSlatus

StiEnapoint _|
SH r'i" SHSoumeEnd?oim
- S —

~

“ SHSinkEndpoint

Figure I Farent classes

deployed in the Internet on a wide scale, more flexible encod-
tngs are considered as well in our research. More recently, we
have added H.261 and VBR MPEG auvdio, video and system.
The SH architecture will be a major basis for ongoing imple-
raentation work that is concerned with scalable encading for-
mals.

B. Middleware

To make SHs also usable for third pany developers we
decided Lo create a layer that provides basic classes {see Figure
1}, tlemplates and mnterface definitions for the creation of new
SHs. Parent classes with a set of virtual functions cnsure the
interoperability between SHs. Certainly this can only be
assured in case (hat newly creatcd SHs inhent from those
classes.

* SH and SHStatus: SH is the basis class for all SHs which
must be inherited by all new SH classes. This class pro-
vides an attribute template that allows individual atiibutes
for cach SH. The SHStaws class provides functionality
that altows 10 collect status information about a specific
instance of an SH (e.g. if the SH is currently part of an
active graph).

* Endpoints: The Endpoint classcs provide standard inter-
faces between the SHs. Each new SH must also include a
class that implemenis its endpoints and inherits from
SHEndpoint, SHs can provide both sink and source end-
points, which must than inherits SHSinkEndpoint or
SHSourceEndpoint, respectively,

+ Attributes: Atiributes of an SH are modified by the graph
manager lo speciatize an SH before it 1s connected into a
graph. Auribules are implemented as scl/get operations on
generic data types, At this time, the knowledge required
for specialization is identical to the knowledge required
for chosing among different SHs.

* Reports: It is untypical for architectures that implement
uni-directional streaming of data to provide direct feed-
back in the opposite direction of the data paii. We have
decided to do this. It allows, for example, to provide RTCP
feedback to an RTP packetizer without involvement of the
eraph manager. Each SH muost implement the report inter-
faces (up- and downstreamn), and reports must be accepted
in a non-blocking manner. SHs may communicate via spe-
cialized reports even if intermediate SHs can not interpret
them - such reports must be forwarded.

C. Stream Handler Types

To deal with the concurrency issue, our implementation
requires SHs to specify whether they implement an own clock
or not, and whether they require it or not. As a result, we define
three operation modes for our SHs, to be ordered appropriately
by the graph manager: active, passive and through. Their com-
bination and ordering depends on the task that a specific
streaming graph should fulfil.

* Active: Active SHs implement thetr own timer. If the SH
acts as a source, it will push data downstream actively (by
calling a push function of the downstream SH). If it acts as
a sink, it will pull dafa from an upstream SH actively. It
may act as source and sink at the same time. The timer that
is implemented by the active SH my be a local timer, or it
may be mmplemented by observing external conditions,
like user input or network packets. It is not possible to
connect two active SHs directly to each other because each
one tries to control synchronity. Yet, more that one active
SH in a streaming graph can exist if a passive SH is
inseried between those.

* Passive: A passive SH does nol implement a clock. If it
acts as a sink, an upstream SH may push data to i, if i acts
as a source, a downstream SH may pul] data from it. If it
implements both source and sink, it must also provide
buffering capacities that suite the needs of the graphs that
it is likely to be included in. Such a buffering SH should
define thresholds that allow it to notify the graph manager
of over- and underruns of the buffer. Passive SHs can not
be connected directly because no data would be exchanged
between them.

* Through: Through SHs are meant for tasks such as on-
the-fly transcoding, packet duplication. or filtering. SHs do
not implement timers and should not introduce buffers
beyond those necessary for their operation. They must
always implement a source as well as a sink. An arbitrary
number of them can be concatenated. An active SH that is
located upstream will push data through this kind of SH,
potentially through several more through SHs until a pas-
sive SH is encountered. The pull operation is used in the
same way by an active SH located downstream. A through
SH should work in both directions, but jts endpoint capa-
bilities may restrict this.

D. Client-Server Application

An example for these stream handler types’ interaction is the
delivery of an MPEG-1 (system stream) movie to a client. Fig-
ure 2 shows the SHs that are used in this simple scenario.

The movie is stored on the server’s disk. Thus the starting
point of the streaming path is an SH that reads the data from
the disk. The data reader, in our case described as File Source
SH', must be partially aware of the encoding format of the
stored movie to schedule its read-ahead operations reasonably.

1 This is described as a source hecause it is the source of the
streaming path.

ot RTSF »

RTSF client oLl

" Wirdow
' Handle

T 1L

Figure 2: Client-server configuration overview

In the example data is requested from the File Source SH by
the Encoder SH which is an RTP Encoder SH in this specific
case. The encoder determines the timing in this stream. It
understands the actual encoding format of the data and the
transpert protocol that is used for data transmission. It deter-
mines time and amount of data 1o pull from the File Source and
pushes it to the RTP Sink SH to meet the existing constraints
for data rate and delay, and to create a reasonable stream. In the
case of an MPEG-| system stream this means that the RTP
Encoder SH requests data chunks of equal size and pushes
those 10 the RTP Sink SH. RTCP receiver reports are inter-
preted by the RTP Sink SH and statistics are forwarded to the
RTP Encoder SH using the report interface.

The actual streaming path is determined by the existing
streaming graph which represents the layout of the streaming
architecture. In Figure 2 the streaming graph consists of Graph
Manager, File Source SH, RTP Encoder SH and RTP Sink SH.
The Graph Manager is responsible for the setup and destruc-
tion of the SHs, determines the interaction beween the individ-
val SHs and represents the interface towards the application,

To handle special tasks in caches the Graph Manager must
be able to dynamically reconfigure the streaming graph by set-
ting up or removing SHs.

E. Gleaning Proxy

Reconfiguration plays no role in the example of Section D
but 1t 15 a basic requirement for a proxy server that implements
gleaning. Roughly, a gleaning proxy works by delivering a
movie linearly to a client via unicast, which the proxy itself
receives in two pieces: a short start sequence via vnicast and
the remaining portion via multicast. For a detailed description
of Gleaning we refer to [6],

Since one of our research topics is on caching for multime-
dia streams we designed and implemented a gleaning capable
proxy-cache for those streams. A detailed design can be found
in [7). The proxy is not an RTSP proxy as understood in the
RFC, which caches and redirects only control information [8].
Rather, 1t 15 an RTSP/RTP proxy cache that stores content in
addition to handling RTSP requests. RTSP messages from dif-
ferent RTSP sessions are multiplexed onto one connection
between an origin server and a proxy, RTSP SessionIDs are the
keys to de-multiplex sessions. A proxy installs an RTSP con-
nection to an origin server on-demand when a request for the
particular origin server is received from a client. The connec-
tion is torn down when no more active RTSP sessions between
the proxy and the crigin server exist.

Figure 3 shows a streaming graph for the gleaning proxy

ATPSourceSH

ATPSeourceSH

—_—_ - -4

r
I RTPDegodarSH |

F—_—— -

| RTPDecoderSH

-
|

L __-_;__v_ 4 L 1_;_-_ a
[P-USEI!SI" jl ' [PushPullSH j

[e

ConcalenizerSH

F= = = = = bl
1 RTPEncederSH |
L T — |
Aclive SH 7
r---—5n o
I FileSinksH | i RTPSinkSH
L - = a - = =~ Througn SH L S
— + — Passive 5H

Unicast steam

Figure 3: Proxy cache streaming yrapi

with a single client. In a typical case of gieaning the proxy-
cache joins an already existing muliicast session and requests
the missing part of the movie via a unicast stream. When the
missing part airives as a unicast, this data is immediately for-
warded to the client while the multicast stream is buffered
cyclically and streamed to the client after the unicast siream is
finished. 1f the proxy cache also decides to cache this movic,
both streams are stored linearly on its local disc. Thercfore two
streaming paths on the receiving part of the cache are needed:
one for the unicast stream and one for the multicast stream,
This paths consist of an active RTPSourceSH, a passive RTP-
DecoderSH and PushPuliSH. The latter is needed because the
ConcatenizerSH is active. This is the case because it deter-
mines both the order and the timing with which data is for-
warded to the client or to the local disc.

On the data torwarding path to the client, an RTPEncoderSH
can be seen in through mode. If active mode were uscd instead
as in the previous cxample, the ConcatenizerSH and the
RTPEncoderSH would have to be scperated by another Push-
PullSH, and both would re-create the required timing of the
RTP stream independently.

Two situations require dynamic reconfiguration of the data
path:

* join without caching: If the proxy cache does not keep
the entire movie, a second client must be served from the
same multicast strcam and an additional unicast stream.

» pause with caching: 1f the proxy cache keeps the cntire
movie, the client may decide 10 pause. In this case, the
delivery path to the client must be suspended.

F. Ropes

Since our implementation resides in the user space, data s
copied between kernel and user space at ieast twice in a for-
warding operation. Further replication and processing 1s
required in the streaming path. To reduce the amount of copy-
g operations on the sireaming path. we use the concept of

ropes, a buffer abstraction that provides random access sirmilar
to a flat buffer, but that allows copy-by-reference combined
with independent modifications of each copy by concatenation,
cutting and editing operations (9]. Ropes allow the non-copy-
ing modtification, removal or addition of protocol headers, and
the parallel processing of inserleaved channels in a streams.

1V. CONCLUSIONS

We use this SH implemenation which is based on the archi-
tecture presented in Section II in our proxy-cache prototype.
We consider the SHs are an appropriate absiraction for devel-
oping streaming applications. This is supported by the fact that
most of the implementation work was done by one of our stu-
dents who was not involved in the SH design.

For investigate layered video and other adaptive capabilities,
we will integrate an MPEG-4 cncoder and -decoder into the
system. This happens in conjunction with an experimental
TCP-friendly protocol TFRC that indicates limits to the per-
mitted transmission rate to the sender.

Although the apphcability and extensibility of the approach
has been shown, we cxpect a better handling when we have
integrated the SH approach conscquenily into our clicnt as
well, and when we support a plugin architecture that allows the
dynamic loading of stream handlers.

Y. REFERENCES

[1] L. DeCarmo. Core Java Media Framework. Prentice
Hall, Upper Saddle River, New Jersey, USA, 1999,

[21 T. Kaeppner. Entwvickiung verteilter Multimedia-App-
likationen. Vieweg Verlag, 1997,

(3] F. Eliassen and I. Nicol. Supporting Interoperation of
Conunucus Media Objects. Theory and Practice of Ob-
Jject Systems. Special Issue on Distributed Object Man-
agement, 2(2y.95-117, 1996.

[4] E. Walthinsen, GStreamer - GNOME Goes Multimedia.
Technical report, GUADEC 2001, April 2001.

[5) F.Kon, M. Rom'n, P.Liu, J. Mao, T. Yamane, L. C.
Magalh,,es, and R. H. Campbell. Monitoring, Security,
and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed
Processing (Middleware 2000), New York, USA, 2000,
IFIP/ACM, April 2000.

[6] C.Gnwodz. Wide-area Trie Video-on-Demand by a
Decentralized Cache-based Distribution Infrastructure,
PhD thesis, Darmstadt University of Technology, Darm-
stadt. Germany, April 2000.

{71 R. Becker. Design und Implementicrung von Patching
in dic KOM VoD Umgebung. Studicnarbeit. Fachbere-
ich Eiektrotechnik und Informationstechnik, Darmstadt
University of Technology, September 2001.

(8] H. Schulzrinne, A, Rao, and R. Lanphier. RFC 2326 -
Real Time Streaming Protocol (RTSP). Standards Track
REC, April 1998.

(9] H.-J. Boehm, R. Atkinson, and M. Plass. Ropes: An Al-
ternative to Strings. Software Practice and Experience,
25(12):1315-1330, 1995.

