
- -

[GrZiLiSt99] Carsten Griwodr, Michael Zink, Michael Liepert, Ralf Steinmetz: ~ositioh Paper:
Internet VoD Cache Server Design; ACM Multimedia 99, Orlando

Position Paper: Internet VoD Cache Server Design
Carsten ~r iwodz' , Michael zinkl, Michael ~ i e ~ e r t ' , Ralf ~teinmetz'l*

'KOM - Industrial Process and System Communications *IPSI, German National Research Center for
Darmstadt University of Technology Information Technology

Merckstrasse 25 Dolivostrasse 15
64283 Darrnstadt, Germany 64293 Darmstadt, Germany

0049-61 51 -1 661 51 0049-61 51 -869869

{carsten.griwodz,michael.zink,michael.liepert,ralf.steinmetz)@ kom.tu-darmstadt.de

1. ABSTRACT
We think that web caches will soon have to bet-
ter support multimedia demands. In this paper
we present a cache server design for internet
video on demand (VoD) systems.

1.1 Keywords
Caching, Video on Demand, Internet

2. INTRODUCTION
Internet VoD today is dominated by systems like the Real G2
System [I31 supporting various low bandwidth formats. The
length and especially the quality of current video clips are
very limited, and not applicable at all for commercial VoD.
One of the major limitations is the necessity to stream the
video clip directly from a central server to each client
individually, because re-distribution is not established yet.
Intranet solutions have existed for a while, they use
distributed systems but are typically managed from a central
site.

Current internet caching strategies can remain rather simple,
since the assumption of a large cache and small data items is
valid for the vast part of web traffic. Furthermore, the
distributed content is typically free or not commercially
relevant. This pennits to mostly ignore security and
copyright issues as well.

However, we expect that the growth of the Internet and the
integration of Services will make the idea of wide-area
distribution of commercial quality video over networks
without central management feasible. Intelligent caching can
be helpful in this for two reasons:

Movies have a considerable life cycle that can and should
be taken into account [5]
The movement of full-sized high quality movies among
caches is severely more expensive then that of video clips
because of the required bandwidth and Storage.

We address these issues with the following efforts:

Investigate more complex strategies and structures to
position and access copies of expensive files. This is
unlike the current approach of the web caching com-
muties to efficiently handle CO-operative caches: since
the number of requests that reach these caches is large
and requested files are mostly very small, these caches
are mainly streamlined for simplicity and thus rapid
request answers [I].

Support the delivery of large bulk data files across net-
works with resource guarantees.

Evaluate approaches like Hint-based caching [I51 for
applicability to movie caching as well.

Support for untrusted caches [7].
We Want to specifically handle movie distribution by means
of caching, and a feasibility study from the the content
providers' point of view. In the remainder of this paper we
therefore introduce the combination of our reliable multicast
protocol LC-RTP for caching hierarchies and our enhanced
Patchirig technique [9] for bandwidth friendly True VoD.

3. LC-RTP
Current commercial video distribution systems [I31 dcpend
on unicast connections between original server and cache
server and also among cache Servers in order to puarantee
the integrity of the copies in their caches.

Another alternative would be the use of reliable multicast.
Approaches like SRM [4] require a specific distribution
infrastructure in order to work. Nonnenmacher et al.'s
approach [12] does not necessarily need such an
infrastructure but without it, all clients receive an amount of
error correcting information appropriate for the participant
with the worst connection. Of Course, this FEC information
is also taking up bandwidth.

3.1 LC-RTP Concept
Our approach is to modify the most commonly used
application-level protocol for streamed AV delivery, RTP, to
address our specific case of reliable multicast with the
following requirements:

compatibility with Standard RTP clients
based on regular IP-multicast infrastructure without spe-
cialized routcrs
minimal additional bandwidth consumption to reduce the
penalty of slow links

LC-RTP sends a small amount of data in addition to the RTP

/ byte
I I I I File at the sender
I I I I I I Payload for LC-RTP

f = Packet 101s

I File at the receiver

Left ernpty for inser:ion

Figure 1. LC-RTP byte count supports retransmission

header to deterrnine exactly the amount of lost data and its time further towards the requesting clients. At the client side
position in the original file. This is achieved by the use of a a standard RTP receiver is able to process the incoming LC-
byte count that represents the actual position in a file. On the RTP packets since the extension header is ignored.
receiver's side in the case of a packet loss the byte count
contained in each arriving packet is used to reserve space for If a data loss occurs at one of the caching servers, space for

the rnissing data that will be filled afterwards by the rnissing inforrnation can be allocated at the correct

retransmission (Figure 1). position in the file due to the byte count that is included in
the LC extension header. After the file is transrnitted

LC-RTP makes use of the standard rnechanisms for RTP
[I41 extensions. The X flag (extension flag) is used in order
to show that an extension header is following the standard
RTP header. A standard RTP irnplementation ignores the X
flag and the extension header and treats the packet as a
standard RTP packet.

In case that a sender is asked to send a specific movie via
LC-RTP an extension header of 8 bytes is added to each
packet. It includes the above described byte count.
Assuming UDP packets with a maximurn payload of 512
bytes this causes an additional overhead of 1,6%.

3.2 LC-RTP Scenario
The following exarnple shows how reliable multicast
including the above described requirernents is achieved with
LC-RTP. As an example, in Figure 2 the original video data

Figure 2. Example scenario

is located on server A. Server B and C are also video servers
that operate mainly as cache servers. Clients 1 and 4 are
requesting the Same video from server A. Assume that the
file is neither cached on server B nor on C so far. Server A
starts sending an LC-RTP multicast strearn which is
received by the servers B and C where a write through
caching is perforrned. Thus, the received data is stored
locally in a file while as well being strearned at the sarne

completely the receivers send an application specific RTCP
packet containing the collection of losses to the sender. This
report is sent after a random time to avoid flooding. If a
report frorn another client has been observed covering the
cornplete LC list, no report is sent.

The sender then resends the rnissing data to the receivers.
Retransmission also includes the LC-RTP functionality to
make Sure that the whole file is received and stored correctly
at the local cache. A tirner at the receiver cancels the Session
if no additional data is received after a while in order to
avoid an endless loop of retransrnissions.

Without additional techniques, we must adrnit that we do
not observe concurrent requests that allow such savings in
real life frequently. To increase the savings we have looked
for options to combine LC-RTP with other ideas.

4. PATCHING
We have also found in the past that the Patching approach
by Hua et al. [I01 has provided an interesting rneans for
saving server capacity in centralized Systems. We have
presented one approach for dynamical optirnization of the
server load depending on a specific movie's recent hit
probability in [6].

Patching works by delivering a full rnovie from Start to end
to the first client that requests this movie.

Subsequent requests in a temporal interval after each
multicasted movie are not served by transmitting the Same
movie again. Instead, the client is provided with sufficient
information to join the initial strearn, and an additional
patch stream for the rnissing initial portion of the movie.
These subsequent clients provided with patch streams use
local cyclic buffers to delay play-out of received main
rnulticast portion of the rnovie. There is an optimal time
rnostly depending on the frequency of requests for a movie.
After that time, a further request is answered by repeating
the coinplete movie rnulticast strearn, instead of sending
rnore patches in parallel (cf. calculations in 16, 101).

The Patching technique can be applied recursively by
sending a second patch to the initial patch in addition to the
remaining portion of the full rnovie transrnission and so On.

playout playout
request 1 request 2 requkt 3

Figure 3. Patching

The limit to this is given by: of LC-RTP in such a way that files are closed after each
write operation for one packet. While this is horribly

the niimber of streams that can be received by a client in in most file some optimistic
parallel,

implementations such as the Ext2 [2] file system are able to
the gianularit~ at which a switching from one ~ a t c h to handle several of these streams at once; obviously without
another makes sense at the client, and performance guarantees.
the smallest sensible interval size for a specific movie, second is insPired by the handling of M-JPEC
below which batching [31 Or piggybacking movies: each packet can be stored as an individual file, and
a ~ ~ r o a c h be used without recOgnizable service deg- the packet sequence numbers are used to name these
radation for the User. seperate files and to guafantee ordered forwarding. This -

The use of patch streams is depicted in Figure 3. approach, as well, is very resource intensive for the cache
server but probably the simplest to implement. If such an

In extension to the Server load optimization approach of P I , approach is taken, i t is appropriate to movies in this
we have rnade some calculations for long-term savings, but way at all times,
the results have been unstable under different assumptions
concerning the network cost in a distribution system and it
seems impossible to validate them at this time.

We think that a model in which the VoD clients have a large
enough buffer to preload the complete Set of existing movies
is not feasible even if today it would be possible to equip the
clients with a sufficient amount of RAM. Clients should be
held as simple as possible in order to manage them easily
and also to keep them inexpensive since they may require
replacement every few years because of newly available
technologies.

Under these assumptions, we combine the ideas of movie
caching and Patching and demonstrate that the technical
means have been developed already; non-withstanding the
fact that the current elements to such a solution are very
expensive or not in a product state yet.

5. STREAMING INCOMPLETE FILES
Various multimedia file systems exist that are able to handle
the reading from an incomplete file that is still Open for
writing. Examples of file systems that are capable of this
operation with performance guarantees are SGI's XFS,
IBM's TigerShark [9] and the Fellini [I I] filesystem. It is
unclear whether these file Systems are able to handle
multiple concurrent writes to their files, but other means,
e.g. TigerShark's play lists allows the concatenated delivery
of subsequent pieces of a movie to a client; storing each
patch in a seperate file and delivering the stream from these
Iiles one after each other in the correct order circumvents
this potential problem.

It would be possible to implement the reception mechanism

Our current approach is to extend Ext2 to fully Support
admission controlled, concurrent scattered read and write
operations.

6. VoD CACHE SERVER DESIGN
To combine the LC-RTP and the patching approaches in a
patch c~zching system, we need to modify the retransmission
approach a little bit. A specific use of the cache server file
system is also required, and can be addressed in several
ways.

First of all, both the original server and the cache Servers of
the patch caching distribution hierarchy need to be aware of
thc modification from the original LC-RTP usage, or client
requests will not be answered in any expected way.

The client, which is a regular RTP-receiving application,
contacts the cache server with a request for a certain movie
title; products demonstrate that this can be done in the Same
way for video as it is done for web pages. A cache server
that receives this request and has the movie or at least the
initial portion of the movie already stored locally assumes
that the movie can be streained to the client in an individual
unicast transmission (fine-grained batching could be used to
collect a couple of requests in this case as well). Even if the
movie is not completely available, some other client is
currently requesting it from the scrver and the remaining
part will amve at the cache server before it is required by
the new client. Obviously, this requires that the cache server
is able to send data from partially available movies. Some
more information concerning this issue will be presented
later.

If the video is not nresent at all. the cache server contacts
the next upstream server (without loss of generality called
the original server) in the distribution hierarchy and requests
the title. If the movie title is not in transmission to any other
cache server or client at that time, the original server Starts a -
transmission of this movie to the cache server as a multicast
stream. The cache server Stores this title, and at the Same
time, forwards the data to the requesting client. A special
approach in this case is the possibility to perinit the client to
listen to the multicast stream, which is also listened to by
the cache server. This handling of the special case permits
the implementations of conditional overwrite caching
strategies that do not store movies just because they are
requested for the first time, but that do this only if sufficient
inforrnation is available to deduce that the title will probably
be requested soon again. The more generic approach, which
does not work with conditional overwrite strategies is to
Start storing the movie on disk as the data arrives from the
original server, and to Open a seperate unicast connection
from the cache server to the client to transmit a stream from
that file.

If the video, which is not present in the cache server, is
already being sent by the original server to other cache
Servers or to clients, the original server will decide
according to the estimated optimal restart frequency of the
requested movie, whether the cache server receives a new
compiete strearn or not.

In the latter case, patching is applied and the client receives
an individual patch stream in addition to information that is
necessary to join the complete stream and the patch streams
which are already active for that movie. This process
demands to keep and order the individual Parts. The position
on disk of each RTP packet arriving from the different
patches at the cache server is uniquely identified by the byte
Count in the extended header. The receiving application is
responsible for storing the packet at this position in the file.
Since all elements are transmitted and received with regular
streaming Speed, the transmission thread or process, which
reads the data from the partial file and forwards it to the
client, will experience a lost packet only if the link between
the cache server and the original server is congested or the
packet is lost for any other reason. The receiving thread or
process does not require any special operation beyond the
normal LC-RTP extensions; howevcr, the concurrent
bandwidth needs are much higher at the beginning of a
patch transmission than is usual for the regular LC-RTP
case.

As nientioned above, a dedicated cache server file system
has to Support the store and forward operation for partially
received files.

7. INTERMEDIATE RESULTS
We have presented an approach to the implementation of a
wide-area caching architecture. It exploits Patching to
decrease the number of concurrent transmissions for
movies.

We will continue to exarnine optimizations in multimedia

distribution system, with a specific focus on caching.

8. REFERENCES
[I] The 4th International Web Caching Workshop, San

Diego, California, March 31 - April 2, 1999; URL:
wwwcache.ja.net/events/workshop

[2] M. Beck et al., Linux Kernel Internals, second edition.
Addison-Wesley Longman 1998

[3] A. Dan, D. Sitaram, P. Shahabuddin. Dynamic Batching
Policies for an On-Demand Video Server. Multimedia
Systems. 1994.

[4] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L.
Zhang. A Reliable Multicast Framework for Light-
weight Sessions and Application Level Framing. IEEEI
ACM Transactions on Networking, Volume 5, Number
6, pp. 784-803, December 1997

[5] C. Griwodz, M. Bär, L.C. Wolf. Long-term Movie Pop-
ularity Models in Video-on-Demand Systems or The
Life of an on-Demand Movie. ACM Multimedia 1997,
November, Seattle, WA, USA, November 1997

[6] C. Griwodz, M. Liepert, M. Zink, R. Steinmetz. Tune to
Lamda Patching. WISP 1999, Atlanta, GA, USA, May
1999

[7] Carsten Griwodz, Oliver Merkel, Jana Dittmann, and
Ralf Steinmetz. Protecting VoD the Easier Way. In
Proc. of ACM Multimedia 1998, pages 21-28, Septem-
ber 1998.

[8] L. Golubchik, J. C. S. Lui, R. R. Muntz. Adaptive Pig-
gybacking: A Novel Technique for Data Sharing in
Video-on-Demand Storage Servers. Multimedia Sys-
tems 4, pp. 140-1 55, 1996

[9] R. Haskin and F. Schmuck. The Tiger Shark File Sys-
tem. Proceedings of IEEE 1996 Spring COMPCON,
Santa Clara, CA, USA, February 1996

[10] K. A. Hua, Y. Cai, S. Sheu: Patching: A Multicast Tech-
nique for True Video-on-Demand Services, Proc. of
ACM Multimedia 1998, pp. 19 1-200, Bristol, England,
September 1998

[I 1]C. Martin, P.S. Narayan, B. Özden, R. Rastogi and A.'
Silberschatz. The Fellini Multimedia Storage Server
appears in Chung Multimedia Information Storage and
Management, Kluwer Academic Publishers, 1994

[I21 J. Nonnenmacher, E. Biersack, D. Towsley. Parity-
Based Loss Recovery for Reliable Multicast Transmis-
sion. ACM SIGCOMM 1997, Cannes, France, Septern-
ber 1997

[I 31 Real Networks, Realserver Administration Guide,
RealNetworks Inc. 1998

[14] H. Schulzrinne, S. Casner, R. Frederick. RTP:A Trans-
port Protocol for Real-Time Applications. IETF Audiol
Video Transport Working Group, January 1996,
RFC 1889

[151 R. Tewari. Architecture and Algorithms for Scalable
Wide-area Information Systems. Dissertation, Univer-
suty of Texas, Austin, TX, USA, August 1998

