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I. INTRODUCTION AlVD MOTIVATION tmnk that stures data on disk must be niaintained. If the client 
resumes viewing, ths applicaiion niust crcate a new yaph, 

When tryiiig to build an audiolvideo (AV) streaming infra- 
which retrieves the data from the cache. 

%tructure one realizes that some functionality is needed in sev- 
We enplain our design decisions that are derived from these 

eral parts of the application. E.g., in case of video sener  and 
requirements. 

client. protocols likc RTPIRTCP, RTSP and SDP are needed in 
hoth parts. Therefore it is a ~ ~ r o p r i a t e  to im~lement these func- 11. DESIGN .. . 
tions in  a reusable manner and to creaie a well-defined and 
documented AP1 for each rnodule. To use rhc infrastructure in 
projccts with non-research groups. it is necessary to support 
sevrral decoders and several video seryers for the diverse 
encoding formats (e.g. H.263, MPEG-I, QuickTirnc). These 
caiiie wilh different APls, leading t i >  an adaptation effon when- 
ever a new lihrary is integrated. 

Whilr such ahstractions are typical tor srwaming applica- 
tions, ageneric stiucturc likc thntof the JhlF [ I  J is rarely found 
in free. open source systerns. Existing approaches implement 
eiiher hard-coded sequences: or they consider franieworks that 
allow thc speciiicarion oC an crid-10-end bchnvior for cornplex 
rnultimedin sy.items. In the lstter kind of Systems, funcrionality 
is described at the lsvel of cooperating disiributed componsnts 
[2, 31. 11 is typical for such frameworks to considcr networking 
as a cornponeni [hat is also under tlie control of the framework. 

In an environment [hat ensures interoperability by specifying 
protocols (such as the RTSP streaming environiiieiit), wc prcfer 
a local approach. The control of iiur frameuork extends only 
over a single rnachine and RTSP is used explicitly for comniu- 
nication. 

Due ro iIie interaction nf RTP and RTCP, and the possibility 
of receiving data from several sources at a single port, a 
directed. non-cyclic graph of mudules is an appropriate stream- 
ing model. In case uCRTP, an infrastructure is appropriate iinly 
if dynarnic reionfiguration of the data path is supported by the 
modules as well as the controlling framework. A packet that 
arrives at an interface from an unenpected scnder must be han- 
dled in an application-defned way: it may be appropriate to 
discard the packet. to assign it to a default path, or to create an 
additional rtreani for special processing, 

Dynamic riconfiguration rniist also be supported in the 
implementation of a proxy caclie server: it is necessary to han- 
dle User inteiaction if that cache implements a write-iliiuugh 
mode. The client rcccives data from the origin server through 
the proxy cache, which writes the data to disk and hrwards it 
ro the client as well. If the client pauses and the applicatioii 
decides tu Luiiunue thc cnching operation, ths trunk of the 
graph that forwards data to the client must be cut, while the 

Currently we implement components. called stream handlers 
(SHs), [hat work ar a granularity similar to the components of 
the JMF and do not provide an abstraction tiom the network. 
The SHs are modular media processing units that can be con- 
nected dynarnically by a coiitrolling cnrity, the graph manager, 
to form a set of modules, which process data units sequentially. 
The sequence of data units is called the strearn, the modules are 
the SHs. As streaniing graph we deline ii graph built from sev- 
cial SIIs through which data is "flowing" while it is processed 
as necessary. 

Our experience with the implementation of streariiiiig appli- 
cations showcd us thc nccd for a seneric architecture to handle 
continous media streams. This becanie specifically c lex  during 
the development of our experimental KOM-Player platforiii 
'l'he platform is used for invcstigotions on AV distrihution sys- 
tems. Therefore is should not only offer suppon for diit'erent 
encoding formats, transpori protocols, but it must support a 
variety ot distribution mecliaiiisms [hat we investigate. Such 
distribution mechanisms may comhine unicast and multicast 
distribution or may apply scgmentation and reordering for efii- 
cient delivery T h i  led to our decision Lu build an cnvironment 
tliat is bascd on a strearn handler architecture. It was our inten- 
tion to create an SH architecture that rneets the following 
goals: 

Easy to extend: First of all the architecture should be a 
basis for developers to build their own SHs. 
Weil defined interfaces: The interfaces for each siiigle 
SH must be well defincd to allow an easy interaction with 
exising anes. 
Reuseability: It should be easy to reuse already existing 
functionality. 

A. Concurrency 

Advanced, open middleware spproaches (hat implemciit 
functions by concatenating functional modiilei into arhitraiy 
grnphs of independent components are ahle to actach schedul- 
ing mechanisms to arbitrary subgraphs 141. While this 
approach is highly flexible, it requires either an oprrating sys- 



tem abstraction layer to allow arbitrary grouping. oi informa- 
tion about the potential groupirig ~apabilitics of rnudulrs. For 
example, it is not süaight-hrward to supporr in the same thread 
a modulc that linteri:. tu a BSD .rocket with a modulc that wairs 
for a POSIX semaphore to fire without wasting resourcrs. Our 
iiirplsnieiitation resliicts tlie flexihility of rhe grnpli iiinnager 
for combining siream handlers into processing units. 

B. Stream und Streaming Graph 

With our focus on deliveiy Systems. we have not addresscd 
issues in detcmining the functionality of stream handlers thnt 
riiiiy ivnable a graph manager to create an appropriate streaniing 
gaph.  Rarher, :it this time we use well-known sub-scquences 
of SHs that are iequired for a pecific task, such as data ior- 
warding, writing to and playoui from disk, buffering. oi 
sequriicing. The graph inanagcrs nrc responsible for ihe setup 
and dcstructton of the SHs, detcriiiiiie the interaction bewcen 
the individual SHs and represent the interface towards thc 
application. 

Sprciiically, a greph manazer is iequired io deal with data 
packets frnm unexpected souiccs. aiid it niust split a giaph or 
rncrgc graphs on behalf of the application. To handle opcra- 
tions such as uscrjoin or leave operations on multicast sireams, 
the grapli inanager must be able todynamically spiit and merge 
the streaming graph by sctting up ur removing SHs without 
disrupting rhe active data lorwarding of a siream. 

C. Stream handlers in Gleanirig cayable proxy-cache 

In multirncdia rniddlcware rescarch. dynamic reconfigurai- 
ton o f  stream graphs is ciirrcnily investigated hoiii tlie aspect 
of the replxement of functions and of adaptation to chnnging 
resource availability (51. 

Our requirenicnts aic orthogonal to these abilities and 
smaller in scale: in an RTPIRTSP deliveiy sysrcm our proxies 
must be able to handle gracefully within the dnta forwarding 
path unexpccied new sueams from the uplink sidc, pause and 
continue requests liom the clieni side. 

Tlic implcmentation consists of thiee applications thar arc 
sufficient Tor building an cxpcrinieiital streaming media disrri- 
hution system: client, Server and proxy-cachc. All thrce of 
them exclusively use the SH architecture described in Section 
I1 to iriiplrmeni their strcaming functionality. As a srarting 
point thc claises shown in Figure 1 wert implemented. 

A. Overview 

'rhe irnplementation of the KOM-Player platform aims at the 
devclopment iil' a research Prototype in thc area of wide-area 
distribution Systems for streaming mcdid in the Internet. 'l'hc 
initial code base considered mainly the (Iistribution of CBR 
MPEG-I system and MP3 streams, which weie nur initidl rar- 
get foiii~ats because ihey combine hardware- and OS-indepen- 
dent playhnck capahility with an apprupiiaie quality. Since 
these encoding foimats do not support the scalability of encod- 
ing formats that can now and in the conceivable Future be 

deploycd in the Intcrnet on a wide scale, more flexible encod- 
ings are considcied as well in nur rcscarch. More rcccntly, we 
havc added H.261 and VBR MPEG nudio. video and system. 
The SH architecture will be a rnajor basis for ongoing imple- 
tnentation work that is concerned with scalahle encoding for- 
mats. 

B. Middleware 

T» make SHs also usable for third pany developers we 
decidcd tu create a layer that provides basic classes isee Figuie 
1 ). templates and interfacc definitiuns for rhc creation of new 
S H s  Parent classes with a sei of viriual functions cnsuit. tlrc 
interoperability between S H s  Ccrtainly this can only be 
assurcd in casc (hat newly creatcd SHs inherit from those 
classes. 

SN and SHStatus: SH is the hasis clnss for a11 SHs which 
must he inherited by all new SH ~lasscs. This class pro- 
vidcs an attributc tcmplate thar allows indi\,idual attributcs 
for cach SH. The SHStntus class piovidcs functionality 
[hat allows io colleci status infoimation about n spccific 
instancc of an SH (e.g. if the SH is currenrly parr of an 
activc grapli). 
Endpoints: The Endpoint closscs provide Standard inter- 
faces between the SHs. Each new SH miist also includc a 

class that implements its endpuints and inherits tiom 
SHEndpoint. SHh can provide both sink and source end- 
points, which miist than inherits SHSirikEndpoint or 
SHSourceEndpoint, rcspectively. 
Attributes: Attrihutes of an SH are inodihed by the graph 
manager io spccialize an SH before it is connccted into a 
graph. Attributes are implcmented as scilgct aperations on 
generic data iypes. At this time. the knowledge required 
Tor specializaiion is identical to the knowledge rcquired 
for chosing among diffcreni SHs. 
ReportF: Ii is untypical for architectures that iiiiplcment 
uni-directional streaming o f  data to provide direct feed- 
back in the oppositc direction of the data parti. We have 
decided to do this. It allows, h r  cxample, to provide RTCP 
Feedback to an RTP packetizer withoui involvemerit o l thc  
graph managei. Each SH must implement the repori inter- 
Faces (up- and dr>wnstream), and rcports must be accepted 
in a non~blocking manncr. SHs may communicate via spe- 
cialircd reports even if intermediate SHs can nol inicrprel 
them - such reports must be foiwarded. 



C. Strearn Hartdler Types 

To deal with the concurrency issue, our iniplementation 
requires SHs to specify whether they implement an own clock 
or not, and whether they requiie it or not. As a result, we define 
three operation modes for our SHs. to be ordered appropriately 
by the graph manager: active, passive and through. Their com- 
hination and ordering depends on the task that a specitic 
streaming graph should fulfil. 

Active: Aciive SHs implement their own timer. If the SH 
acts as a sourcc. it will push data downstreani actively (by 
calling a push function of ihe downstream SH). If it acts as 
a sink, it will pul1 data from an upsueam SH actively. It 
may act as source and sink ai the same time. The timer that 
is implemented by the active SH rny be a local timer, o i  it 
may be irnplemented by observing exiernal conditions. 
like User input or network packets. It is not possible to 
conncct two active SHs directly t» each other hecause each 
one trirs to control synchronity. Yet, more [hat one active 
SH in a streaming graph can exist if a passive SH is 
inserred between those. 
Passive: A passive SH does n<~i  implement a clock. If it 
acts as a sink, an upstream SH may push data to it, if it acts 
as a source. a downstrealn SH may pul1 data from it. If it 
implernents both source and sink, it rnust also provide 
buffering capacities that suite the nceds of the graphs that 
it is likely to be included in. Such a buffeiing SH should 
dcfine thresholds that allow it to notify the graph manager 
of over- and underruns of the buifer. Passive SHs can not 
he connected direcily hecause no data would he exchanged 
hetween thern. 
Through: Through SHs x e  meant for tasks such as on- 
the-ily transcoding. packet duplication, or filtering. SHs do 
not irnplement timers and should not introduce buffers 
beyond thosc necessary for their operation. They must 
always implement a source as well as a sink. An arbitrary 
numher of them can he concatenated. An active SH that is 
located upstream will push data through this kind of SH, 
potentially through several more through SHs until a pus- 
sive SH is encountered. The pul1 operation is used in the 
samt way hy an active SH located downsiream. A through 
SH should wurk in both diiections, but its endpoint capa- 
hilities rnay restrict this. 

D. Client-Server Application 

An example for these stream handlei types' interaction is the 
delivcry of an MPEG-I (system stream) movie to a client. Fig- 
ure 2 shows the SHs that are used in this simple scenario. 

The movie is stored on the server's disk. Thus the starting 
point uf the streaming path is an SH that reads thc data from 
the disk. The data ieader, in our casc described as File Source 
SH',  must he partially aware of the rncoding foimat of the 
stored nicivie to schedulc its read-ahead operations ieasonahly 

T h i s  is descibcd as a sourcc hecause it  is the source of the 
streaming path. 

In the example data is requested from the File Source SH hy 
the Encoder SH which is an RTP Encoder SH in this specific 
case. The encoder dctermines the timing in this stream. It 
understands the actual encoding forniat of the data and the 
transport protocol that is used for data transmission. It deter- 
rnincs time and amount of daia to pul1 from the File Source and 
pushes it to the RTP Sirrk SH to meet the existing constraints 
foi- data rate and delay, and to crcate a reilsonablr stream. In the 
case of an MPEC-I systcm stream this means that the RTP 
Ericoder SH requesis data chunks of equal size and pushes 
those io the RTP Sirik SH. RTCP receiver reports are inter- 
preted by the RTP Sink SH and statistics are forwarded to the 
RTP Encoder SH using the report inteiface. 

The actual strelirning paih is determined by the existing 
streaming graph which repiesents the layout of the streaming 
architectui-e. In Figure 2 the streaming graph consists of Graph 
Mariogrr; File Soiirce SH, RTP Encoder SH and RTP Sink SH 
The Graph Manager is responsible for the setup and destruc- 
tion of ihe SHs. deterniines the interaction beween the individ- 
ual SHs and represents the interface towards the application. 

To handle special tasks in caches the Gruph Manager must 
be able to dynamically reconfigure the streaming graph by set- 
ting up or removing SHs. 

E. Gleatiing Proxy 

Reconfiguration plays no role in the example of Section D 
hut it is a basic requirement for a proxy server that implements 
gleanirig. Roughly, a gleaning proxy works hy delivering a 
movie linearly to a client via unicast, which the proxy itself 
receives in two pieces: a short start sequence via unicast and 
ihe remaining portion via multicast. For a detailed description 
of Gleaning we refei to [6] 

Since one of our research topics is on caching for multiine- 
dia streams we designed and impleniented a gleaning capahle 
proxy-cache for those strearns. A detailcd design can hc found 
in [7]. The proxy is not an RTSP proxy as understood in the 
RFC, which caches and redirects only conlrol information [E]. 
Rather, i t  is an RTSPIRTP proxy cache that stores content in 
addition to handling R1'SP requests. RTSP messages from dif- 
ferent RTSP sessions are muliiplexed ontu onc connection 
between an origin server and a proxy. RTSP SessionIDs are the 
keys to de-multiplex sessions. A prory installs an RTSP con- 
nection to an origin scrver on-damand when a requesi for the 
particular origin server is received froin a client. The connec- 
tion is torn down when no rnore aciive RTSP sessions hetwcen 
the proxy and the origin servcr exist. 

Figurc 3 shows a streaming graph lor the gleaning proxy 



with a single client. In a typical case of gleaning the piaxy- 
cache joins an already cxisting rnuliicast session and requests 
the rnissing part of the movie via a unicast stream. Whcn thc 
niissing patt aii-ives as a unicast, this data is immcdiately for- 
warded to the client while the multicast stream is buffered 
cyclically and sti-eamed to tlie clienr after thc unicast stream is 
finished. 11. thc proxy cnchc also decides to cache this niovic, 
both streams are stored linearly »n its local disc. Thercfbre two 
sti-earning paths on the receiving part of the ciiche are needed: 
one Sor the unicast strcarn 2nd one for the niulticast strcam. 
This paths consisi of an activc RTPSoirrceSH, a passive RTP- 
DecoderSH and PirshPirllSH. The laticr is nceded bccause the 
CoricurenizerSH is activc. This is the case bccause it delcr- 
mines both the order and the timing with which data is Soi-- 
warclcd to thcclient or to the local disc. 

On thc data forwarding paih to thc client, an RTPEncoderSH 
can be scen in through mode. If activc mode were uscd instead 
as in the prcvious cxainplc, the ConcurenizerSH and the 
RTPEncoderSH would have to he scperaied by another Push- 
PiiIlSH, and both would re-create the required timing of the 
RTP stream independently. 

Two situations require dynamic reconfiguration of the data 
poth: 

join withont caching: If the pi-oxy cache does not keep 
the entire movie. a second client rnust be served from the 
sarne inulticast strcam and an additional unicast sticani. 
pause with cnching: If the proxy cache keeps the cntire 
rnovie, the clicnt inay decide io pause. In this case, the 
deliveiy path to the clieni must be suspended. 

F. Ropes 

Since oui- irnplemcntation rcsides in the usci- space, data is 
copied between kerne1 and uscr spnce at least twice in a for- 
warding opei-ation. Furthcr replication and processing 1s 
i-cquired in ihc srrearning path. To reduce thc amount of copy- 
ing opcrations on the streaming path. we use the concept of 

ropes, a buffcr ahstraction that provides random access sirnilar 
to a Bat buffer, but that allows copy-by-reference combined 
with independent modificalions of cach copy by concatenntion, 
cutting and editing operations L91. Ropes allow the non-copy- 
ing moditication, removal or addition of protocol headers, and 
tlie parallel piocessiiig of iiirerleaved cliannels i n  a streains. 

IV. CONCLUSIONS 

We use this SH iniplemenation which is based on the archi- 
teciure presented in Section 11 i n  our proxy-cache protoiype. 
We consider the SHs are an appropriate abstraction foi- devcl- 
oping strearning applications. This is supported by the Iact that 
most of the irnplenientaiion work was done by one of our stu- 
dents who was not involved in the SH design. 

For invcstigate laycred video and orher adaptive capobilities, 
wc will integrate an MPEG-4 cncodcr and -decoder into the 
systern. This happens in conjunction with an experimental 
TCP-friendly protocol TFRC that indicates limits to the pcr- 
mitted transmission rate to the sender. 

Although thc applicability and extensibility of the approach 
has been shown, we cxpect a better handling when we have 
integrated the SH approach conscquently into our clicnt as 
well, and when we support a plugin ai-chitecture that allows the 
dynarnic loading of stream handlcrs. 
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