
GZOl] Car~ten Gtiwodz, Michael Zink; namic Data Path ~econfi~uration;lnternationa~
Workshop on Multimedia Middleware % 2 l,Oitawa, Ociober 2001, S.72-75

D,namic Ddi Path Reconfiguration
Csrsien Griwods, Michael Zink
tobe pblished ar International Workshop on Multimedia Middleware 2001

Dynarnic Data Path Reconfiguration
Carsten Griwodzt , Michael zinkZ

Igriff@ifi.uio.no
University of Oslo - Dapartment of lnhrmatics

Gaustadalleen 23 - 0371 Oslo, Norway

Zmichael.zink~kom.tu-darmstadt.dr
Darmstadt University i ~ f Technology - lndustrial Process and System Communications (KOM)

Merckstr. 25 - 64283 Darmstadt, Germany

I. INTRODUCTION AlVD MOTIVATION tmnk that stures data on disk must be niaintained. If the client
resumes viewing, ths applicaiion niust crcate a new yaph,

When tryiiig to build an audiolvideo (AV) streaming infra-
which retrieves the data from the cache.

%tructure one realizes that some functionality is needed in sev-
We enplain our design decisions that are derived from these

eral parts of the application. E.g., in case of video sener and
requirements.

client. protocols likc RTPIRTCP, RTSP and SDP are needed in
hoth parts. Therefore it is a ~ ~ r o p r i a t e to im~lement these func- 11. DESIGN .. .
tions in a reusable manner and to creaie a well-defined and
documented AP1 for each rnodule. To use rhc infrastructure in
projccts with non-research groups. it is necessary to support
sevrral decoders and several video seryers for the diverse
encoding formats (e.g. H.263, MPEG-I, QuickTirnc). These
caiiie wilh different APls, leading t i > an adaptation effon when-
ever a new lihrary is integrated.

Whilr such ahstractions are typical tor srwaming applica-
tions, ageneric stiucturc likc thntof the JhlF [I J is rarely found
in free. open source systerns. Existing approaches implement
eiiher hard-coded sequences: or they consider franieworks that
allow thc speciiicarion oC an crid-10-end bchnvior for cornplex
rnultimedin sy.items. In the lstter kind of Systems, funcrionality
is described at the lsvel of cooperating disiributed componsnts
[2, 31. 11 is typical for such frameworks to considcr networking
as a cornponeni [hat is also under tlie control of the framework.

In an environment [hat ensures interoperability by specifying
protocols (such as the RTSP streaming environiiieiit), wc prcfer
a local approach. The control of iiur frameuork extends only
over a single rnachine and RTSP is used explicitly for comniu-
nication.

Due ro iIie interaction nf RTP and RTCP, and the possibility
of receiving data from several sources at a single port, a
directed. non-cyclic graph of mudules is an appropriate stream-
ing model. In case uCRTP, an infrastructure is appropriate iinly
if dynarnic reionfiguration of the data path is supported by the
modules as well as the controlling framework. A packet that
arrives at an interface from an unenpected scnder must be han-
dled in an application-defned way: it may be appropriate to
discard the packet. to assign it to a default path, or to create an
additional rtreani for special processing,

Dynamic riconfiguration rniist also be supported in the
implementation of a proxy caclie server: it is necessary to han-
dle User inteiaction if that cache implements a write-iliiuugh
mode. The client rcccives data from the origin server through
the proxy cache, which writes the data to disk and hrwards it
ro the client as well. If the client pauses and the applicatioii
decides tu Luiiunue thc cnching operation, ths trunk of the
graph that forwards data to the client must be cut, while the

Currently we implement components. called stream handlers
(SHs), [hat work ar a granularity similar to the components of
the JMF and do not provide an abstraction tiom the network.
The SHs are modular media processing units that can be con-
nected dynarnically by a coiitrolling cnrity, the graph manager,
to form a set of modules, which process data units sequentially.
The sequence of data units is called the strearn, the modules are
the SHs. As streaniing graph we deline ii graph built from sev-
cial SIIs through which data is "flowing" while it is processed
as necessary.

Our experience with the implementation of streariiiiig appli-
cations showcd us thc nccd for a seneric architecture to handle
continous media streams. This becanie specifically c lex during
the development of our experimental KOM-Player platforiii
'l'he platform is used for invcstigotions on AV distrihution sys-
tems. Therefore is should not only offer suppon for diit'erent
encoding formats, transpori protocols, but it must support a
variety ot distribution mecliaiiisms [hat we investigate. Such
distribution mechanisms may comhine unicast and multicast
distribution or may apply scgmentation and reordering for efii-
cient delivery T h i led to our decision Lu build an cnvironment
tliat is bascd on a strearn handler architecture. It was our inten-
tion to create an SH architecture that rneets the following
goals:

Easy to extend: First of all the architecture should be a
basis for developers to build their own SHs.
Weil defined interfaces: The interfaces for each siiigle
SH must be well defincd to allow an easy interaction with
exising anes.
Reuseability: It should be easy to reuse already existing
functionality.

A. Concurrency

Advanced, open middleware spproaches (hat implemciit
functions by concatenating functional modiilei into arhitraiy
grnphs of independent components are ahle to actach schedul-
ing mechanisms to arbitrary subgraphs 141. While this
approach is highly flexible, it requires either an oprrating sys-

tem abstraction layer to allow arbitrary grouping. oi informa-
tion about the potential groupirig ~apabilitics of rnudulrs. For
example, it is not süaight-hrward to supporr in the same thread
a modulc that linteri:. tu a BSD .rocket with a modulc that wairs
for a POSIX semaphore to fire without wasting resourcrs. Our
iiirplsnieiitation resliicts tlie flexihility of rhe grnpli iiinnager
for combining siream handlers into processing units.

B. Stream und Streaming Graph

With our focus on deliveiy Systems. we have not addresscd
issues in detcmining the functionality of stream handlers thnt
riiiiy ivnable a graph manager to create an appropriate streaniing
gaph. Rarher, :it this time we use well-known sub-scquences
of SHs that are iequired for a pecific task, such as data ior-
warding, writing to and playoui from disk, buffering. oi
sequriicing. The graph inanagcrs nrc responsible for ihe setup
and dcstructton of the SHs, detcriiiiiie the interaction bewcen
the individual SHs and represent the interface towards thc
application.

Sprciiically, a greph manazer is iequired io deal with data
packets frnm unexpected souiccs. aiid it niust split a giaph or
rncrgc graphs on behalf of the application. To handle opcra-
tions such as uscrjoin or leave operations on multicast sireams,
the grapli inanager must be able todynamically spiit and merge
the streaming graph by sctting up ur removing SHs without
disrupting rhe active data lorwarding of a siream.

C. Stream handlers in Gleanirig cayable proxy-cache

In multirncdia rniddlcware rescarch. dynamic reconfigurai-
ton o f stream graphs is ciirrcnily investigated hoiii tlie aspect
of the replxement of functions and of adaptation to chnnging
resource availability (51.

Our requirenicnts aic orthogonal to these abilities and
smaller in scale: in an RTPIRTSP deliveiy sysrcm our proxies
must be able to handle gracefully within the dnta forwarding
path unexpccied new sueams from the uplink sidc, pause and
continue requests liom the clieni side.

Tlic implcmentation consists of thiee applications thar arc
sufficient Tor building an cxpcrinieiital streaming media disrri-
hution system: client, Server and proxy-cachc. All thrce of
them exclusively use the SH architecture described in Section
I1 to iriiplrmeni their strcaming functionality. As a srarting
point thc claises shown in Figure 1 wert implemented.

A. Overview

'rhe irnplementation of the KOM-Player platform aims at the
devclopment iil' a research Prototype in thc area of wide-area
distribution Systems for streaming mcdid in the Internet. 'l'hc
initial code base considered mainly the (Iistribution of CBR
MPEG-I system and MP3 streams, which weie nur initidl rar-
get foiii~ats because ihey combine hardware- and OS-indepen-
dent playhnck capahility with an apprupiiaie quality. Since
these encoding foimats do not support the scalability of encod-
ing formats that can now and in the conceivable Future be

deploycd in the Intcrnet on a wide scale, more flexible encod-
ings are considcied as well in nur rcscarch. More rcccntly, we
havc added H.261 and VBR MPEG nudio. video and system.
The SH architecture will be a rnajor basis for ongoing imple-
tnentation work that is concerned with scalahle encoding for-
mats.

B. Middleware

T» make SHs also usable for third pany developers we
decidcd tu create a layer that provides basic classes isee Figuie
1). templates and interfacc definitiuns for rhc creation of new
S H s Parent classes with a sei of viriual functions cnsuit. tlrc
interoperability between S H s Ccrtainly this can only be
assurcd in casc (hat newly creatcd SHs inherit from those
classes.

SN and SHStatus: SH is the hasis clnss for a11 SHs which
must he inherited by all new SH ~lasscs. This class pro-
vidcs an attributc tcmplate thar allows indi\,idual attributcs
for cach SH. The SHStntus class piovidcs functionality
[hat allows io colleci status infoimation about n spccific
instancc of an SH (e.g. if the SH is currenrly parr of an
activc grapli).
Endpoints: The Endpoint closscs provide Standard inter-
faces between the SHs. Each new SH miist also includc a

class that implements its endpuints and inherits tiom
SHEndpoint. SHh can provide both sink and source end-
points, which miist than inherits SHSirikEndpoint or
SHSourceEndpoint, rcspectively.
Attributes: Attrihutes of an SH are inodihed by the graph
manager io spccialize an SH before it is connccted into a
graph. Attributes are implcmented as scilgct aperations on
generic data iypes. At this time. the knowledge required
Tor specializaiion is identical to the knowledge rcquired
for chosing among diffcreni SHs.
ReportF: Ii is untypical for architectures that iiiiplcment
uni-directional streaming o f data to provide direct feed-
back in the oppositc direction of the data parti. We have
decided to do this. It allows, h r cxample, to provide RTCP
Feedback to an RTP packetizer withoui involvemerit o l thc
graph managei. Each SH must implement the repori inter-
Faces (up- and dr>wnstream), and rcports must be accepted
in a non~blocking manncr. SHs may communicate via spe-
cialircd reports even if intermediate SHs can nol inicrprel
them - such reports must be foiwarded.

C. Strearn Hartdler Types

To deal with the concurrency issue, our iniplementation
requires SHs to specify whether they implement an own clock
or not, and whether they requiie it or not. As a result, we define
three operation modes for our SHs. to be ordered appropriately
by the graph manager: active, passive and through. Their com-
hination and ordering depends on the task that a specitic
streaming graph should fulfil.

Active: Aciive SHs implement their own timer. If the SH
acts as a sourcc. it will push data downstreani actively (by
calling a push function of ihe downstream SH). If it acts as
a sink, it will pul1 data from an upsueam SH actively. It
may act as source and sink ai the same time. The timer that
is implemented by the active SH rny be a local timer, o i it
may be irnplemented by observing exiernal conditions.
like User input or network packets. It is not possible to
conncct two active SHs directly t» each other hecause each
one trirs to control synchronity. Yet, more [hat one active
SH in a streaming graph can exist if a passive SH is
inserred between those.
Passive: A passive SH does n<~i implement a clock. If it
acts as a sink, an upstream SH may push data to it, if it acts
as a source. a downstrealn SH may pul1 data from it. If it
implernents both source and sink, it rnust also provide
buffering capacities that suite the nceds of the graphs that
it is likely to be included in. Such a buffeiing SH should
dcfine thresholds that allow it to notify the graph manager
of over- and underruns of the buifer. Passive SHs can not
he connected direcily hecause no data would he exchanged
hetween thern.
Through: Through SHs x e meant for tasks such as on-
the-ily transcoding. packet duplication, or filtering. SHs do
not irnplement timers and should not introduce buffers
beyond thosc necessary for their operation. They must
always implement a source as well as a sink. An arbitrary
numher of them can he concatenated. An active SH that is
located upstream will push data through this kind of SH,
potentially through several more through SHs until a pus-
sive SH is encountered. The pul1 operation is used in the
samt way hy an active SH located downsiream. A through
SH should wurk in both diiections, but its endpoint capa-
hilities rnay restrict this.

D. Client-Server Application

An example for these stream handlei types' interaction is the
delivcry of an MPEG-I (system stream) movie to a client. Fig-
ure 2 shows the SHs that are used in this simple scenario.

The movie is stored on the server's disk. Thus the starting
point uf the streaming path is an SH that reads thc data from
the disk. The data ieader, in our casc described as File Source
SH', must he partially aware of the rncoding foimat of the
stored nicivie to schedulc its read-ahead operations ieasonahly

T h i s is descibcd as a sourcc hecause it is the source of the
streaming path.

In the example data is requested from the File Source SH hy
the Encoder SH which is an RTP Encoder SH in this specific
case. The encoder dctermines the timing in this stream. It
understands the actual encoding forniat of the data and the
transport protocol that is used for data transmission. It deter-
rnincs time and amount of daia to pul1 from the File Source and
pushes it to the RTP Sirrk SH to meet the existing constraints
foi- data rate and delay, and to crcate a reilsonablr stream. In the
case of an MPEC-I systcm stream this means that the RTP
Ericoder SH requesis data chunks of equal size and pushes
those io the RTP Sirik SH. RTCP receiver reports are inter-
preted by the RTP Sink SH and statistics are forwarded to the
RTP Encoder SH using the report inteiface.

The actual strelirning paih is determined by the existing
streaming graph which repiesents the layout of the streaming
architectui-e. In Figure 2 the streaming graph consists of Graph
Mariogrr; File Soiirce SH, RTP Encoder SH and RTP Sink SH
The Graph Manager is responsible for the setup and destruc-
tion of ihe SHs. deterniines the interaction beween the individ-
ual SHs and represents the interface towards the application.

To handle special tasks in caches the Gruph Manager must
be able to dynamically reconfigure the streaming graph by set-
ting up or removing SHs.

E. Gleatiing Proxy

Reconfiguration plays no role in the example of Section D
hut it is a basic requirement for a proxy server that implements
gleanirig. Roughly, a gleaning proxy works hy delivering a
movie linearly to a client via unicast, which the proxy itself
receives in two pieces: a short start sequence via unicast and
ihe remaining portion via multicast. For a detailed description
of Gleaning we refei to [6]

Since one of our research topics is on caching for multiine-
dia streams we designed and impleniented a gleaning capahle
proxy-cache for those strearns. A detailcd design can hc found
in [7]. The proxy is not an RTSP proxy as understood in the
RFC, which caches and redirects only conlrol information [E].
Rather, i t is an RTSPIRTP proxy cache that stores content in
addition to handling R1'SP requests. RTSP messages from dif-
ferent RTSP sessions are muliiplexed ontu onc connection
between an origin server and a proxy. RTSP SessionIDs are the
keys to de-multiplex sessions. A prory installs an RTSP con-
nection to an origin scrver on-damand when a requesi for the
particular origin server is received froin a client. The connec-
tion is torn down when no rnore aciive RTSP sessions hetwcen
the proxy and the origin servcr exist.

Figurc 3 shows a streaming graph lor the gleaning proxy

with a single client. In a typical case of gleaning the piaxy-
cache joins an already cxisting rnuliicast session and requests
the rnissing part of the movie via a unicast stream. Whcn thc
niissing patt aii-ives as a unicast, this data is immcdiately for-
warded to the client while the multicast stream is buffered
cyclically and sti-eamed to tlie clienr after thc unicast stream is
finished. 11. thc proxy cnchc also decides to cache this niovic,
both streams are stored linearly »n its local disc. Thercfbre two
sti-earning paths on the receiving part of the ciiche are needed:
one Sor the unicast strcarn 2nd one for the niulticast strcam.
This paths consisi of an activc RTPSoirrceSH, a passive RTP-
DecoderSH and PirshPirllSH. The laticr is nceded bccause the
CoricurenizerSH is activc. This is the case bccause it delcr-
mines both the order and the timing with which data is Soi--
warclcd to thcclient or to the local disc.

On thc data forwarding paih to thc client, an RTPEncoderSH
can be scen in through mode. If activc mode were uscd instead
as in the prcvious cxainplc, the ConcurenizerSH and the
RTPEncoderSH would have to he scperaied by another Push-
PiiIlSH, and both would re-create the required timing of the
RTP stream independently.

Two situations require dynamic reconfiguration of the data
poth:

join withont caching: If the pi-oxy cache does not keep
the entire movie. a second client rnust be served from the
sarne inulticast strcam and an additional unicast sticani.
pause with cnching: If the proxy cache keeps the cntire
rnovie, the clicnt inay decide io pause. In this case, the
deliveiy path to the clieni must be suspended.

F. Ropes

Since oui- irnplemcntation rcsides in the usci- space, data is
copied between kerne1 and uscr spnce at least twice in a for-
warding opei-ation. Furthcr replication and processing 1s
i-cquired in ihc srrearning path. To reduce thc amount of copy-
ing opcrations on the streaming path. we use the concept of

ropes, a buffcr ahstraction that provides random access sirnilar
to a Bat buffer, but that allows copy-by-reference combined
with independent modificalions of cach copy by concatenntion,
cutting and editing operations L91. Ropes allow the non-copy-
ing moditication, removal or addition of protocol headers, and
tlie parallel piocessiiig of iiirerleaved cliannels i n a streains.

IV. CONCLUSIONS

We use this SH iniplemenation which is based on the archi-
teciure presented in Section 11 i n our proxy-cache protoiype.
We consider the SHs are an appropriate abstraction foi- devcl-
oping strearning applications. This is supported by the Iact that
most of the irnplenientaiion work was done by one of our stu-
dents who was not involved in the SH design.

For invcstigate laycred video and orher adaptive capobilities,
wc will integrate an MPEG-4 cncodcr and -decoder into the
systern. This happens in conjunction with an experimental
TCP-friendly protocol TFRC that indicates limits to the pcr-
mitted transmission rate to the sender.

Although thc applicability and extensibility of the approach
has been shown, we cxpect a better handling when we have
integrated the SH approach conscquently into our clicnt as
well, and when we support a plugin ai-chitecture that allows the
dynarnic loading of stream handlcrs.

V. REFERENCES

[I] L. DeCoimo. Core Jai,fi Medio Frurnervork. Prentice
Hall, Upper Saddle Rivcr, New Jersey, USA, 1999.

[2] T. Kaeppncr. Enhvicklrrn~ verteilter Mirlrime~iia-App-
likationeti. Viewcg Verlag, 1997.

(31 F. Eliassen and J. Nicol. Supporting lnteroperation of
Continuous Media Objccts. Theor?' und Prucrice o f O b ~
jecr Sjsterns: Special L r ~ i t e on Distribured Objecr hlun-
ugernenf, 2(2):95-117, 1996.

[4] E. Walthinsen. GStreamer - GNOME Goes Multimcdin.
Technical rcport, GUADEC 7001, April 2001.

[5] F. Kon, M. Rom.n, P. Liu, J . Mao, T. Yainanc, L. C.
Magalh„es, 2nd R. H. Cainpbcll. Monitoring, Sccurity,
and Dynamic Configuration with the dynarnicTA0 R c ~
flective ORB. In I F I P / A C M Inferrralioiiul Confercnce
on Distribured Systems Platforms und Open Disrribifted
Processing (Middlt~wure'2000) . New York. USA, 2000.
IFIPIACM, April 200(1.

[6] C. Griwods. Wide-ureu Trire Videu~on-Demund /I? U

Decrniralized Caclie-based Distribirtion It~firrstructrire
PhD thesis, Darmstadt University of Tcchnology, Darm-
stadt. Germany, April 2000.

[7] R. Becker. Design und Implcrnenticrung von Patching
in dic KOM VoD Umgebung. Studicnarbcit. Fachbere-
ich Elektrotechnik und lnforrnationstechnik, Darrnstadt
Univci-sity of Technology, Septembcr 7001

(81 H. Schulzrinnc, A. Rao, and R. Lanphier. RFC 2326 -
Real Time Streaming Protocol (RTSP). Standards Trach
RFC, April 1998.

[Y1 H:]. Boehm, R. Atkinson, and M. Plass. Ropcs: An AI-
ternative to Strings. Sufnyare Pructict, und Experience,
25(12):13151330. 1995.

