
Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

Multicast for Savings in Cache-based Video Distribution

Carsten Griwodz1a, Michael Zinka, Michael Lieperta, Giwon Ona, Ralf Steinmetza,b

aKOM, Darmstadt University of Technology, Merckstrasse 25, 64283 Darmstadt, Germany
bGMD IPSI, Dolivostr. 15, 64293 Darmstadt, Germany

 ABSTRACT
Internet video-on-demand (VoD) today streams videos directly from server to clients, because re-distribution is not established
yet. Intranet solutions exist but are typically managed centrally. Caching may overcome these management needs, however
existing web caching strategies are not applicable because they work in different conditions.

We propose movie distribution by means of caching, and study the feasibility from the service providers' point of view. We
introduce the combination of our reliable multicast protocol LCRTP for caching hierarchies combined with our enhancement
to thepatching technique for bandwidth friendly True VoD, not depending on network resource guarantees.

LCRTP is an RFC-conforming extension to the application-level protocol RTP that allows the receivers to allocate exactly the
required space for lost data, and supports the retransmission after the initial transfer. However, without additional techniques,
this does not save a lot of capacity in real life scenarios. To increase the savings we combine LCRTP withpatching.

Patchingsaves server capacity in centralized systems. It works by streaming a video from start to end to the first client that
requests this movie. Requests that follow in a limited temporal interval are served by transmitting sufficient information to join
the initial stream, and an additional “patch” stream for the missing initial portion of the movie. These subsequent clients use
local cyclic buffers to delay play-out of multicast portions of the movie. There is an optimal time before retransmitting a com-
plete movie by multicast, mostly depending on the frequency of requests for a movie.Patchingcan also be applied recursively
to patches.

This paper motivates the combined technique and details the elements of an implementation.

Keywords: Wide-Area Caching Architecture, Video on Demand, Internet

1 INTRODUCTION
Internet VoD today is mostly dominated by systems that serve only a small amount of users and have a small library of video
clips instead of full size movies. The length and especially the quality of current video clips are very limited, and not applica-
ble at all for commercial VoD. One of the major limitations of current systems is the necessity to stream the video clip directly
from a central server to each client individually, because re-distribution is not established yet. Multicast as a transmission
method can not be used efficiently in these systems and therefore bandwidth is wasted leading to higher network costs. Intranet
solutions have existed for a while, they use distributed systems but are typically managed from a central site. Since they are
used only locally savings that are achieved by using multicast are not as significant as they could be in larger systems.

We expect that the growth of the Internet, the support for partial resource guarantees in the backbone through Differentiated
Services [24], and the integration of services will make the idea of wide-area distribution of commercial quality video over
networks without central management feasible. Intelligent caching can be helpful in this for two reasons:

• movies have a considerable life cycle, i.e. typically their popularity increases steeply early after their release date, reaches a
peak, and decreases towards a minimal residual popularity

• the movement of full-sized high quality movies among caches is severely more expensive then that of current internet vid-
eos because of the required bandwidth and storage.

We address these issues with the following efforts:

• Investigate more complex strategies and structures to position and access copies of expensive files. Since the number of
requests that reach these caches is less than for web caches and requested files are mostly very large, we do not want to
streamline caches mainly for simplicity and thus rapid request answers. This is unlike the current approach of the web
caching communities to efficiently handle co-operative caches [1].

• Support the delivery of large bulk data files across networks with resource guarantees.
• Evaluate approaches like Hint-based caching [23] for applicability to movie caching as well.
• Support for untrusted caches [15].

1. Correspondence: Email: medianode@kom.tu-darmstadt.de

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

We want to specifically handle movie distribution by means of caching, and in this paper we present a feasibility study from
the service providers’ point of view. Our multicast distribution scheme assumes that packet loss is somewhat limited to achieve
an acceptable to viewers of rare content. With Differentiated Services available to achieve virtual leased lines in the backbone,
TCP will not remain the only appropriate protocol able to deliver streamed data with sufficiently low loss over long distances,
we present LCRTP, which is an example approach. Some people argue that bandwidth will soon become abundant at least in
the backbone and that high-quality unicast transmissions will become commercially feasible. We do not believe that this pipe
dream will come true outside of research networks in the foreseeable future.

We found in the past that thepatchingapproach by Hua et.al. [18] has provided an interesting means for saving server capacity
in centralized systems.

We combine the ideas of movie caching andpatchingand demonstrate that the technical means have been developed already;
non-withstanding the fact that the current elements to such a solution are very expensive or not in a product state yet. This
leads to less network load and a better performing video server since the load can be dynamically optimized.

In the remainder of this paper we shortly introduce the referenced techniques of caching,patching, reliably multicasting and
streaming from incomplete files. Then, exemplarily we calculate the different network costs for the unicast transmission and
the enhanced transmissions with caching andpatchingto compare the network costs for the different techniques in order to
show that caching andpatchingimprove the performance of a distributed VoD architecture. Finally, we present our combina-
tion of patching with caching. We present our specific approaches for caching hierarchies ofpatching.

1.1 Caching

Caching can be used to reduce network costs as a) a stand alone version or b) in combination with multicasting. Network costs
are reduced in a way that popular movies are stored in cache servers close to the requesting clients which leads to a shorter dis-
tance between source and client and also less network usage. These facts are well known from the use of caching in the web
but nevertheless it must be mentioned that web and movie caching have some significant differences. Current internet caching
strategies can remain rather simple, since the assumption of a large cache and small data items is valid for the vast part of web
traffic. Furthermore, the distributed content is typically free or not commercially relevant. This permits to mostly ignore secu-
rity and copyright issues as well. In contrast to web caching the content on video caches will in most cases not be free and the
size of the data in comparison to the storage space is much bigger.

1.2 Patching

For the exploitation of multicast in TVoD systems, several approaches have been presented in the past. [3] introducesbatching,
which works by collecting requests that arrive within a certain cycle. At the end of the cycle they are serviced from the same
file and buffer. [4] modifies this approach towards dynamic batching, which services requests as soon as a stream becomes
available. [16] proposespiggybacking, which works by starting one stream for each request and subsequently joining streams
of the same title that have been started in short sequence. The means is a speed increase of the later stream and/or a speed
decrease of the earlier stream until they join. [6] and [7] introducecontent insertionto force larger numbers of streams into a
time window which is small enough to allow the use of the piggybacking technique. As content to be inserted, advertisements
or extensions to introducing scenes are proposed as fill content.

A relatively new approach ispatching, invented by Hua et.al.
The basic approach, presented in [18], is the creation of a mul-
ticast group for the delivery of a video stream to a requesting
client. If another client requests the same video shortly after
the start of this transmission, this client starts storing the multi-
cast transmission in a local cache immediately. The server
sends a unicast stream to this client containing the missing ini-
tial portion of the video, until the cached portion is reached.
Then, the client uses its cache as a cyclic buffer.

Patchingworks by delivering a full movie from start to end to
the first client that requests this movie, while subsequent
requests in a temporal interval after each multicast movie are
not served by transmitting the same movie again. Instead, the
client is provided with sufficient information to join the initial
stream, and an additional patch stream for the missing initial

Figure 1:Buffer usage in patching

3. client

client bufferclient bufferclient buffer

2. client 1. client

play out:

multicast streampatch stream

patch stream server

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

portion of the movie. These subsequent clients provided with patch streams use local cyclic buffers to delay play-out of
received main multicast portion of the movie.

In [13] we present -patching, an optimization of thepatchingtechnique by calculating optimal retransmission times for mul-
ticast streams based on the measured interarrival time 1/λ, which allows the server to tune the restart times for complete mov-
ies on a per-stream basis and thus, to tune the average number of required simultaneous server streams. Based on this number
the overall streaming costs for the server can be determined.

Additionally, thepatchingtechnique can be applied recursively by sending a second patch to the initial patch in addition to the
remaining portion of the full movie transmission and so on. The limit to this is given by:

• the number of streams that can be received by a client in parallel,
• the granularity at which a switching from one patch to another makes sense at the client, and
• the smallest sensible interval size for a specific movie, below which a batching [3] or piggybacking [16] approach can be

used without recognizable service degradation for the user.

1.3 Reliable Multicast

The design of a reliable multicast protocol is determined by the requirements of a specific application or area of applications
that the protocol is built for. Different applications impose different requirements on the underlying reliable multicast protocol.
Our most basic requirements are aim at compatibility with the existing infrastructure in the Internet:

• compatibility with standard RTP clients
• based on regular IP-multicast infrastructure without specialized routers
• minimal additional bandwidth consumption to reduce the penalty of slow links

The IETF’s reliable multicast working group’s draft “draft-ietf-rmt-design-space-00, The Reliable Multicast Design Space for
Bulk Data Transfer”, which is valid June 1999 through December 1999, provides a checklist of requirements that provide
structure to the design considerations of reliable multicast protocols. The following questions are taken from that draft as a
checklist, the answers are those that apply to our scenario.

• Does the application need to know that everyone received the data?
No. Each receiver individually needs to know that it has received all of the data and does not care about its peers. If the
receiver stops complaining about missing data, the sender assumes that it has received all data, but it can not be sure; it may
also be the case that the receiver has for some reason decided to delete the data that has been received earlier, and does not
need the missing data any more.

• Does the application need to constrain differences between receivers?
Yes. Commercial movie distribution needs e.g. receiver specific watermarking.

• Does the application need to scale to large numbers of receivers?
The multicast should scale well to moderate numbers of receivers. However, with the application of the reliable element to
fill cache servers, the load should primarily be reduced to simple multicast, with the reliability issue limited to the commu-
nication among cache servers, or between cache servers and central server.

• Does the application need to be totally reliable?
No. We do not guarantee perfect delivery of the video stream to the end-user anyway. The reliable transfer between a
sender and a cache server is intended to reduce the number of errors that are perceived by the end-user to an acceptable
number. The use of multiple stages of caching between the original source of the movie and the end-user, however, could
lead to a multitude of errors, due to the ignorance of packet loss of the standard distribution protocol, when the cache serv-
ers do not receive a copy of the movie that is close to perfectly intact.

• Does the application need to provide low-delay delivery?
Yes, but only low-delay delivery of the basic stream. The error recovery does not need to be performed with a low delay.

• Does the application need to provide time-bounded delivery?
Yes, but only low-delay delivery of the basic stream. The error recovery can take an arbitrary amount of time, although it
would be advantageous to repair the missing sections quickly and increase the quality of the movie that is delivered from
the receiving cache.

• Does the application need many interacting senders?
No. In the basic case we assume an architecture with the cache servers acting as proxies for the end-users and lower level
caches, and the distribution of movies from the central server to all listeners of its multicast stream. In the extended case,
which includes thepatchingtechnique, some (a few) senders may interoperate to provide service to a lower level cache

λ

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

server. This lower level cache server requests a stream from its upstream cache, but since that upstream cache has not
received the complete basic transmission of the movie itself (i.e. it operates in write-through mode), it offers to the lower
level cache only a patch stream, with the baseline stream to be received from the central server. The result is a non time-
critical interaction of few senders.

• Is the application data flow intermittent?
This is not our intention, unless a continuous data flow of UDP packets would be considered intermittent.

• Does the application need to work in the public Internet?
Yes.

• Does the application need to work without a return path (e.g. satellite)?
No. We assume an Internet-style network for communication among cache servers and between cache servers and central
server.

• Does the application need to provide secure delivery?
Yes. Commercial movie distribution has to have guaranteed control over the content distribution.

With this checklist, we look at existing reliable multicast protocols. Examples are SRM (Scalable Reliable Multicast) [5],
TRM (Transport Protocol for Reliable Multicast) [9], RMTP (Reliable Multicast Transport Protocol) [9] and LRMP (Light-
weight Reliable Multicast Protocol as an Extension to RTP) [11]. TRM and LRMP make similar assumptions about loss detec-
tion and repair requests as SRM, so SRM can be discussed as an example for all three protocols. RMTP provides sequenced
lossless delivery of bulk data (e.g. Multicast FTP), without regard to any real-time delivery restrictions. It uses a windowed
flow control and ACKs for the received packets. This technique allows a reliable transmission, but if packets are lost, the data
flow is interrupted because the lost packets are resent immediately by the sender which leads to a non-continuous data stream.
So this protocol is not applicable for VoD applications.

SRM [2] is a reliable multicast framework for light-weight sessions and application level framing. It’s main objective is to cre-
ate a reliable multicast framework for various applications with similar needs of the underlying protocol. SRM does not distin-
guish senders from receivers. Whenever data is created, it is multicast to the group. Each member of the group is then
responsible for loss detection and repair requests. The repair requests are multicast after waiting a random amount of time, in
order to suppress requests from other members sharing that loss. Every member capable of sending a repair packet also sets a
timer and if no repair packet is sent from another member it sends the repair packet. SRM’s drawback for our scenario is that it
needs a specific distribution infrastructure which is not widely available in the Internet at the moment.

A third class of reliable multicast protocols are the ones which include FEC (forward error correction) as a technique to
achieve reliability [20]. Reliable multicast achieved through FEC is also applicable for VoD systems, since usually no retrans-
missions are necessary during the multicast transmission of the video stream. The major drawback of this approach is, that
error correction information appropriate for the client with the worst connection must be included in each multicast packet.
This will lead to a higher use of bandwidth thus leading to a reduced connection quality for the clients. In addition a com-
pletely new protocol must be built in the case of layered FEC since this model is not compatible with already existing proto-
cols.

Our approach is to modify the most commonly used application-level protocol for streamed AV delivery, RTP, to address our
specific case of reliable multicast. This variation, called LCRTP (LC for loss collection) is applicable for real-time audio and
video data, does not require changes to the infrastructure except for cache servers and is compatible to standard Internet proto-
cols. It uses central error recovery to allow a weighted retransmission (sections of the video that are listed in LC lists from mul-
tiple receivers are handled before sections that are reported missing from one receiver only).

LCRTP is used to identify the position of a transmitted packet in a complete movie, recognize packet losses and retransmit lost
packets, thus allowing the cache server to store a perfectly correct copy of the movie on its local disks.

LCRTP sends a small amount of data in addition to the RTP header to determine exactly the amount of lost data and its posi-
tion in the original file. This is achieved by the use of a byte count that represents the actual position in a file. On the receiver´s
side in the case of a packet loss the byte count contained in each arriving packet is used to reserve space for the missing data
that will be filled afterwards by retransmission.

LCRTP makes use of the standard mechanisms for RTP [22] extensions. The X flag (extension flag) is used in order to show
that an extension header is following the standard RTP header. A standard RTP implementation ignores the X flag and the
extension header and treats the packet as a standard RTP packet.

The following example shows in more detail how reliable multicast including the above described requirements is achieved
with LCRTP. In Figure 2 the original video data is located on server S. Servers CS1 and CS2 are also video servers that operate
as proxy and cache servers. Clients CL1 and CL4 are requesting the same video from server S through their proxies CS1 and

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

CS2, respectively. Assume that the file is neither cached on CS1 nor on CS2 so far. Server S starts sending an LCRTP multicast
stream which is received by the servers CS1 and CS2, which perform a write through caching. Thus, the received data is stored
locally in a file while as well as being streamed at the same time further towards the requesting clients. At the client side a stan-
dard RTP receiver is able to process the incoming LCRTP packets since the extension header is ignored.

If data loss occurs upstream from one of the caching servers, space for the missing information can be allocated at the correct
file position on disk due to the byte count that is included in the LC extension header. After the file is transmitted completely,
the receivers send an application-specific RTCP packet containing the collection of losses to the sender. This report is sent after
a random time to avoid flooding.

The sender then resends the missing data to the receivers. Retransmission also includes the LCRTP functionality to make sure
that the whole file is received and stored correctly at the local cache. A timer at the receiver cancels the session if no additional
data is received after a while in order to avoid an endless loop of retransmissions.

2 MOTIVATION FOR PATCHING IN CACHING HIERARCHIES

We motivate the integration ofpatchingand caching by modeling analytically the necessary effort in an example hierarchical
movie distribution scenario. First, we calculate cost functions for various approaches of serving movies to users in hierarchical
distribution systems with the topology of binary trees. A binary tree as a model seems very restrictive. However, setting costs

on some levels to zero allows for modelling of trees with levels of 2n nodes, and with more complex operations our model can
also be generalized for arbitrary cache trees, using sets of binary trees rather than a single one. If our tree model is used to
identify good locations for movie placement, it is highly appropriate to identify the caches of several levels in the binary tree
with each other. Starting with these considerations, we apply this analysis to an example system with somehow realistic fea-
tures.

Figure 3 is a sketch of the base model topology central serverCS, optional cache servers with an indexi at deptht in the

binary tree, and network links . Table 1 lists the symbols that are used in the formulas, and Table 2 presents the formulas for

calculating the cost of the distribution systems. In this section, we provide terms, assumptions. We presented the detailled cal-
culations in [14]. The most important limitations of the model are summarized below, but still, this analysis motivates us to
realize caching withpatching. We get a strong hint to combine caching withpatchingin the example below, for a VoD system
with rather realistic characteristics, following the assumptions of the analysis.

The effort to set up the system is modeled as an abstract “cost” for basic server installations (including central server and cache
servers), cost of server support for concurrent stream deliveries, the cost of concurrent streams support by each network link,
and cost for the storage of movies in cache servers. As we assume all movie files to be optimally located in the caching hierar-
chy, there is no cost for transporting the movies to store and cache and for unnecessary copies. There are several noteworthy
aspects to this assumption:

S

CS 2

Cl 3

CS 1

Cl 1

S: Central Server
CS: Cache Server
Cl: Clients

Figure 2:A caching scenario (LCRTP-Patching combination)

A

B C

A,B,C: Subnets

non LCRTP capable
joins MC group after
stream start

MC Stream

Patch Stream

Unicast Stream

Cl 2 Cl 4

Ni
t

Ei
t

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

• assuming a perfect distribution of movies to cache servers according to their long-term relevance would also render move-
ments due to relocation minimal

• for a downstream movement, caches that work according to our approach do not generate additional network load because
they work in write-through mode - upstream movement is certainly missing

• if caching strategies are not sufficiently elaborate (or centrally controlled), they will react to short-term or at least to day-
time variations in the request patterns, these calculations will be extremely optimistic

The numerical optimization assumes a distribution of movie hit probabilities according to the Zipf distribution. Although vari-
ous papers state that the Zipf distribution describes the distribution of hit probabilities at any given time very well, a caching
architecture is unable to achieve a distribution according to Zipf.

• The relevance of movies is changing with respect to other movies, which implies that their index value in the Zipf distribu-
tion is changing,

• Hit rates do not typically conform perfectly to the Zipf distribution because of user behavior. The divergence is greater for
small user populations, which means that distribution systems without an exchange of hit rate information will estimate a
movies popularity less exact than a centrally coordinated system.

• Movies must be relocated between cache servers according to their estimated relevance. This may be done predictively
(which reduced accurateness of the estimation), so the optimal location for each movie is achieved timely, but such reloca-
tions do still incur additional network and server load.

• Homogenous distribution systems are unrealistic.
• Not all movies have equal length and data rate.

Note, that a non-hierarchical approach will probably result in additional savings but for hierarchies, any algorithm should be
unable to reach the optimum that can be computed numerically from the formulas in Table 2.

To verify the effects of these computations, we present an example that demonstrates the vast options for savings. This exam-
ple is simplified from the reality that we envision with the combination ofpatchingand caching. For example, we assume that
patching is implemented in the clients, which is not realistic in a widely distributed network of heterogeneous clients.

Table 1: Elements used in folrmulas

Symbol Meaning Symbol Meaning

Basic cost of a server/cache server installation. Cost for one supported stream of a server.

CS

depth

t=3

t=2

t=1 E1
1

E2
1

E1
2

E2
2

E1
3

E2
3

N1
1

N2
1

N1
2

N2
2

N1
3

N2
3

Figure 3:binary tree of analytical distribution system model

S0 S1

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

In our example, the movie probabilities are distributed according to the Zipf distribution:

Besides the predefinitions from the analytical model, we define

• 500 different movies
• 220 active users (i.e. a binary distribution depth of 10, where most nodes do not contain a server)
• a cost of 25000 $ for a basic server installation

Cost for one supported stream on a network
link at levelt.

Cost for the storage needed to store one movie in
a cache server.

Number of available movies. Hit probability of moviem.

t(m) Optimal tree level for caching moviem. r(m) Optimal patching window for moviem.

Table 2: Analysis of cost effects of patching on caching hierarchies, cf. [14]

Distribution
Method

Calculated Cost Formula

unicast
directly from
central server

unicast with
caches

greedy patch-
ing from cen-
tral server

patching with
limited buffer
from central
server

patching with
caches

Table 1: Elements used in folrmulas

Symbol Meaning Symbol Meaning

Ct
E

Ct
N

M P m()

S0 2+
d

S1⋅ 2
d

Ct
E

t 1=

d

∑+

2
t δ

m M∈
∪

t m()
t()⋅

t 1=

d 1–

∑ S0⋅ 2
d

+ S1⋅ P m()2d
Ct

E

t t m() 1+=

d

∑ 2
t m()

Ct m()
N

+
m M∈
∑+

S0 2
d 1–

1 1 ηm–()2d

–()
m M∈
∑++ S1 2

t
2

t
1 ηm–()⋅

2d t–

– 2
d 1– ηm⋅+

 Ct
E⋅

,whereηm P m()=

t 1=

d

∑
m M∈
∑+⋅

S0 2
d 1– ηm⋅ r m() 1 1 ηm–()2d

–()+()
m M∈
∑+ S1⋅

ηm 2
d 1–⋅ 2

t
r⋅ m() 1 1 ηm–()2d t–

–()⋅()+ Ct
E⋅[]

t 1=

d

∑
m M∈
∑+ ,whereηm

1
r m()
------------ P m()⋅=

2
t δ t t m()=()

m M∈
∪()⋅

t 0=

d 1–

∑ S0 2
t m()

Ct m()
N()

m M∈
∑+⋅

2
d 1– ηm⋅ 2

t m()
r⋅ m() 1 1 ηm–()2d t m()–

–()+()
m M∈
∑ S1⋅

ηm 2
d 1–⋅ 2

t m()
2

k
r⋅ ⋅ m() 1 1 ηm–()2d t m()– k–

–()⋅+() Ck
E⋅[]

k 1=

d t m()–

∑
m M∈
∑+

+

,whereηm
1

r m()
------------P mm()=

P drawmm() z m() C
m
---- C, 1

index m()

m M∈
∑= = =

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

• a cost of 100 $ for each concurrent high quality movie stream supported by a server
• a cost of 350 $ for each concurrent high quality movie stream supported on a network link
• a cost of 1000 $ for storage to hold one high quality movie

The location of the caches in the distribution hierarchy for examples 2 and 5 was not optimized. Rather, the caches were moved
heuristically upstream until no immediate gain was perceived any more. For the example 2, “unicast with caches”, the
approach “installed” caches at levelst=12, 10, 8, 6 and 4 in the order to decreasing movie popularity. For the example 5,
“patching with caching”, the approach “installed” caches at levelst=9, 7, 3, 5 and 1. The heuristic prohibited to choose the
level 0 for the least popular movies which would have been roughly three quarters of all movies

These numbers indicate, that there are scenarios with a large potential for savings in the joint use of thepatchingand caching
techniques. When (costly) caches are introduced in apatchingdistribution system, savings are made with much less expensive
necessary system links and storage space (cf. the last two rows in Table 3).

Although this model and these numbers are quite illusionary, and we can not expect clients that to implementpatchingbuffers
andpatching-capable protocols, this potential for savings demonstrates that:

• the use of cache servers generates savings that make up for their installation cost
• patching with optimized window sizes is the major advancement in savings
• The most important issue for our architecture is:

The installation of caches in conjunction withpatchingdoes not eliminate the effect ofpatching. With an appropriately
dimensioned cache server, it will even increase the savings by keeping the most popular titles in the cache. Thus, we can
proceed to build a wide-area caching architecture that relies onpatchingfor wide-area distribution of the videos to cache
servers that act of proxies for clients without these specific features.

3 REALIZATION OF PATCHING IN CACHING HIERARCHIES
Our architecture assumes caching proxy servers, clients that receive video stream using RTP streaming and thepatchingtech-
nique for information exchange between the central server and the caches.

The choice for thepatchingand file streaming techniques was due to efficiency and bargain availability respectively. To inte-
gratepatchinginto the cache server communication, we use LCRTP. This choice fixes the major drawback ofpatchingthat it
can only reasonably be used with specific receivers, while current commercial video distribution systems [21] depend on uni-
cast connections between original server and cache server and also among cache servers in order to guarantee the integrity of
the copies in their caches.

Another possibility would be to enhance the cache servers to usepatchingin a way that the stream is reassembled correctly at
the cache and transmitted (as a unicast stream) to the client. But using only standardpatchingfor the transmission of videos to
video caches which belong to one multicast group would lead to a poorer quality of the videos on the cache since losses during
the transmission can not be repaired. Therefore we introduce LCRTP as a protocol to repair losses on the caches while main-
taining compatibility to standard RTP clients.

In the case thatpatchingis used in combination with LCRTP losses can be detected and repaired because a retransmission is
possible, which makes sense for caches where the data is stored and not presented immediately. The bytecount that is included
in every LCRTP packet allows the cache servers to write incoming data directly to the disk instead of buffering it in their main

Table 3: Example for theoretical effect of the various methods

Modeled Distribution Method Calculated
System Cost

1. unicast from central server 7,445 Mio $

2. unicast with caches 4,664 Mio $

3. greedy patching from central server 3,722 Mio $

4. patching with limited buffer from central server 375 Mio $

5. patching with caching 276 Mio $

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

memory like it would be necessary by a non-LCRTP transmission. The position of each packet in relation to the complete
movie is specified by the bytecount and therefore it can be written to its exact position on the hard disk, assuming a file system
supporting this behavior.

The combination ofpatchingand caching allows clients and video cache servers to join a multicast stream that has already
started (see Figure 2). The missing part of the movie is sent in a separate stream to the receivers the way it is done forpatching.
When the patched part of the movie is sent as a unicast or multicast stream should be case dependent, since the amount of
receivers can vary. If a client in a subnet decides to request a movie that is already being multicast, the cache server of this sub-
net (which acts as a VoD proxy) joins the multicast group. Depending on the decision of the implemented caching algorithm
the received movie is cached on the video cache or only assembled in right order and then forwarded to the requesting client.
This decision should be driven by the popularity of the movie and therefore further possible requests in the subnet [12].

It would also be possible to send multicast streams and additional patch streams directly to the clients, e.g. in case the video
cache does not decide to cache the requested movie, but this would require a modification of the clients. Ifpatchingis only
handled by the cache servers which forward the received stream as a unicast stream to the clients, they can exist without any
modification. We think that this solution is more reasonable since it is more costly to modify all possible clients instead of the
video caches which must be able to handle patch streams in anyway.

To combine the LCRTP and thepatchingapproaches in apatching with cachingsystem, we need to modify the retransmission
approach a little bit. First of all, both the original server and the cache servers of the distribution hierarchy need to be aware of
the modification from the original LCRTP usage, or client requests will not be answered in any expected way.

A regular RTP-receiving client contacts the cache server as its proxy server with a request for a certain movie title; products
demonstrate that this can be done in the same way for video as it is done for web pages. A cache server that receives this
request and has the movie or at least the initial portion of the movie already stored locally assumes that the movie can be
streamed to the client in an individual unicast transmission (fine-grained batching could be used to collect a couple of requests
in this case as well). Even if the movie is not completely available, some other client is currently requesting it from the server
and the remaining part will arrive at the cache server before it is required by the new client. Obviously, this requires that the
cache server is able to send data from partially available movies.

If the video is not present at all, the cache server contacts the next upstream server in the distribution hierarchy and requests the
title. If the movie title is not in transmission to any other cache server or client at that time, the original server starts a transmis-
sion of this movie to the cache server as a multicast stream. The cache server stores this title, and at the same time, forwards
the data to the requesting client. A special approach in this case is the possibility to permit the client to listen to the multicast
stream, which is also listened to by the cache server. This handling of the special case permits the implementations of condi-
tional overwrite caching strategies that do not store movies just because they are requested for the first time, but do this only if
sufficient information is available to deduce that the title will probably be requested soon again. The more generic approach,
which does not work with conditional overwrite strategies is to start storing as the data arrives from the original server, and to
open a separate unicast connection from the cache server to the client to transmit a stream.

If the video, which is not present in the cache server, is already being sent by the original server to other cache servers or to cli-
ents, the original server will decide according to the estimated optimal restart frequency of the requested movie, whether the
cache server receives a new complete stream or not.

In the latter case,patchingis applied and the client receives an individual patch stream in addition to information that is neces-
sary to join the complete stream and the patch streams which are already active for that movie. This process demands to keep
and order the individual parts. The position on disk of each RTP packet arriving from the different patches at the cache server
is uniquely identified by the byte count in the extended header. The receiving application is responsible for storing the packet
at this position in the file. Since all elements are transmitted and received with regular streaming speed, the transmission thread
or process, which reads the data from the partial file and forwards it to the client, will experience a lost packet only if the link
between the cache server and the original server is congested or the packet is lost for any other reason. The receiving thread or
process does not require any special operation beyond the normal LCRTP extensions; however, the concurrent bandwidth
needs are much higher at the beginning of a patch transmission than is usual for the regular LCRTP case.

4 CONCLUSION
We have analytically motivated and then presented an approach to the implementation of a wide-area caching architecture. It
exploitspatchingto decrease the number of concurrent transmissions for movies in the distribution system. We have shown

Accepted for Multimedia Communication and Networks, San Jose, January 2000

medianode 15. August 1999

that the savings in terms of investment in a distribution system can be huge whenpatchingis applied. We have also shown that
these savings are not lost whenpatchingis combined with legacy clients that require linear stream delivery by means of cach-
ing proxies. Rather, our examples demonstrates that the savings can increase if the location of such cache servers is chosen
appropriately.

We presented the LCRTP protocol and thepatchingtechnique that we have designed or enhanced for our needs, respectively.
Next steps for a full implementation include a selection of a control protocol that can be used or enhanced to receive multiple
parts of a patched transmission from different sources at the same time. The analytic model will be enhanced to examine the
recursive application ofpatching as demonstrated in [13].

We will continue to enhance multimedia distribution systems, with a specific focus on caching without central control.

 REFERENCES
1 The 4th International Web Caching Workshop, San Diego, California, March 31 - April 2, 1999; URL:

wwwcache.ja.net/events/workshop
2 M. Beck et al., “Linux Kernel Internals”, second edition. Addison-Wesley Longman 1998
3 A. Dan, D. Sitaram, P. Shahabuddin. “Dynamic Batching Policies for an On-Demand Video Server”. Multimedia

Systems. 1994.
4 A. Dan, P. Shahbuddin, D. Sitaram, D. Towsley, “Channel Allocation under Batching and VCR Control on Video-on-

Demand Systems”, IBM Research Report, RC 19588, September 1994
5 S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. Zhang. “A Reliable Multicast Framework for Light-weight

Sessions and Application Level Framing”. IEEE/ACM Transactions on Networking, Volume 5, Number 6, pp. 784-
803, December 1997

6 D. Venkatesh, T.D.C. Little, “Dynamic Service Aggregation for Efficient Use of Resources in Interactive Video
Delivery”, Proceedings of the 5th NOSSDAV Conference, Nov. 1995, pp. 113-116

7 R. Krishnan, D. Venkatesh, T.D.C. Little, “A Failure and Overload Tolerance Mechanism for Continuous Media
Servers”, Proceedings of the ACM MM 97 Conference, 1997, pp. 131-142

8 J. Nonnenmacher, M. Lacher, M. Jung, E. W. Biersack, G. Carle, “How Bad is Multicast Without Local Recovery?”,
INFOCOM 1998

9 B. Sabata, M. J. Brown, B. A. Denny, “Transport Protocol for Reliable Multicast: TRM”, IASTED International
Conference on Networks, 1996

10 John C. Lin, Sanjoy Paul, “RMTP: A Reliable Multicast Transport Protocol”, INFOCOM 1996
11 Tie Liao. “Light-weight Reliable Multicast Protocol” Technical Report, INRIA, Le Chesnay Cedex, France, 1998
12 C. Griwodz, M. Bär, L.C. Wolf. “Long-term Movie Popularity Models in Video-on-Demand Systems or The Life of

an on-Demand Movie” ACM Multimedia 1997, November, Seattle, WA, USA, November 1997
13 C. Griwodz, M. Liepert, M. Zink, R. Steinmetz: “Tune to Lamda Patching” WISP 1999, Atlanta, GA, USA, May

1999
14 C. Griwodz, M. Zink, M. Liepert, G. On: “Analytical Model for Patching VoD Cache Hierarchies” Technical Report

tr-1999-03, Url: ftp://ftp.kom.e-technik.tu-darmstadt.de/pub/papers/-144-paper.pdf, KOM TU Darmstadt, Darmstadt,
Germany, 1999

15 C. Griwodz, O. Merkel, J. Dittmann, R. Steinmetz. “Protecting VoD the Easier Way” In Proc. of ACM Multimedia
1998, pages 21-28, September 1998

16 L. Golubchik, J. C. S. Lui, R. R. Muntz. “Adaptive Piggybacking: A Novel Technique for Data Sharing in Video-on-
Demand Storage Servers”. Multimedia Systems 4, pp. 140-155, 1996

17 R. Haskin and F. Schmuck. “The Tiger Shark File System”. Proceedings of IEEE 1996 Spring COMPCON, Santa
Clara, CA, USA, February 1996

18 K. A. Hua, Y. Cai, S. Sheu: “Patching: A Multicast Technique for True Video-on-Demand Services”, Proc. of ACM
Multimedia 1998, pp. 191-200, Bristol, England, September 1998

19 C. Martin, P.S. Narayan, B. Özden, R. Rastogi and A. Silberschatz. “The Fellini Multimedia Storage Server” appears
in Chung Multimedia Information Storage and Management, Kluwer Academic Publishers, 1994

20 J. Nonnenmacher, E. Biersack, D. Towsley. “Parity-Based Loss Recovery for Reliable Multicast Transmission”. ACM
SIGCOMM 1997, Cannes, France, September 1997

21 Real Networks, “Realserver Administration Guide”, RealNetworks Inc. 1998
22 H. Schulzrinne, S. Casner, R. Frederick. “RTP:A Transport Protocol for Real-Time Applications”. IETF Audio/Video

Transport Working Group, January 1996, RFC1889
23 R. Tewari. “Architecture and Algorithms for Scalable Wide-area Information Systems”. Dissertation, Universuty of

Texas, Austin, TX, USA, August 1998
24 K. Nichols, S. Blake, F. Baker, D. Black. “Definition of the Differentiated Services Field (DS Field) in the IPv4 and

IPv6 Headers”. RFC 2474, IETF, December 1998

