
1. ABSTRACT
We think that web caches will soon have to bet-
ter support multimedia demands. In this paper
we present a cache server design for internet
video on demand (VoD) systems.

1.1 Keywords
Caching, Video on Demand, Internet

2. INTRODUCTION
Internet VoD today is dominated by systems like the Real G2
System [13] supporting various low bandwidth formats. The
length and especially the quality of current video clips are
very limited, and not applicable at all for commercial VoD.
One of the major limitations is the necessity to stream the
video clip directly from a central server to each client
individually, because re-distribution is not established yet.
Intranet solutions have existed for a while, they use
distributed systems but are typically managed from a central
site.

Current internet caching strategies can remain rather simple,
since the assumption of a large cache and small data items is
valid for the vast part of web traffic. Furthermore, the
distributed content is typically free or not commercially
relevant. This permits to mostly ignore security and
copyright issues as well.

However, we expect that the growth of the Internet and the
integration of services will make the idea of wide-area
distribution of commercial quality video over networks
without central management feasible. Intelligent caching can
be helpful in this for two reasons:

• Movies have a considerable life cycle that can and should
be taken into account [5]

• The movement of full-sized high quality movies among
caches is severely more expensive then that of video clips
because of the required bandwidth and storage.

We address these issues with the following efforts:

• Investigate more complex strategies and structures to
position and access copies of expensive files. This is
unlike the current approach of the web caching com-
muties to efficiently handle co-operative caches: since
the number of requests that reach these caches is large
and requested files are mostly very small, these caches
are mainly streamlined for simplicity and thus rapid
request answers [1].

• Support the delivery of large bulk data files across net-
works with resource guarantees.

• Evaluate approaches like Hint-based caching [15] for
applicability to movie caching as well.

• Support for untrusted caches [7].

We want to specifically handle movie distribution by means
of caching, and a feasibility study from the the content
providers’ point of view. In the remainder of this paper we
therefore introduce the combination of our reliable multicast
protocolLC-RTPfor caching hierarchies and our enhanced
Patchingtechnique [9] for bandwidth friendly True VoD.

3. LC-RTP
Current commercial video distribution systems [13] depend
on unicast connections between original server and cache
server and also among cache servers in order to guarantee
the integrity of the copies in their caches.

Another alternative would be the use of reliable multicast.
Approaches like SRM [4] require a specific distribution
infrastructure in order to work. Nonnenmacher et al.’s
approach [12] does not necessarily need such an
infrastructure but without it, all clients receive an amount of
error correcting information appropriate for the participant
with the worst connection. Of course, this FEC information
is also taking up bandwidth.

3.1 LC-RTP Concept
Our approach is to modify the most commonly used
application-level protocol for streamed AV delivery, RTP, to
address our specific case of reliable multicast with the
following requirements:

• compatibility with standard RTP clients

• based on regular IP-multicast infrastructure without spe-
cialized routers

• minimal additional bandwidth consumption to reduce the
penalty of slow links

LC-RTP sends a small amount of data in addition to the RTP

Position Paper: Internet VoD Cache Server Design
Carsten Griwodz1, Michael Zink1, Michael Liepert1, Ralf Steinmetz1,2

2IPSI, German National Research Center for
Information Technology

Dolivostrasse 15
64293 Darmstadt, Germany

0049-6151-869869

1KOM - Industrial Process and System Communications
Darmstadt University of Technology

Merckstrasse 25
64283 Darmstadt, Germany

0049-6151-166151

{carsten.griwodz,michael.zink,michael.liepert,ralf.steinmetz}@kom.tu-darmstadt.de

header to determine exactly the amount of lost data and its
position in the original file. This is achieved by the use of a
byte count that represents the actual position in a file. On the
receiver´s side in the case of a packet loss the byte count
contained in each arriving packet is used to reserve space for
the missing data that will be filled afterwards by
retransmission (Figure 1).

LC-RTP makes use of the standard mechanisms for RTP
[14] extensions. The X flag (extension flag) is used in order
to show that an extension header is following the standard
RTP header. A standard RTP implementation ignores the X
flag and the extension header and treats the packet as a
standard RTP packet.

In case that a sender is asked to send a specific movie via
LC-RTP an extension header of 8 bytes is added to each
packet. It includes the above described byte count.
Assuming UDP packets with a maximum payload of 512
bytes this causes an additional overhead of 1,6%.

3.2 LC-RTP Scenario
The following example shows how reliable multicast
including the above described requirements is achieved with
LC-RTP. As an example, in Figure 2 the original video data

is located on server A. Server B and C are also video servers
that operate mainly as cache servers. Clients 1 and 4 are
requesting the same video from server A. Assume that the
file is neither cached on server B nor on C so far. Server A
starts sending an LC-RTP multicast stream which is
received by the servers B and C where a write through
caching is performed. Thus, the received data is stored
locally in a file while as well being streamed at the same

time further towards the requesting clients. At the client side
a standard RTP receiver is able to process the incoming LC-
RTP packets since the extension header is ignored.

If a data loss occurs at one of the caching servers, space for
the missing information can be allocated at the correct
position in the file due to the byte count that is included in
the LC extension header. After the file is transmitted
completely the receivers send an application specific RTCP
packet containing the collection of losses to the sender. This
report is sent after a random time to avoid flooding. If a
report from another client has been observed covering the
complete LC list, no report is sent.

The sender then resends the missing data to the receivers.
Retransmission also includes the LC-RTP functionality to
make sure that the whole file is received and stored correctly
at the local cache. A timer at the receiver cancels the session
if no additional data is received after a while in order to
avoid an endless loop of retransmissions.

Without additional techniques, we must admit that we do
not observe concurrent requests that allow such savings in
real life frequently. To increase the savings we have looked
for options to combine LC-RTP with other ideas.

4. PATCHING
We have also found in the past that the Patching approach
by Hua et al. [10] has provided an interesting means for
saving server capacity in centralized systems. We have
presented one approach for dynamical optimization of the
server load depending on a specific movie’s recent hit
probability in [6].

Patching works by delivering a full movie from start to end
to the first client that requests this movie.

Subsequent requests in a temporal interval after each
multicasted movie are not served by transmitting the same
movie again. Instead, the client is provided with sufficient
information to join the initial stream, and an additional
patch stream for the missing initial portion of the movie.
These subsequent clients provided with patch streams use
local cyclic buffers to delay play-out of received main
multicast portion of the movie. There is an optimal time
mostly depending on the frequency of requests for a movie.
After that time, a further request is answered by repeating
the complete movie multicast stream, instead of sending
more patches in parallel (cf. calculations in [6, 10]).

The Patching technique can be applied recursively by
sending a second patch to the initial patch in addition to the
remaining portion of the full movie transmission and so on.

File at the sender

File at the receiver

Payload for LC-RTP

byte count

Packet loss

Left empty for insertion

Figure 1. LC-RTP byte count supports retransmission

000.....000

A

B C

1 2 3 4

Figure 2. Example scenario

The limit to this is given by:

• the number of streams that can be received by a client in
parallel,

• the granularity at which a switching from one patch to
another makes sense at the client, and

• the smallest sensible interval size for a specific movie,
below which a batching [3] or piggybacking [8]
approach can be used without recognizable service deg-
radation for the user.

The use of patch streams is depicted in Figure 3.

In extension to the server load optimization approach of [9],
we have made some calculations for long-term savings, but
the results have been unstable under different assumptions
concerning the network cost in a distribution system and it
seems impossible to validate them at this time.

We think that a model in which the VoD clients have a large
enough buffer to preload the complete set of existing movies
is not feasible even if today it would be possible to equip the
clients with a sufficient amount of RAM. Clients should be
held as simple as possible in order to manage them easily
and also to keep them inexpensive since they may require
replacement every few years because of newly available
technologies.

Under these assumptions, we combine the ideas of movie
caching and Patching and demonstrate that the technical
means have been developed already; non-withstanding the
fact that the current elements to such a solution are very
expensive or not in a product state yet.

5. STREAMING INCOMPLETE FILES
Various multimedia file systems exist that are able to handle
the reading from an incomplete file that is still open for
writing. Examples of file systems that are capable of this
operation with performance guarantees are SGI’s XFS,
IBM’s TigerShark [9] and the Fellini [11] filesystem. It is
unclear whether these file systems are able to handle
multiple concurrent writes to their files, but other means,
e.g. TigerShark’s play lists allows the concatenated delivery
of subsequent pieces of a movie to a client; storing each
patch in a seperate file and delivering the stream from these
files one after each other in the correct order circumvents
this potential problem.

It would be possible to implement the reception mechanism

of LC-RTP in such a way that files are closed after each
write operation for one packet. While this is horribly
expensive in most file systems, some optimistic
implementations such as the Ext2 [2] file system are able to
handle several of these streams at once; obviously without
performance guarantees.

A second option is inspired by the handling of M-JPEG
movies: each packet can be stored as an individual file, and
the packet sequence numbers are used to name these
seperate files and to guarantee ordered forwarding. This
approach, as well, is very resource intensive for the cache
server but probably the simplest to implement. If such an
approach is taken, it is appropriate to store movies in this
way at all times.

Our current approach is to extend Ext2 to fully support
admission controlled, concurrent scattered read and write
operations.

6. VoD CACHE SERVER DESIGN
To combine the LC-RTP and thepatchingapproaches in a
patch cachingsystem, we need to modify the retransmission
approach a little bit. A specific use of the cache server file
system is also required, and can be addressed in several
ways.

First of all, both the original server and the cache servers of
thepatch cachingdistribution hierarchy need to be aware of
the modification from the original LC-RTP usage, or client
requests will not be answered in any expected way.

The client, which is a regular RTP-receiving application,
contacts the cache server with a request for a certain movie
title; products demonstrate that this can be done in the same
way for video as it is done for web pages. A cache server
that receives this request and has the movie or at least the
initial portion of the movie already stored locally assumes
that the movie can be streamed to the client in an individual
unicast transmission (fine-grained batching could be used to
collect a couple of requests in this case as well). Even if the
movie is not completely available, some other client is
currently requesting it from the server and the remaining
part will arrive at the cache server before it is required by
the new client. Obviously, this requires that the cache server
is able to send data from partially available movies. Some
more information concerning this issue will be presented
later.

complete
stream

patch streams

1 2 3 4

1 2 3 4

3 4

1 2 3 4

2
2 3 4

1 2 3 4

1 2
1

1.5
1.5

5 5

Figure 3. Patching

request 1 request 2 request 3

playout playout playout

If the video is not present at all, the cache server contacts
the next upstream server (without loss of generality called
the original server) in the distribution hierarchy and requests
the title. If the movie title is not in transmission to any other
cache server or client at that time, the original server starts a
transmission of this movie to the cache server as a multicast
stream. The cache server stores this title, and at the same
time, forwards the data to the requesting client. A special
approach in this case is the possibility to permit the client to
listen to the multicast stream, which is also listened to by
the cache server. This handling of the special case permits
the implementations of conditional overwrite caching
strategies that do not store movies just because they are
requested for the first time, but that do this only if sufficient
information is available to deduce that the title will probably
be requested soon again. The more generic approach, which
does not work with conditional overwrite strategies is to
start storing the movie on disk as the data arrives from the
original server, and to open a seperate unicast connection
from the cache server to the client to transmit a stream from
that file.

If the video, which is not present in the cache server, is
already being sent by the original server to other cache
servers or to clients, the original server will decide
according to the estimated optimal restart frequency of the
requested movie, whether the cache server receives a new
complete stream or not.

In the latter case, patching is applied and the client receives
an individual patch stream in addition to information that is
necessary to join the complete stream and the patch streams
which are already active for that movie. This process
demands to keep and order the individual parts. The position
on disk of each RTP packet arriving from the different
patches at the cache server is uniquely identified by the byte
count in the extended header. The receiving application is
responsible for storing the packet at this position in the file.
Since all elements are transmitted and received with regular
streaming speed, the transmission thread or process, which
reads the data from the partial file and forwards it to the
client, will experience a lost packet only if the link between
the cache server and the original server is congested or the
packet is lost for any other reason. The receiving thread or
process does not require any special operation beyond the
normal LC-RTP extensions; however, the concurrent
bandwidth needs are much higher at the beginning of a
patch transmission than is usual for the regular LC-RTP
case.

As mentioned above, a dedicated cache server file system
has to support the store and forward operation for partially
received files.

7. INTERMEDIATE RESULTS
We have presented an approach to the implementation of a
wide-area caching architecture. It exploits Patching to
decrease the number of concurrent transmissions for
movies.

We will continue to examine optimizations in multimedia

distribution system, with a specific focus on caching.

8. REFERENCES
[1] The 4th International Web Caching Workshop, San

Diego, California, March 31 - April 2, 1999; URL:
wwwcache.ja.net/events/workshop

[2] M. Beck et al., Linux Kernel Internals, second edition.
Addison-Wesley Longman 1998

[3] A. Dan, D. Sitaram, P. Shahabuddin. Dynamic Batching
Policies for an On-Demand Video Server. Multimedia
Systems. 1994.

[4] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L.
Zhang. A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing. IEEE/
ACM Transactions on Networking, Volume 5, Number
6, pp. 784-803, December 1997

[5] C. Griwodz, M. Bär, L.C. Wolf. Long-term Movie Pop-
ularity Models in Video-on-Demand Systems or The
Life of an on-Demand Movie. ACM Multimedia 1997,
November, Seattle, WA, USA, November 1997

[6] C. Griwodz, M. Liepert, M. Zink, R. Steinmetz. Tune to
Lamda Patching. WISP 1999, Atlanta, GA, USA, May
1999

[7] Carsten Griwodz, Oliver Merkel, Jana Dittmann, and
Ralf Steinmetz. Protecting VoD the Easier Way. In
Proc. of ACM Multimedia 1998, pages 21-28, Septem-
ber 1998.

[8] L. Golubchik, J. C. S. Lui, R. R. Muntz. Adaptive Pig-
gybacking: A Novel Technique for Data Sharing in
Video-on-Demand Storage Servers. Multimedia Sys-
tems 4, pp. 140-155, 1996

[9] R. Haskin and F. Schmuck. The Tiger Shark File Sys-
tem. Proceedings of IEEE 1996 Spring COMPCON,
Santa Clara, CA, USA, February 1996

[10]K. A. Hua, Y. Cai, S. Sheu: Patching: A Multicast Tech-
nique for True Video-on-Demand Services, Proc. of
ACM Multimedia 1998, pp. 191-200, Bristol, England,
September 1998

[11]C. Martin, P.S. Narayan, B. Özden, R. Rastogi and A.
Silberschatz. The Fellini Multimedia Storage Server
appears in Chung Multimedia Information Storage and
Management, Kluwer Academic Publishers, 1994

[12]J. Nonnenmacher, E. Biersack, D. Towsley. Parity-
Based Loss Recovery for Reliable Multicast Transmis-
sion. ACM SIGCOMM 1997, Cannes, France, Septem-
ber 1997

[13]Real Networks, Realserver Administration Guide,
RealNetworks Inc. 1998

[14]H. Schulzrinne, S. Casner, R. Frederick. RTP:A Trans-
port Protocol for Real-Time Applications. IETF Audio/
Video Transport Working Group, January 1996,
RFC1889

[15]R. Tewari. Architecture and Algorithms for Scalable
Wide-area Information Systems. Dissertation, Univer-
suty of Texas, Austin, TX, USA, August 1998

