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1. Introduction
The world-wide distribution of multimedia documents is today restricted to discrete m
content such as web pages, downloadable scripts and the rare audio or video clip. Furth
there is an increasing number of on-line conferences and live-stream “broadcast” sourc
operate at very low bit-rates. Their applicability at a world-wide scale is extremely lim
because they suffer from extensive loss and delay. For in-house multimedia program dis
tion of multinational companies or consortia, systems exist that allow for centrally contro
distribution or a limited amount of data, and that operate on the basis of an overprovisi
dedicated networking infrastructure. To close this gap, new and old media companie
merging at this time to bring high quality content and the Internet together. While such d
bring the infrastructure and the content together, the technology for world-wide offerings i
automatically achieved.

The initial ideas were developed at a time when many video-on-demand trials failed, w
had been started when the original competitors for a video-on-demand (VoD) business
caught up in a premature hype. Their monolithic or at least centralistic architectures
developed under the approach of server-centric computing; competitors were frequently
phone and hardware companies, lacking relevant content as well as end-user infrastr
These early developments required highly priced servers and had multiple points of failur
assumption became that many of the problems of field trials were due to this fact specifi
centralized, costly, mainly proprietary systems as basis for distinct, non-cooperative se
that provided marginally more functionality than broadcast television.

I participated in the development of the Ultimedia Server, an early product for Inte
video streaming that was withdrawn soon after or even before their releases. While my in
with video streaming remained, the following projects in which I was involved, such as
bally Accessible Services (GLASS), Global Business Environment (Globe) and the EU-s
sored project Hypermedia News-on-Demand (HyNoDe), aimed at the multimedia se
architectures that took video streaming as granted for a service. Personally, my op
remained that research in wide-area multimedia distribution has not been resolved in
projects. Related research in the VoD area tended to focus on optimizing single aspects
scheduling, disk scheduling, local quality-of-service guarantees, network quality-of-se
guarantees, etc.), but products need to take complete system applicability into account
not see products that even considered large-scale delivery systems, except for proprieta
tribution systems. For the large-scale distribution of multimedia content in wide-area netw
for commercial use, the requirements are not fulfilled by any of the existing approaches
commercial exploitation, the per-stream bandwidth of the in-house distribution systems w
be required for an attractive quality of the continuous media content. Maintenance of the
tem must be reasonable, which prevents central administration of a truly large system
necessity of quick expansion is another factor that inhibits central controls, since uninh
growth of the system is much more realistic with a single, central control. The Internet, o
contrary, has demonstrated the benefits of decentralized organization for a continuous
tion on a wide scale with its rapid growth. Furthermore, stable access to the content of
vider must be guaranteed, which implies independence from a central location and fr
single network. I decided that a design needs not to consider parts, but a complete s
– 1 –
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which must be economical, highly scalable, and without the need of a central manage
entity.

With the expansion of the Internet, a quickly growing number of low-quality video clips
offered to the public, while high-quality VoD is only achieved in tightly controlled in-hou
networks (currently called Intranets). The most prevalent software provider and integrat
low quality video-on-demand in the Internet is currently Real Networks, which has starte
develop video proxy caches for live transmissions. VoD providers for the Intranet are typi
offering a distribution architecture as well. In all of these cases, architectures and implem
tions are proprietary and, typically, centrally managed. At this time, video clips for Real
work’s players and for Apple’s Quicktime are the most frequently found formats on the w
which marks probably the end of the competition in the low bit-rate video market. In con
to typical web content such as text and graphics, these approaches require streaming fr
original server or manual replication to and retrieval from secondary sites. Other content
quently stored in proxy caches which reduces latency that is experienced by the end-us
unloads wide-area networks. Because of the size of video content, especially when high
ity movies are concerned rather than the short clips that are distributed today, caching me
even more relevant reduction in the required bandwidth. Due to the decentralized organi
of the Internet and its success, as well as the hardly regulated expansion of Internet se
such as the web, this distribution infrastructure has demonstrated its scalability. This
important incentive for the design of a VoD architecture in a similarly decentralized mann

To implement such an administrative approach, it is to understand which networking i
structure is applicable to achieve this. The introduction of new functions in the Interne
been notoriously troublesome: particularly I have been able to observe rather closely th
ure of ST-II (resource-reserving Stream Protocol), of XTP (eXpress Transfer Protocol), th
ficulties of IPv6 deployment in spite of its important functional upgrades, and of RS
(ReSerVation Protocol). All of these approaches suffer from the problem that their su
depends on pervasive infrastructure modifications in all parts of the Internet. My conclus
that backward compatibility in the networking infrastructure and, if anyhow possible, in
end systems must be maintained. I assume that servers do not need backward comp
like this since they are most probably installed as dedicated machines for the distributio
tem. In order to use what is available, RTP (Real-Time Transfer Protocol) is a possible ch
Because of this observation, I concluded that RTP-compliance was required.

1.1 Goals of this Thesis

The main goal of this thesis is to investigate the requirements and the options for a com
cation architecture that supports wide-area video distribution without central control. Alth
this is related to other issues, such as storage or management systems, this work focuse
influence of decisions in the communication system.

Specifically, the thesis aims at the development of decision mechanisms for distributio
caching of high-volume multimedia contents (video objects, with volumes of 1 GB and ab
and the removal of such objects from caches as they loose their value due to a reduced p
ity. Although it was initially assumed that these mechanisms would be similar for other h
volume content, the requirements of real-time streaming are playing a major role in the in
– 2 –
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gations of the thesis. Consumer quality is meant to imply a video quality comparable to
cassettes from movie rental stores, which provide a service that is similar to public VoD.

The investigation on the proposed distribution system includes user modeling, anal
considerations and the simulation of caching strategies. It includes also an implementat
an Internet protocol suite that can be used in several variations of the distribution system
of these elements need to be understood individually, as well as in their interaction, to id
the differences of video distribution from other distribution systems. Examples of such d
ences are the relatively small number of different items that are accessed in comparison
number of expected requests, or the slow popularity change that is observed with movie
The connections to other aspects of the system are made as well. This includes netw
QoS, as well as an efficient interaction with a cache servers’ storage subsystem. Cha
addresses mechanisms that will support quality of service guarantees for the delivery of
streams, when they are implemented in a distribution system.

While watermarking and encryption have found wide-spread acceptance to solve cop
issues in access to multimedia databases, research is still going on intensely. Since de
ized systems, which include those that are based on untrusted caches are rarely even ad
up to now, a new approach has been developed. This may seem rather uncorrelated w
other parts of the work. For a consistent proposition of a decentralized system, how
addressing the copyright issue is absolutely necessary.

1.2 Unaddressed Related Issues

With the focus on the data communication in the envisioned scenario, several other aspec
are concerned by wide-area video distribution are not investigated.

Information retrieval is a topic with close relation to distributed video servers research
they are not addressed in this thesis. While the research of multimedia data distributio
originates in this area is consistent with the communication-oriented view, a lot of the info
tion retrieval-oriented work is aimed at efficient location, retrieval, or indexing ([CAA93
These are considered orthogonal to the issues addressed here. The long-distance acce
relevant tools and information to handle database-specific problems should be addres
investigating the dissemination of structured information. The specific problem of this the
concerned with the large volume streaming that is required for true VoD.

This thesis does not deal with charging and billing issues, except for providing an app
to enforce a reporting of content retrieval actions to content providers. Considering the n
of commercial multimedia-on-demand, a variety of policies ranging from subscription to
per-byte may be applicable for content providers. Network providers need to improve
infrastructure with the growing resource requirements, which generates costs that are
more difficult to assign to individual customers. [KSSW00] addresses charging at the ne
level, which may lead to a solution for this issue. The goals of this thesis, which assum
reliance on currently available Internet technologies, are not met by research in the ch
area yet, since the deployment of the necessary infrastructure will not take place in the
future.

This thesis does not deal with the synchronization of multiple continuous media str
that are part of a single multimedia presentation, either. Given the approaches guarantee
– 3 –
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tioned in Chapter 4, sufficient synchronization work has been presented in the past to allo
the synchronization of continuous media streams under well-known conditions (e.g. [JG
The thesis takes the potential availability into account and the presented decision wi
become invalid in such an environment.

1.3 Structural Overview

Chapter 2 addresses existing work in the area of video servers and distribution of co
among video server. In order to provide an insight into video servers, the most relevant v
on-demand architectures are presented, and approaches to video server design are cl
The chapter presents also an analysis of existing caching strategies in various computer
fields.

Chapter 3 discusses distribution mechanisms that have been developed for optimized
ery of on-demand video from single server systems. Especially the patching/stream ta
approach is investigated more closely, extended and applied to distribution hierarchies o
tiple servers. The various approaches are compared with each other.

Chapter 4 presents the requirements that are imposed on the communication mechan
distribution systems in general; it explains in more detail the need for a reliable multicast
tocol and the requirements of protocols that are intended to operate in conjunction with
ing. A protocol suite is developed and proposed as a generic solution.

Chapter 5 approaches copyright protection arguments that are presented against the a
bility of wide-area video-on-demand. On the basis of earlier work, a new architec
approach for the detection of copyright violations is presented.

Chapter 6 presents the basis of the model that is used for the analysis and simulation
study. The basis of this information is, naturally, incomplete, since no distribution system
the expected qualities has been installed yet. This chapter validates the decisions being

Chapter 7 investigates the effects of video caching in a variety of ways, and draws co
sions for real-world applications of decentralized caching approaches.

Chapter 8 concludes the study with an evaluation and integration of the investigate
ments.
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2. Existing Work
Large scale video-on-demand (VoD) systems require the arrangement of the servers tha
the video retrieval and playback services in a distributed system in order to support a
number of concurrent streams. The approaches to create such an infrastructure rang
completely centralized systems that use dedicated hardware at the network layer withou
mediate data storage to completely decentralized systems that replicate all content to
that are close to the customer.

Since this thesis is intended to present the missing links for a complete, end-to-end d
tralized video distribution system, an overview of these existing approaches from the g
architecture to the existing performance tuning options is presented in this chapter. The c
focuses on the existing work in video stream delivery and not on management or applica
although other aspects like management and security are equally important to the functio
of a complete system, efficient video stream delivery is at the core of distributed video
demand and, of course, our work on servers and protocols is the origin of the thesis.

The chapter starts with an overview of video distribution approaches, including the impo
standards of the Digital Video Broadcasting (DVB) project, which is growing but which d
not support true video-on-demand applications yet. This presentation of architectures
lowed by a general classification of video server designs, since the designs are typically
enced by the particular origins and philosophies of video server designer. Based on
existing video server work is classified by this model in the following section. Several opt
for scaling of the delivery capabilities in such servers to handle high-volume continuous m
streams are discussed after this. Finally, caching in particular is discussed with respec
use in video distribution systems.

2.1 Digital Video Distribution Architectures

A variety of video distribution architectures exists and has been implemented so far. The
generic distinction is probably between standardized architectures and proprietary arc
tures. The most widely spread standardized architecture for video delivery is the result
DVB project. Although not suited for true video-on-demand up to now, DVB standards h
been adopted by several countries, and the standards are continuously extended to ful
and upcoming requirements. New video-on-demand aspects have recently been adopte
the Digital Audio-Visual Council (DAVIC). It has been founded to develop specifications
allow interoperability between many providers of building blocks for the provision of gen
interactive services. Although no DAVIC-compliant systems exist, many components
already built to have DAVIC-compliant interfaces.

The number of proprietary systems is constantly changing. At the time of this writing
most important system is the Real System by Real Networks, Inc., which has bought a
number of its competitors. Its transport system and codecs are largely based on researc
of the recent years. Their approach is largely oriented at that of the web, and new develop
make it rather similar to the approach proposed in this thesis.
– 5 –
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2.1.1 Digital Video Broadcast

The Digital Video Broadcasting Project was founded in 1993 as the result of the work o
European Launching Group, which brought together broadcasters, consumer electronics
facturers and regulatory bodies to prepare the development of digital terrestrial TV in Eu
The foundation of DVB sped up developments towards digital television that were alr
going on, such as the development of HDTV (high definition television).

The DVB interests expanded to the satellite broadcast and cable areas, providing a ba
a unified development in all relevant delivery techniques. In time, the latter areas becom
better known aspects of the DVB works because the problems to be solved were, on th
hand, easier to solve and, on the other hand, more pressingly required.

In 1997 the initial work of the DVB project was considered done, and the promotion o
results through standardization bodies (in addition to actual implementations) began -
results are now standardized by ETSI, the European Telecommunication Standardization
tute. In the meantime, DVB has attracted the interests of more than 30 countries world
and DVB-compliant equipment is widely available. DVB-compliant television services
already operational, mainly in Europe, East Asia and Australia ([h:Dvb98]).

Particular standards

The video and audio encoding of the DVB standards is no re-development; rather, MP
has been selected as a coding standard and has also been influenced by DVB requir
MPEG-2 leaves some flexibility for the application area to define, which allows other s
dards some configurations, such as the programme tables added by DVB. For the develo
of this content over a variety of media, the project created a set of standards:

• DVB-S is the specification of a satellite distribution system that can be used with any
rent or future transponder,

• DVB-C is a specification of cable distribution, also applicable to existing installations,
• DVB-T specifies a digital terrestrial system,
• DVB-MC/S specifies a microwave multi-point video distribution system,
• DVB-SI adds a service information system, which allows navigation information and is

rently used in installations for basic program information,
• DVB-CA is a common scrambling system,
• DVB-CI defines a common interface for conditional access, e.g. for use with SmartCa

The DVB Design Goals

• Openess

The standards developed by DVB are available to everybody world-wide for a nomina
from ETSI. To achieve not only freely available standards but also applied standards, the
opment is achieved by consensus in the individual working groups.

• Interoperability

Interoperability of several producers’ products has been demonstrated frequently by the
bers of DVB from the early phases of the project. On the coding level, the wide acceptan
– 6 –
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MPEG-2 for most high-quality systems is supportive of this goal; on the signalling level
work of DVB has achieved this goal.

• Flexibility

The flexibility of DVB is mainly due to the flexibility of MPEG-2: including support for hig
quality HDTV content, support for multiple standards such as PAL and NTSC, or the inclu
of content data (such as MHEG in the UK system).

• Market-Orientation

The participation of many vendors in DVB and the consideration of commercial requirem
and also the time scale of the development, which kept pace with the market develop
have made DVB successful so far.

Relevance to this thesis

From the introduction of the DVB project above, its focus on broadcasting is clear, so it i
of scope for the objectives of this thesis at this time. First of all, DVB is in place today, an
developing towards the support for interactive services.

The implementation of MHEG object carousels in the UK installation1 is one step in this
direction, the adoption of DAVIC back-channel mechanisms for a next step in bi-directi
communication is another. Several other requirements such as the support for multiple
vider-specific systems for conditional access exist in the specification and need to be c
ered as requirements also for a decentralized system. DVB systems show also the limits
system: e.g. in spite of the standardization work, the integration of multiple content provi
programs into a single MPEG-2 broadcast stream has proven to be a complex task due
centralized nature of the DVB-SI service specification.

2.1.2 Digital Audio-Visual Council

The Digital Audio-Visual Council (DAVIC) has been founded in 1994 as a non-profit Asso
tion to specify open interfaces and protocols for interactive digital audio-visual applica
and services, which means basically, video-on-demand and additional services.

After its foundation, DAVIC attracted immediately a large amount of interest from indu
and research; certainly this included a lot of amount of market-driven interest, since large
video-on-demand was expected to expand quickly at that time. DAVIC has worked by pub
ing calls for proposals in all technical and administrative areas that are affected by dev
ments in the interactive digital media market. These have been answered both by indust
research organizations. Starting from a course-grained architecture that assigns ref
points between service layers and between cooperating entities, DAVIC has tried to spec
details of all of these reference points. The basic philosophy, which has been adhered
large parts, is expressed by the motto “One functionality, one tool” ([h:Davi98]). It dema
that only a single standard or quasi-standard is chosen for each reference point.

1. http://www.bbc.co.uk/digital
– 7 –
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The DAVIC Design Goals

DAVIC was founded “with the aim of promoting the success of interactive digital audio-vis
applications and services by promulgating specifications of open interfaces and protoco
maximize interoperability, not only across geographical boundaries but also across d
applications, services and industries” ([h:Davi98]).

The aspects of work have an extremely wide range, starting with hardware interopera
and aimed at the interoperability of distributed applications. The reason for this breadth
goal of providing users with an integrated access to all information and communication
the goal that service providers can offer transport based on hardware by several com
hardware providers and software by software providers, and content by content provide
“support unrestricted production, flow and use of information”. The particular design g
have been defined to overcome the limitations of standardization:

• Not systems but tools

The DAVIC results are intended to be independent of specific systems; the approach for
pendence is the collection of target systems, their analysis, segregation into componen
the specification of these components. These are then considered the “tools” to build the
plete systems.

• Relocation of tools

The first design goal specifies components that are usable in multiple systems. However
the assumption that such components may solve tasks in several parts of a system, they
also be specified in such a way that they are relocatable inside one system.

• One functionality - one tool

Components should be unique, which is usually hard to achieve, especially since the gr
receiving contributions from many industrial contributors with commercial interests. Howe
the goal is important; it makes interoperability and the development of complete system
ier.

• Specify the minimum

The DAVIC specifications should not include requirements that are convenient rather
absolutely necessary. They aim at world-wide applicability in a large number of fields. By
mitting specialities of one group of participants into the specification, the attractivene
other groups may be reduced. So, like the previous goal, achievement of this goals
interoperability and completeness possible.

After the finalization of specification 1.4, ubiquitous television and the full integration of
based systems into the specifications are the next goals of DAVIC - the goal is to brin
advantages of multimedia in the Internet to the typical TV user, as well as to add the Inter
another distribution network to the set of specified networks such as satellite or cable.

Particular Standards

The goal of interoperability was approached by DAVIC by the definition of a “reference po
and interface template” (Figure 1), which is one of the most frequently used figures o
– 8 –
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specification. It is intended to all the partitioning of all DAVIC applications into service lay
that provide a standardized service and communicate by standardized interfaces.

In Figure 1, DAVIC intends to specify SAPs (service access points) between SLs (servic
ers), and peer-to-peer interfaces at each level. The peer-to-peer interfaces are specified
level (0-4), where B labels interfaces between content provider and service provider, C
interfaces between service provider and customer, and D labels logical interfaces betwee
tent provider and customer. Three XY.uu interfaces at each level indicate that the comm
tion between content provider and customer must also be supported by the service pr
The X3P interfaces specify the communication at the physical layer. To standardize all of
interfaces, the DAVIC 1.4 specification consists of 14 parts (Figure 2).

Relevance to this thesis

DAVIC works by refinement: starting with contributions of intended applications, a supers
functionalities was created. The motto “One functionality, one tool” was frequently obse
as an inhibiting factor for the completion of the whole from its items. The motto in itsel
plausible, as is the approach of calling on existing solutions for each reference point. But
this in independent working groups opens the door to unfruitful decisions, like extracting a
for one functionality from one self-contained toolset, and extracting another tool for ano
functionality from a competing self-contained toolset. Examples at the application level ar

SAP.P01

SAP.P12

SAP.P23

SL2: Session and Transport
Service Layer

SL1: Application
Service Layer

SL0: Principal
Service Layer

SL3: Network
Service Layer

SL2: Session and Transport
Service Layer

SL1: Application
Service Layer

SL0: Principal
Service Layer

SL3: Network
Service Layer

SAP.C01

SAP.C12

SAP.C23

SAP.01

SAP.12

SAP.23

B0

B1

B2

B3

C0

C1

C2

C3

B3P C3P

B0.uu

B1.uu

B2.uu

B3.uu

C0.uu

C1.uu

C2.uu

C3.uu

D0.uu

D1.uu

D2.uu

D3.uu

B CD

SL2: Session and Transport
Service Layer

SL1: Application
Service Layer

SL0: Principal
Service Layer

SL3: Network
Service Layer

Figure 1: DAVIC Reference Points and Interface Template

Content Provider Service Provider Customer
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difficult combinations of MHEG and Java, and the support of MPEG stills (mutually exclu
with MPEG video) and DAVIC’s own CLUT bitmap format.

Many companies have enhanced their existing products by DAVIC-compliant APIs, h
ever completely-compliant DAVIC systems are very rare; it is more likely that the DAV
work will be slowly assimilated by organizations such as DVB, which are slowly expand
into DAVIC’s target application area.

2.1.3 Real Networks

Real Networks’ RealSystem is the best known proprietary cross-platform video solution,
on top of UDP. It is composed of the server, RealServer, a originally platform-independen
ent application named RealPlayer (now only for Windows and Macintosh), and a set of p
etary encoding formats, collectively called RealMedia, as well as some other tools.
Networks has recently begun to offer RealProxy, a variation of the RealServer that allow
creation of an architecture which is very similar to the one that we are envisioning.

Target User Group

With its system, Real Networks aims at two markets:

• Initially, the target were web site owners in the Internet, who might be interested in pro
ing video clients on demand to their users. At first, this applied mainly to news agencie
subsequently many others sites make use of low quality streaming video clips for exte
advertisements.

• With the introduction of the G2 system, the company has entered (and largely taken
the in-house video distribution market.

The success of the system in the Internet was due to the fact that the Real System 5.0
RealVideo and RealVideo Fractal (originally ClearVideo from Iterated Systems, Inc.) in

Part 1: Description of Digital Audio-Visual Functionalities
Part 2: System Reference Models and Scenarios
Part 3: Service Provider System Architecture
Part 4: Delivery System Architecture and Interfaces
Part 5: Service Consumer System Architecture
Part 6: Management Architecture and Protocols
Part 7: High And Mid-Layer Protocols
Part 8: Lower-Layer Protocols and Physical Interfaces
Part 9: Information Representation
Part 10: Basic Security Tools
Part 11: Usage Information Protocols
Part 12: System Dynamics, Scenarios and Protocol Requirements
Part 13: Conformance and Interoperability
Part 14: Contours: Technology Domain

Figure 2: Parts of the DAVIC specification
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with bandwidths of 28.8 Kb/s and 56 Kb/s (modem speeds) and were very resistant to lo

The G2 system copies the ideas of predecessors and competitors to add applications
requested by the in-house market. These are largely based on standards and quasi-s
and allow the use of a large suite of third party tools that are marketed by Real Netw
together with their products. Multimedia presentations integrate video, audio and text i
synchronized presentation, where synchronization is specified by the W3C-driven Syn
nized Multimedia Integration Language (SMIL). XML-compliant new data types for stream
text (e.g. subtitling) and slide shows can be expected to work with many future tools. Add
ally, a variety of additional third party video codecs has been added to support higher vid
rates and to achieve better video quality at lower bit rates. This include high-quality MP
the Windows standard format AVI, Microsoft’s packaging format ASF, and VivoActive’s lo
end encoding. Additionally, the G2 system can be expected to scale a lot better to large
and world-wide institutions than earlier version due to the introduction of a proxy cache s
([h:Real99]).

Specific Techniques

The success of Real System 5.0 has been the free availability of the cross-platform play
content in this format, and of course its scalable delivery capabilities. These features ar
prietary concerning both the transport protocols and the encoding formats. The Real S
5.0 supported only Real Network’s own codecs: Real Video is a codec that works over lo
rates and is extremely loss-resistant. This was aimed at modem users and at the Intern
its frequent packet losses. Real Video Fractal is a fractal-based encoder, recommended f
bandwidth and frame rate applications where packet losses are expected to be low, such
porate intranets.2

Relevant information for video delivery over networks with quality of service guarantee
the network level can be extracted from the decisions that were made by Real Networks in
transition from the 5.0 system to the G2 system. Originally, Real had employed a codec w
implements a technique named “stream thinning”, which is frame dropping due to loss d
tion. In spite of their own or other loss-resistant codecs, they have been working on the
working protocols to achieve more flexibility for (application level) re-negotiation of
quality, and added a large number of encoding formats. They have made the observat
real-world applications with customer feedback rather than in experiments- that it is
appropriate to change an ongoing delivery from one encoding format to another rathe
relying on the loss resistance or scalable features of a codec. The basis for this is a prop
transport system named SureStream, which runs on top of UDP unicast or multicast an
vides feedback to the sender.

The other important new addition to the Real System suite is the Real Proxy, a proxy c
that works independently of central control. It can be installed by site administrators as a
server, or it can be configured in the Real Player preference settings by the user. It au
cates the user’s request to the server and determines bandwidth requirements. How

2. It is interesting to see that this information is released only after the acquisition of better codecs fro
other companies
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stores only live streams in expectation of additional viewer who may connect to the sam
stream later. Other content is only passed through.

Relevance to this Thesis

Real System as the most important video-on-demand system on the Internet has alway
an important VoD approach to observe - in spite of being used only for video clips. Sinc
introduction of the proxy server, the system is interesting to evaluate against the goals o
thesis. In some design decisions the importance of the Real System was the reason
choice of tools, e.g. without the effort of the Real Networks in standardizing RTSP, we w
probably not have adopted this for our protocol suite (Chapter 4) but would have followed
of the many straight-forward approaches of existing research prototypes or we pe
DAVIC’s proposal DSM-CC.

Design details that we have considered necessary have independently been impleme
this server, like reporting to the content provider’s server (Chapter 5). Other aspects sho
the Real system is a straight-forward extension of existing tools and techniques, e.g. it a
a true write-through approach, which performs much better than the store-and-for
approach of web proxies, but which implies redirection of all data streams from the ce
server through the proxy, which we consider a waste of bandwidth (Chapter 4).

2.2 Generic Videoserver Classification

Videoservers are a special variation of file servers with the requirement to deliver part of
their services within a certain time-frame. This basic requirement can be addressed a
than one of the hardware and software levels which comprise a media server. Consequen
range of research issues that contribute to media server design is wide. While many re
groups deal with multimedia servers as a database issue, this chapter of the book conce
on multimedia servers’ content storage and movement and does not consider its manag

A basic, application-specific distinction is made in these design of such media servers
retrieval can either be controlled strictly by the client, which requests and sends pieces o
tent files, or a client can tune in to a server-controlled sending of data, which might have
initiated by that client. Figure 3 demonstrates the request/response behavior of
approaches.

d1d2d3d4d2d3d5

r6 r7 r8 r9 r10 r11 r12

d

r

Client
Server

Client
Server

Pull
Model

Push
Model

Figure 3: Pull and push server models
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A media server that is operated in the first mode is called apull server, a server that is operated
in the second mode is call apush server. Another, frequently used expression for the pu
server is the termdata pump, as this characterizes in a simple way its specialization in retri
ing data from disk and delivering it to the network efficiently. Pull servers are surely the m
appropriate choice for editing multimedia content in a LAN environment: linear retrieval is
quent but not the rule, pieces of content are rearranged, temporal and spatial cross-conn
are introduced. Push servers are the obvious choice for broadcast or multicast distribu
content over wide areas, with no or infrequent user interaction. Applications that are n
clear-cut in there requirements may be solvable with either of the two approaches.

Pull and push servers are often considered competing concepts. Media server imple
tions, however, show that these worlds are not far apart from each other because major p
a server can be operated in modes that can be used in pull as well as push mode. So-callPlay
listsmix these two modes and are one real-world solution to existing application requirem
Suchplay lists are client-defined lists that refer to pieces of content that are stored on
server; the pieces indicated by play lists are supposed to be sent to the client in a seq
[RFC2326]. In the following, we do not separate these two approaches any more.

Media servers are responsible for the
timely delivery of content to an end-sys-
tem. To achieve this goal, each component
of the media server must conform to the
bounds of time and space to fulfil its tasks.
This attracts the research in a variety of
areas: disk layout strategies, disk schedul-
ing, file systems, data placement, memory
management or CPU scheduling. Figure 4
shows the order in which media server
components are involved in delivering the
content. Some of the tasks that are sepa-
rated in that figure are historically imple-
mented in a single system component.

The network attachmentis typically a
network adapter or a similar device that
connects the media server to the custom-
ers. The content directory is the entity
responsible for verifying whether content
is available on the media server and
whether the requesting client is allowed to access the data. Thememory managementis a sepa-
rate entity because although a typical content file of multimedia applications is too large
kept in the main memory for a long time, the caching of content data in main mem
improves the performance considerably for some applications. Thefile systemhandles all
information concerning the organization of the content on the media server. This includes
issues as the assignment of sufficient storage space during the upload phase, proba
transparent segmentation of the content file, the consistency of the data on disk, and th

Figure 4: Media server architecture
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tion of the elements of a segmented content file during retrieval operations. Thestorage man-
agementis the abstraction of driver implementations that communicate directly with the
controller. The storage management is concerned with disk scheduling policies and the
of files. Thedisk controllerhandles the access to data on thestorage device. Research on the
disk controller level includes the increase of head movement speed, I/O bandwidth, the l
and smallest units that can be read at a time and the granularity of addressing.

Of course, optimizing one of the components is not sufficient. The components must
erate correctly even when the system grows. Such a growth means that the system or s
its components will be replaced or extended. In many cases an extensions means that a
distributed onto multiple components, probably onto heterogeneous components, and
may become necessary to replicate part of the data to access it from all components of t
tributed system. [TKS94] provides a formalization of the options for distributing parts
video server. This formalization deviates from the reality with the generalization of the co
directory’s position in a distributed system. In a typical video server, the content direc
should always be complete and consistent, in order to answer requests correctly. Figure
onstrates the two alternative approaches to generalizing component distribution while a c
tent content directory is maintained. Figure 5 (a) uses an internal content directory whic

consistency reasons, can exist only once per media server. However, although the c
directory appears consistent to all other components, it may still be distributed internally
achieve the appearance of a single component by presenting the same interface on all n
the media server. Figure 5 (b) shows all options for distributing components when the app
of an external content directory is adopted. A client of such a system contacts the externa
tent server first to identify itself and to issue the request. After that initial request, two alte
tives for proceeding with the retrieval operation are possible. If the response of the co
server is returned to the client and the client is responsible for issuing the actual reque

Figure 5: Media server’s arrangement options

storage

storage

file system

disk

memory

mgmt.

mgmt.

controller

network
attachment

(b) external content directory(a) internal content directory
device

content directory
– 14 –



cause
erver
it can
Figure
must
r each

object
pplied
es to

ting a
ginal

eces-
cases,
ssible

bound

ther to
for

gen-
data in another call (Figure 6 (a)), additional security mechanisms must be applied be
authentication of the client is checked by the content server. Alternatively, the content s
can accept all requests directed to the media server, but instead of answering itself,
immediately order the appropriate nodes of the media server to deliver the content data (
6 (b)). This approach is restricted because it requires one of two things: either the client
be able to receive the content data from a different server than the target of its request, o
server node must deliver the content using the address of the content server.

2.3 Caching Strategies

A caching strategy is the chosen approach of a system for the decision whether an
should be kept in a certain cache or whether it should be removed. Caching has been a
widely throughout the computer systems development, ranging from CPU’s on-chip cach
the caches of distributed file systems and the web.

The primary task of caches is to decrease the latency in accessing objects by elimina
more time- or resource-consuming communication of the accessing entity with the ori
location of the object.

Available cache space is typically smaller than original space. This is often, but not n
sarily, based on a higher price of the caching space w.r.t. to the original space. In some
other reasons prevent the work from taking place exclusively on the more easily acce
storage. E.g. in case of the AFS, operations such as synchronization and persistence are
to the original storage system, while other operations are not restricted in such a way.

2.3.1 Approaches to Distributed Caching

In wide-area distribution caches are frequently required to communicate among each o
fulfil a client request. The best-known example is the WWW, which is also a playground
the implementation of a variety of distribution system approaches for low-volume data. A
eral distinction of caching approaches into three kinds is possible:

• autonomous caching
• hierarchical caching
• cooperative caching

Figure 6: External content retrieval options
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These kinds are distinct from each other concerning the co-ordination effort that is necess
implement the overall distribution system, as well as the reliability of the system.

Autonomous Caching

Autonomous caching strategies are the easiest to
implement since they do not require any communica-
tion with other caches. They are extremely resistant to
networking problems since each caching node can act
independently from the others.

This independence is also the reason for the major
drawback of autonomous caches. In a large system of
communicating caches, object requests among caches
have the effect that copies of the same object will often
be located in various caches between a client and the original location, while other objec
not cached at all.

Hierarchical Caching

Hierarchical caching strategies promote a centralized
approach with a single node that controls the location
and the movement of cached items. This approach is
frequently applied in environments with very limited
number of cache servers (e.g. a company-wide mail
system), or in systems where functionally identical
caches and hierarchically connected caches are
assigned complementary tasks (e.g. in 1st-3rd level
CPU caches). In wide-area distribution systems, this
approach has currently problems with scalability and
management. It is endangered by its reliance on a central coordinating instance that m
reachable within a limited time frame, and which must be kept aware of the status of all
nected caches. In the Internet, typical examples of such hierarchical systems are the so
push-channels [h:MaCa98] and web satellite distribution [RoBi98].

Co-operative Caching

Co-operative caching strategies are strategies that
include the information from a group of caches and
that make decisions for all members of the group based
on the collective information.

There is no established segmentation of co-opera-
tive strategies yet since there are too few and these are
too different to categorize. Furthermore, several co-
operative strategies are only word-of-mouth but still
undocumented in research papers.

Figure 7: Autonomous Caching

Figure 8: Hierarchical Caching

Figure 9: Co-operative Caching
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2.3.2 Building Blocks for Replacement Strategies

As a further analysis of caching approaches, a large number from areas such as web c
operation systems (paging and swapping) and distributed file systems was analyz
[KüGr98]. One of the main results of this work was the identification of the elementary pro
ties of cached objects that are taken into account in the removal decisions of caching
rithms. Since these properties are the building blocks for basic replacement strategies, th
explained here in detail, rather than listing a series of existing caching strategies.

Two aspects are considered separately in later sections to account for their impor
Cooperative caching (Section 2.3.3) is rarely found but has been shown to be very effici
wide-area distributed architectures in [FJL+97]. Conditional replacement (Section 2.3
rarely found as well, and existing approaches make rarely use of it: it allows a strate
decide whether an item is stored in addition to being forwarded to the requesting us
whether it is only forwarded but not cached. A typical use is the option for web proxy cach
ignore large items entirely to save cache space.

This chapter does not take into account thtat many features of a video distribution sy
simplify the conditions that the caching techniques encounter for video content. First o
video content is stored as write-once-read-many content (which does not apply e.g. to p
techniques), transfer times are extremely high, and the ratio of cache size and object
expected to be small (both in contrast to e.g. web content).

Fair Share

This is an approach rather than an attribute, which allocates part of the available space fo
object that is requested (in a “fair” way). Objects will typically not fit into the allocated sp
completely, but only the initial of most recently used part is stored.

Although other attributes can be used to distribute shares of different sizes based on
tional relevance information, the partial storage of objects is not considered in this th
Although several approaches for partial caching exist (REFS), I consider them inapplicab
distribution on a world-wide scale at this time. Although router providers are starting to im
ment resource management-supporting techniques such as Differentiated Se
([RFC2475]), I assume that the deployment of such techniques will take longer than the r
wide-area video-on-demand. Before their deployment, however, the completely cached o
will be preferrable over partially cached objects due to the higher average availability of
plete movies.

Age

Objects have an order of being loaded into the cache. A replacement strategy can make
this information when it looks for an object to be expunged from the cache. This attribute
object is used as a stand-alone criterion by one of the simplest replacement strategies
(first-in-first-out).

Number of Requests

This attribute of cached objects provides a means of evaluating an object’s popularity. S
is not tied with any concept of time in its basic form, this popularity can keep very old obj
– 17 –
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in the cache that have been entirely unpopular recently. Because of this problem, the un
fied use of this condition requires that request counters are reset. A typical application
use of request counters with a common reset interval (each day, each week) for all obje
the cache.

Aging

Aging is not an attribute in itself, but an application-dependent technique that mod
attributes (e.g. the number of requests). The techniques are used to give younger req
higher relevance for removal decisions than older requests. Consequently, a removal s
that applies aging can adapt to changes in objects’ popularity.

Intervals

Intervals are used to implement request histories for items that is less complex than
Rather than computing weights for consecutive requests, measured attributes are collec
the time of an interval and than simply discarded. This prevents errors that may otherwis
sist in the decision-making process for a long time, but immediately after the clearing o
attribute cache, decisions are mainly random.

Time since Last Request

The time since last request can be used together with a simple sorting algorithm to identi
object that has been accessed most recently or least recently. By itself, it is used in the
(least-recently-used) strategy which is a frequently applied and simple, requires only very
storage space and computing power and yields not-too-bad results in many cases.

Size

Since the available space of a cache is always limited, it can be filled up with a small num
large objects. In many cases, this is less advantageous than the caching of a large num
small objects, which increases the average response time of all user requests. This is the
for web cache administrators to limit the size of objects that are cache and to refuse the c
of large object altogether.

Cost of Transfer

This is a comparison of the costs for keeping an object in a cache with the costs for transf
an object from a different server on demand. The comparison is of major importance in
tions where objects are requested from original servers with differing access costs. In th
ple case, transfer costs are measured in transfer time, but in other situations, there m
charges for using a link.

Cost of Transfer and Storage

This is a more complex variation of the cost for transfer, where keeping an object in the c
may be generate costs, e.g. due to charges of the copyright holder for storing a copy
object locally, or charges of a storage maintainer for renting storage space.
– 18 –
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Bandwidth Usage

The variations of bandwidth of links among caches are a relevant part of decisions in rep
objects.

Cache Cleaning

If caches are cleaned regularly, the time that unpopular data can remain in the cache has
limit. On the other hand, popular data is removed from the cache as well and has
retrieved. It may have some validity with co-operative caches that hold object replica.

Priorities

Priorities can be used to move objects through a distribution system quickly if populari
relevance can be predicted. This is the case for heavily advertised videos that are supp
be available to all users at a certain time. In case of large objects, large object transfer
and short popularity cycles3, priorities may be used to keep objects explicitly through non-po
ular times of a cycle.

2.3.3 Co-operative Caching

Hint-based Caching

Co-operative caches can exchange information with other caches in a group. These hi
used by a cache that experiences a cache miss to find objects in caches that are close
and potentially closer than any server between the cache and the origin of the requested
The removal decisions remain the same as before for each cache. Tewari has demonstra
this approach can be very efficient for wide-area distribution of web content, even web co
of a kind that includes video clips ([FJL+97]).

Hint-based Push-Caching

Push-caching is an ‘in’ word for pre-distribution of objects. It is an extension of hint-ba
caching that makes use of the requests that were experienced by multiple caches colle
Based on this information, the objects are distributed to caches in a distribution hier
according to their overall hit rates. However, this approach is concerned with distribu
mechanisms only.

Broad-/Multicast Push Cashing

The multicast variation of the push caching approach assumes that a sender at the core o
tribution structure (core server) decides which data is most relevant for the caches in the h
chical distribution system. One advantage of the approach is that the core server can
request data from a large number of caches and predict future developments more re
Another are the potential bandwidth savings due to the early presence of content with

3. It is conceivable that caches and bandwidth are too small for a full cache replacement during one cy
Assume children’s programs should be kept in a tiny cache for the following day.
– 19 –
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popularity, and the ability to perform bulk transmission at a predefined throughput, w
allows a better prediction of network allocation. ([RoBi98]).

However, there are several problems to this approach as well, if it is not applied on
caches with large disks and a fallback connection to the Internet. Since the hierarchy is s
two-step (core server and cache), server downtime is fatal for the system; the predicte
work allocation will probably not allow the retransmission of content that could not be tr
mitted during the failure.

If cache sizes are heterogeneous and the caches are not extremely large with respec
number and size of the stored items, the replacement strategy is missing entirely fro
approach. Since cache servers are unaware of global hit rates for objects (and do not
hints from the core server), they must remove objects from the cache based on their own
egy. However, popularity variations for small user populations can vary widely from the a
age popularity that is experienced by the core server.

2.3.4 Conditional and Partial Caching

Unconditional Overwrite

The unconditional overwrite strategies are simpler than conditional overwrite strategies
an object that is requested from the cache is always delivered, and if it is not stored in the
yet, it will be stored due to the answered request. Replacement decisions do not have
any properties of the newly inserted object into account but they can decide that an ob
removed from the cache because of a cached object’s attributes.

Conditional Overwrite

The conditional overwrite strategies are more complex than unconditional strategies sinc
take attributes of a candidate object that is requested into account, and have to comp
value of this object with the value of the objects that are already stored in the cache. The
culty is that very different attributes have to be assigned a value for this comparison.

The historical uses of caching are characterized by the necessity for downloading an
completely into the cache before delivery to the requesting user. There are several dev
from the store-and-forward approach.

Cache Windows

Continuous media objects can make use of caching to reduce access latency and to incre
output bandwidth. This has been used as a design feature for various video servers with
archical structure ([Lamp98]). These designs assume that main memory operates as a ca
disks, and that disks operate as caches for third level memory such as tapes or CD-Roms
of these cases, delay variations (jitter) between two hierarchy levels is limited and predic
and caching only parts of the object is kept in the cache memory.

With this scheme, a small access latency is supported by always keeping the initial p
the object in the faster cache. The output bandwidth is increased by serving potentially
clients concurrently from the cached portion of the object than can be supported by the or
medium without replication.
– 20 –
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2.4 Increasing Server Performance

This section deals with means for increasing the performance of video servers. The p
mance aspects have been investigated to understand the service that can be expected
server in a video distribution system, as well as implications for the interoperability of se
with the proposed distribution mechanisms. The issues of real-time retrieval from disk
multimedia streaming have been explained in [GeCh92]. A performance increase of the s
themselves beyond single file retrieval optimization can be achieved by replication of hard
resources and content, or by appropriate assignment of the content to hardware resource
tent replication is a means to answer two issues at the storage management level: to gu
availability in case of disk or machine failures, and to overcome limits in the number of
current accesses to individual titles due to throughput limitations of the hardware.

Static replication

The simplest approach to replication that can be taken is the explicit duplication of co
files, by storing the file on multiple machines and providing the user with a choice of ac
points. This is frequently done in the Internet today: the content provider stores copies
original version up to date on servers close to the user. Using the more elaborate optio
content is duplicated manually, and an application provides alternating copies of the file
the same name. Automatic replication of the relatively small and frequently accessed rea
system files for load balancing among file servers has been proposed in [SKK+90]. A
placement policy that uses estimated load information for the placement of video obje
proposed in [DaSi95b]. This static placement policy is complementary to the proposed re
tion, as it reduces, but cannot eliminate, dynamic imbalances.

Dynamic Segment Replication

Dynamic segment replication as it is introduced in [DKS95] is designed for content whic
accessed read-only and which can be split into equally-sized segments of a size that is
niently handled by the file system. Fixing segment sizes as well as choosing segments t
large in comparison to a disk block are decisions that are made to keep the implemen
overhead low. Since continuous media data is delivered in linear order, a load increas
specific segment can be used as a trigger to replicate this segment and all following seg
to other disks. Such segments are considered temporary segments in contrast to the o
segments, which are permanent segments. One of the major advantages of this replicati
icy is that it takes not only the request frequency of individual movies into account. Rather
this, the load of the disk is also considered. Specifically, the decision is made in the follo
way: each diskx has a pre-specified threshold for the number of concurrent read requesBx
that must be exceeded by the sum of all segments’ read operations in the current read c
the disk (where ‘cycle’ means the playout time of one segment) as well as by next read c
in order to initiate the replication algorithm.

To simplify the calculation, the read requests are considered uniformly distributed ov
replicas rather than taking requests to other segments on the same disk into account.
way, the future load int cycles for thei-th segment is predicted asni-t/ri whereni-1 is the num-
ber of viewers of segmenti-t andri is the number of current replicas of the segment. For
– 21 –
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segmentsj (j<t ), it is assumed that the current arrival raten1/ri will be maintained in the future.
If the sum of the expected load for all segments on a disk exceedsBx, the replication is trig-
gered. Then, the algorithm must identify a segment for replication. Since the approach
cates segments only when they are retrieved from disk because of a client request, in or
to add additional load, replication can start only when a stream starts reading a new seg
Hence, if the disk load exceedsBx at a segment boundary crossing, we must decide wheth
is desirable to replicate this segment. The segment is replicated only if the replication o
segment has the highest estimated payoff among all the segments on the disk. If the gain
licating a different segment is considerable, a boundary crossing to that segment is aw
The estimated payoffpi is computed as

where w is a weighting factor. w can be chosen big to put a stronger weight on long-term
dictions; this is a good selection when the load on individual segments stays similar for a
tively long time. If the load on segments is fluctuating strongly, the expectation of fu
behavior is unreliable and should have less relevance, expressed by a lower weight w.

Threshold-Based Dynamic Replication

The threshold-based dynamic replication introduced in [LLG98] considers whole mo
rather than movie segments, and it takes all disks of the system into account to dete
whether a movie should be replicated. This approach accounts for the possibility that the
‘disk’ does not mean a single physical disk but a logical disk. For instance, such a logica
may be an array of physical disks with a single representation to the storage managemen
it is assumed that the media server is large and consists of many such logical disks. The s
capacity in number of concurrent streams of such a diskx is calledBx, the average service
capacity of all disks is called .

A replica of a movie is assumed to be stored completely on one of these disks. For
movie i of lengthmi, a probability of being selected in a new requestPi as well as a reques
arrival rateλ must be computed from earlier requests. The replication thresholdTi is than com-
puted as , whereh a constant value to limit the probability of replica
tion. For each diskx, the measured current loadLx is taken into account to compute the curre
available service capacityAi for serving videoi by calculating

whereRi is the set of disks that carry replicas ofi. If Ai<Ti, a replication of moviei is triggered.
Similarly, [LLG98] proposes a decision for discarding replications when the number of
current requestsnix on a moviei at diskx decreases. The following condition is checked befo
a replica is removed:

pi
1
r i
---- 1

r i 1+
-------------– 
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This inequality integrates two important conditions. The inequality

implies that the replication is not triggered again immediately after a de-replication, and

guarantees that all streams on diskx can be served from the remaining replicas.D is an
additional threshold to reduce the probability of an oscillation between replication and de
lication further.

The approach includes also the proposal to replicate a movie from the least loaded disk
destination disk because an overhead may be induced by an additional read operation
source disk. For the selection of the destination disk out of the set of disks that do not ye
a replica of the movie in question, multiple approaches are considered. The most comple
takes the number of current streams into account, but assumes that all ongoing replicatio
already finished and the streams are distributed onto the disks as if the replicas were a
active. For the replication itself, various policies are proposed.

Injected Sequential Replicationadds additional read load to one disk because it behaves
an additional client, by copying the movie at the normal play rate from the source disk t
target disk.

Piggybacked Sequential Replicationis identical to the replication used in the Dynamic Se
ment Replication: the movie is written to the destination disk while it is delivered to one c
from the same memory buffer. Since this scheme makes replication decisions for a m
always during admission control for new clients, this does not add complexity to identify
source copy of the operation. However, the copy operation is affected when VCR operatio
the movie are performed.

Injected Parallel Replicationuse a multiple of the normal data rate of the movie to replic
the movie faster from the source disk to the destination disk. In order not to inhibit admis
of new customers, this multiple of the normal data rate is limited.

Piggybacked Parallel Replicationcopies at the normal rate of the movie, but not only fro
the position of the newly admitted client. Instead, later parts of the movie are copied a
same time from the buffers which serve clients that are already viewing the movie. Obvio
this approach needs unusual low level support because data is written in parallel to dif
positions in a not-yet complete file.

Piggybacked and Injected Parallel Replicationcombines the other parallel replicatio
approaches to replicate parts by the injected approach of the movie that would have to b
ied late in a piggybacked parallel replication mode because no client is expected to view
parts in the near future.

Interval Caching Policy

[DaSi95b] introduces partial replication of multimedia files for load-balancing in multime
systems. It is based on the observation that if there were a number of consecutive reque

Ai Bx Lx–
x Ri∈

∑ By Ly–( )
y Ri \x∈
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the same video, and if the blocks read in by the first request were copied to another d
would be possible to switch the following requests to the partial replica just created.

Generalized Interval Caching Policy

The Interval Caching Policy, proposed in [DaSi95b], exploits the movement of data thr
the main memory of a video server by keeping the data of such streams in memory, whi
followed temporarily close by another stream of the same object. This policy is refine
[DaSi95] to take into account that the interval caching policy does not handle short files a
priately when the media server is handling a mixed workload rather than a videos.

Random Duplicated Assignment

Random Duplicated Assignment ([Kor97]) is a technique that assumes large scale serv
its basic application, it does not take different popularities into account. The basis assum
of the technique is that any non-randomized assignment of variable bit-rate content to
cated disks will result either in loss of disk space (by applying an equal time block appro
or in performance reduction. Furthermore, a generic workload is assumed, which could
in unexpected hot spots. The approach uses all available disks fairly by distributing eq
sized blocks of the content randomly, and by storing a second copy of each block on a dif
randomly chosen disk.

Thus, it is resistant to single disk crashes and can be extended to arbitrary safety
allows simple crash recovery and addition of disks. It does not degrade when disks have
ent features, either. While all of this seems applicable for a real-world, long-term scenari
specific approaches mentioned earlier could probably result in better performance for
cated systems.

2.5 Increasing Delivery Capacities

Besides the performance increase in single servers or server clusters that was presente
previous section, additional techniques make use of the specific user behavior and user p
tion in the on-demand delivery of video. The techniques below exploit limits in the user
ception of waiting time and display speed, and the possible acceptance of interrupts.

Batching

Batching is an approach introduced in [DSST94] to exploit the memory bandwidth and to
disk bandwidth in media servers by defining a temporal cycles called batching windows
requests that arrive within such a cycle are collected and, at the end of the cycle, all requ
the same content are serviced from the same file and buffer. This approach weakens
demand idea in comparison to the interval caching policy, but it recovers potentially
amounts of main memory because content can be discarded from the main memory im
ately after playout and it will be re-loaded only after the next cycle. [DSS96] modifies
approach towards dynamic batching, which services requests as soon as a stream b
available. Two selection policies, first come first serve (FCFS) and maximum queue le
(queue length is defined by the number of user who requested that file), are compare
FCFS is shown to be the better performing.
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Piggybacking

The aggregation of streams that deliver the same content in close sequence without the u
batching window was proposed by means of piggybacking ([GLM96]), i.e. one stream
content file that is shortly preceding another stream of the same file should be joined wi
later one. The general means to do this is an increase in the speed of the later stream a
decrease in the speed of the earlier stream until they join. Various strategies for joining
than a pair of streams are then investigated in detail in [GLM96].

Content Insertion

For the video-on-demand special case, [VeLi95] proposes the most radical extension o
scheme to date by offering content insertion to force larger numbers of streams into a time
dow which is small enough to allow the use of the piggybacking technique to join them in
single stream. Such inserted content from a content loop like an eternal advertisement s
from a continuous news show might be acceptable to the user to stay tuned. Alternatives
be a lengthening or shorting of introducing scenes of a movie. In [KVL97], it is then offe
that this technique can also be used for providing a just as pragmatic and radical solut
problems such as server overload or partial server failure by diverting users into an adv
ment loop or presenting other fill-in content until the problem can be fixed or until an aggr
tion with an action stream can be performed.

Stream Tapping/Patching

For the exploitation of multicast in true VoD systems, an idea to exploit multicast for
video-on-demand was presented in [CaLo97] under the name stream tapping in [HCS
patching. Since our attention was first drawn to [HCS98], the term patching is preferred in
thesis. The basic approach is the creation of a multicast group for the delivery of a
stream to a requesting end-user. If another user requests the same video shortly after the
this transmission, he starts storing the multicast transmission in a local cache immed
From the server, a unicast stream is then sent to this user containing the missing initial p
of the video, until the cached portion is reached. Then, the end-system uses its cache as
buffer.

This approach can be applied among servers, which distinguishes it from other variatio
the NVoD technique Pyramid Broadcasting ([AWY96]). It is important for the goals of t
thesis that this technique does not conflict with the use of cache servers but that the rea
cache server usage changes. The relevance of cache servers for the prevention of netwo
load is reduced, but their relevance for system stability and an acceptable packet loss ra
the end-user remains. For the same reasons, cache servers need to store most fre
requested movies even in this case.

In “Exploit Multicast for True Video-on-Demand Systems”, Hua et.al. argue for a cent
ized server in conjunction with their scheme and client-side buffering. Their argument
centralized approach is due to administrative difficulties of wide-area distributed architec
under central control. We agree with their assessment of administrative problems in wide
distributed systems under central control. However, central control is necessary only if
right problems can not be solved for distributed systems without central control. Sinc
– 25 –



ter 2
expect further work on copyright protection, and hope to give some inspiration with Chap
of this thesis, we discuss this technique in more detail in Chapter 3.
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3. Gleaning
The use of multicast with video-on-demand systems is only of limited use, since true vide
demand implies that a stream is delivered to a user personally and on request. Many
propose approaches based onstaggered broadcasting([DSST94]), the initial NVoD idea of
retransmitting a video over a fixed number of channels with equal time offsets. Refinem
that are based on client-side buffering arestream tapping([CaLo97]),pyramid broadcasting
([VI96]), permutation-based pyramid broadcasting([AWY96]), skyscraper broadcasting
([HS97]), dynamic skyscraper broadcasting([EV98]), harmonic broadcasting([JT97]), cau-
tious harmonic broadcasting([PCL98a]),polyharmonic broadcasting(PHB, [PCL98b]) and
transition patching ([CaHu99]).

Patching([HCS98]) was basically a re-invention ofstream tapping, but it introduced the
possibility that a movie is not transmitted at all unless a request to this movie has been
PHB with partial preloading, mayan temple broadcasting(both [PLM99]), new merging
schedules ([EVZ99]) forpiggybackingor dynamic broadcasting, catchingandselective catch-
ing (both [GZT99]) are variations that were presented only recently, all of which apply
loading of video parts into clients without demand. All of these techniques are based on

• a central server and broadcasting assumption
• controlled repetition of movies or movie segments (with the exception ofpatching)
• knowledge of movie popularities

Patchingis an on-demand ideas that sends additional streams only on request. Conseque
is harder to compute the best values for restart times and simplifications to internal resta
adequate.

Our own contributions were inspired by the goals of TVoD and the idea of using caches
are documented in ([GLZS99]) and ([GZL+00]). Most computations of this chapter are
sented in those papers. After an introduction of Patching which is a refinement of the ove
in the previous chapter, we present the TVoD optimization of patching in Section 3.2. We
that temporal distance between two multicast streams for one movie should not be deter
by a client policy or simulation. Rather, it can be calculated by the server on a per video
since the server is aware of the average request interarrival time for each video. Sin
model the request arrivals as a Poisson process, which is defined by a single variable tha
torically calledλ, we call this variation “λ Patching”. In the following section, the optimizatio
by recursive application of the patching concept is introduced as a means for achieving
tional server load reduction. We accept that some near video-on-demand-like traffic is g
ated with additional patch streams to achieve these additional gains. We call this optimiz
option “Multilevel Patching”.

Section 3.4 addresses two questions:

• whether the redundancy of cache-based distribution systems is too cost-intensive, an
• whether a combination of patching and caching is worth-while

It presents a favorable argument for the application of patching in a distribution hierarch
simple example distribution hierarchy is considered, which can be analyzed with com
knowledge of server and networking costs. When these costs are considered, a strong
– 27 –
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tion is achieved that patching and caching are worth-while models for a distribution sys
The chapter is concluded with a discussion of the implications of the presented techniqu
decentralized distribution systems that make use of caches.

3.1 Refined Description of Patching

For the exploitation of multicast in TVoD systems, Hua et.al. inventedpatching. The basic
approach, presented in [HCS98], is the creation of a multicast group for the delivery of a
stream to some requesting clients.

Subsequent requests in a temporal interval after each multicasted movie are not ser
transmitting the same movie again. Instead, the client is provided with sufficient informati
join the initial stream, and an additional patch stream for the missing initial portion of
movie. These subsequent clients provided with patch streams use local cyclic buffers to
play-out of received main multicast portion of the movie. If another client requests the s
video shortly after the start of this transmission, this client starts storing the multicast tran
sion in a local cache immediately. The server sends a unicast stream to this client cont
the missing initial portion of the video, until the cached portion is reached. Then, the c
uses its cache as a cyclic buffer.

Figure 10 tries to demonstrate the effects of patching at the client; in contrast to ty
ordering, the sequence of clients that request a movie from the server is ordered right-to-
order to maintain the a left-to-right representation for buffer consumption (“play-out”). In
figure, the 1. client arrives first and receives the stream M, which carries the movie se
tially, starting with the first byte. The white client buffer indicates that it remains comple
unused in this case. The 2. client arrives a bit later, joins the transmission of stream M to
client (to receive the later parts of the video), and receives an additional unicast patch s
P1 for the missing initial portion. The striped box indicates the amount of buffer space th
required to store those parts of the movie that are received from stream M. As soon as t
tial parts have been shown and P1 ends, the remaining part of the movie is shown fro
buffer, which will then act as a cyclic buffer for the remaining portion of the stream. T
length of the remaining portion is indicated by the black box. The arrival of the 3. client is
dled in the same way as the 2. client, except for the difference that the patch stream P2 d

Figure 10: Buffer Usage in patching
3. client

client bufferclient bufferclient buffer

2. client 1. client

play out

M - multicast streamP1 - patch stream

P2 - patch stream
server
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a larger part of the movie to the client than stream M. Because of this, there is no possibili
using the buffer as a cyclic buffer.

In the example above, it is assumed that a patch stream may be as long as a complete
In a realistic scenario, there is a maximum time after a full movie start, after which the
request is answered by repeating the complete movie multicast stream, instead of sendin
patches in parallel. [HCS98] presented two approaches for this, calledgreedy patchingand
grace patching. Greedy would buffer as much of the original movie as possible, allowing
patch stream length up to the complete length of the movie. Grace is an adaptable ap
that assumes a maximum buffer size at the client.

3.2 λ-Patching

The first Patching presentation gave the impression that enlarging buffers would always r
the required server bandwidth. However, the number of patch streams and thus, the num
potential concurrent streams, increases with a movie’s popularity, leading to an increased
ber of concurrent patch streams after a full stream has been started. Server load be
bursty. This implied to us that an optimal restart time must be related to the movie popul

To get an intuitive understanding of this thought, imagine a somewhat popular movie1

that is served to clients using patching. The size of the connected user community an
title’s popular result in an average request interarrival time that is very small compared t
movie title’s length. When a title is requested and the server decides to serve it as a full s
a multicast stream is initiated immediately. For several subsequent requests, patches
stream are delivered in addition to the multicast stream. But whenever a request for th
arrives at the server, it is still serving approximately half of the patch streams for the title. A
since patch streams can run as long as the size of a patching window, the server may s
some patches belonging to the previously started full stream which terminate insid
stream’s patching window. Visually, while new requests are served as patches for a full st
the average number of patches belonging to this full stream is growing linearly, when no
requests are accepted. the number of falling linearly with the same slope. Since pa
belonging to the previous full stream are leaving the system at the same rate that pa
belonging to the new full stream are started, the average number of patch streams is co
and depends on the patching window size and the request rate. Obviously, if the patchin
dow size is shrunk, the average number of patch stream in the system is reduced, reduc
server load as well. However, full streams must be started more frequently if the windo
shrunk, and the number of concurrently active full streams rises, increasing the server
This implies that the patching window size can be optimized depending on the life time
full stream and on the request frequency for a title.

Figure 11 illustrates the problem. The X-axis of the Figure 11 indicates the time that p
for the server. The Y-axis of the figure is the position in the movie M, from position 0 to
end position. This position is expressed in time. X- and Y-axes use the same scale in o
ures; thus the distance between the movie start and the position of a frame in a movie on

1. a very popular movie title is better served by a batching approach, and an unpopular title is better ser
by unicast
– 29 –
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axis is identical to the distance between the start time of a movie and the display time o
frame on the X-axis, under the condition that the movie is streamed at normal display spe
the figure, the solid diagonal lines denote the progress of stream transmission for com
movies, the dotted diagonal lines denote the progress of patch streams. The vertical, num
vertical lines sample the number of concurrent streams at a given time. The fact that the
number of concurrent streams (4) is neither achieved with the largest nor with the sm
overlap of complete movie transmissions is meant to demonstrate the starting point of ou
mizations: the number of concurrent multicast and unicast streams has a non-trivial mi
value.

Our investigations, started not realizing the relationship with the skyscraper techn
([VI96], [AWY96], [HS97], [EV98], [JT97], [PCL98a], [PCL98b]) were first aimed at a
understanding of the traffic generated by movie delivery via Patching. Then, we have ana
the optimal server load based on the knowledge of request frequencies.

One of the important pre-conditions for this investigation is the assumption that the int
rival times of the user requests are Poisson-distributed. This is not necessarily correct.
ever, we argue that this simplification can be made because of the time intervals th
affected by this abstraction.

First of all, we assume that the server is the instance that decides when it is most effic
send a complete movie rather than a patch stream to a client. We call the time betwee
consecutive movies the patching window. The size of this window varies with respect to
ies popularities, and a correctly or incorrectly chosen patching window size affects the se
subsequent actions only until the movie transmission ends for the movie that is transmitte
lowing the patching window. The computation of the following window’s size can be m
independently from the previous. This means that a server must take only a few prec
hours into account for a window size decision.

We believe (but can not prove) that the user behavior in a true video-on-demand syst
this time scale appears random to an observing server and that movie’s popularities are
ing only gradually on this scale. On the other hand, we believe that there is change throu
the day, which implies that information about previous user hits preferences should n
taken into account by the server for more than a few window sizes (resp. hours). We igno
issue in computations on the basis that the server’s decisions that we propose can be
whenever a request for a video arrives, based on knowledge that has sufficient short-term
ity, e.g. for a few hours.

no overlap slight overlap high overlap

5 5 5 4
active streams

6 6
active streams

Figure 11: Hints that patching window size may have an optimum

time

position
in
movie

time time
active streams
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Given these conditions, it seems appropriate to keep only information about the intera
times for requests to each individual movie titles, and to make no assumptions about rel
between subsequent requests. To model such a condition, the Poisson distribution is ap
ate.

For our calculations, we call the average interarrival time of the Poisson-distributed arriva
a given movie title ; this time is also our value for the current popularity of
video (i.e. average interarrival times are observed by the server and assumed to be Po
Other symbols that are used in the following calculations can be found in Table 1.

We simplify the patching model by starting multicast streams in cycles of length∆M rather
than on-demand. This implies a near video-on-demand (NVoD) transmission model fo
multicast transmissions as in the skyscraper papers. It provides several convenient sim
tions to computations, e.g. that the expected value for the number of concurrent strea
time-independent and that the end times of patch streams are Poisson distributed.

The simplification has the negative effect that the resulting calculations over-estimat
necessary number of concurrent streams. In patching, a complete movie transmission is
only when the next user request arrives after a patching window; our model requires an i
diate transmission and in this way, requires a lengthening of each patch stream by an a
interarrival time. This over-estimation has an increasing effect with a growing interarrival
(i.e. with a decreasing popularity).

In the following, we want to optimize server load in terms of numbers of concurrently ac
streams under the given conditions.

3.2.1 Expected Patch Stream Length

We start with the computation of the patch stream length because the expected value
number of unicast streams that are started in each interval of length between two mu
stream starts is . In all subsequent considerations, we assume that is la
this is not the case, the simplification of using fixed restart times for the computations is
leading when in comparison to an implementation of patching without this simplificat

length of movie sec

time interval between multicast starts (also called patching
window size)

sec

expected time interval between video demands (unicast
starts), following the negative exponential distribution

sec

B buffer length at the client sec

CU cost of unicast stream at server EUR/sec

CM cost of multicast stream at server EUR/sec

SU unicast stream setup cost at server EUR

SM multicast stream setup cost at server EUR

Table 1: Terms and definitions of the calculations

F

∆M

∆U 1 λ⁄=

∆U 1 λ⁄=

∆M

∆M ∆U⁄ ∆M ∆U⁄
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Assuming that one full multicast stream starts at time 0, the length of each unicast transm
can be calculated as follows:

because as shown in Figure 12, the length is identical to the length of the missing par
movie. We compute the expected value of the patch stream length and find that it is

3.2.2 Expected Number of Active Patch Streams

The expected interarrival time of streams is . Examining the indicated line of patch st
end times in Figure 13, intuition demands that the average number of streams which ar
currently active is . The expected value of the number of streams that are co
rently active at a given timet is less intuitive (although the result is the same).

We examine the interval of possible starting times for streams that can still be active
given timet.

This interval is defined by two sub-intervals. One includes the streams that are started
same interval wheretn is that latest multicast stream starting time beforet and
still active at timet. The other includes the streams that have been started in the int

and that are still active at timet. In our model, no patch streams from earlie
patching windows can be active at timet because we assume a constant patching wind
length, and patch stream can never run longer than the length of one patch stream w
With earlier definitions, this provides the following time ranges from which starting pointsUt:
can still be relevant at timet

These intervals are always disjoint, and their combined length is

t∀ n∆M n 1+( )∆M, ):[∈ length t( ) t mod ∆M=

1 2⁄( )∆M

∆M 2∆M 3∆M 4∆M

∆M

0

0

Amount
of data

since stream
start / t

time / t

full stream

patch stream

Figure 12: Patching with Cyclic Restart

patch end times

∆U

∆M 2∆U( )⁄

tntn ∆M– tn ∆M+t
time

Figure 13: Expected start time intervals for active streams at time t

position
in video areas of

streams
possibly
active att

tn tn ∆M+, )[

tn ∆M– tn, )[

Ut 1 2⁄ ∆M⋅=
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Since the Poisson distribution defines that the expected number of arrivals in any inteT
is , this provides the expected number of active streams at timet, i.e., the number of
streams that are started inUt, which is . This results in equation (1), calculating th
expected number of unicast streams active for anyt,

equal to the average number of concurrent unicast streams.

3.2.3 Optimizing ∆M

Since all complete multicast streams have lengthF, multicast streams are
concurrently active at each time. Together with equation (1), we have the overall numb
concurrent streams,

By adding server stream maintenance costs and server stream setup costs for multicast a
cast streams, we get

the overall server streaming cost. We can now use the expected cost by computing an o
value for . It depends on the current popularity of the video, which is expresse

. We get

By neglecting setup costs and assuming , this can be simplified for an approx
tion of the optimal value of the client buffer’s size as a time . It depends on the popul
and on the length of a video :

(under the condition that the client can receive 2 concurrent streams).
We derive directly from given figures, so that a video server can recalculate

every given film or change in request rate or even bandwidth costs. This approach is mor
ily applied in the real-world than in simulations.

Ut

t tn ∆M–+

2
-------------------------- tn, 

 t tn+

2
------------ t, 

∪=

T ∆U⁄
Ut ∆U⁄

Nu t( )
∆M 2⁄

∆U
--------------

∆Mλ
2

-----------= =(1)

Nm t( ) F ∆M⁄=

N t( ) Nm t( ) Nu t( )+ F
∆M
-------

∆M

2∆U
----------+= =(2)

Costλ-patching

SM

∆M
-------

SU

∆U
------- CM+ +

F
∆M
-------⋅ CU

∆M

2∆U
----------⋅+=(3)

∆M

∆U 1 λ⁄=

0 δ
δ∆M
----------- Costλ-patching( )

SM C+
M

F

∆M
2

--------------------------–
CU

2∆U
----------+= =

∆M 2
SM CMF+

CU
-------------------------- ∆U⋅ ⋅=⇔

(4)

CM CU=
Bλ

Bλ ∆M 2 F ∆U⋅ ⋅ 2F
λ

-------= = =(5)

∆M ∆M
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Example

To demonstrate the use of these equations, consider the following example: let multica
unicast streaming costs be equal, multicast stream setup costs be (i.e., se
worth half a second of streaming) and unicast stream setup costs be . Let the fi
a popular movie of 4200 seconds with an average request interarrival time of 3 sec
results with equation (4) in an optimal temporal distance between multicast resta
about 159 seconds (equation (5) calculates the same). The server streaming cost for this
equivalent to about 53.11 concurrent streams (equation (3)), with multicast streams cost
alent to 26.3 concurrent unicast streams, including multicast setup costs.

3.2.4 Given Limits

There is obviously a lower limit to the frequency with which streams need to be started
under very high loads: since there is a limit to the user perception of lag in stream acquis
it is acceptable to delay the stream start for a few seconds without giving the user the im
sion of an NVoD system. This imposes a lower limit to reasonable values that we did
exploit in our calculations.

As every client eventually has to buffer of video, a centralized VoD system must requ
minimum client buffer size from the end systems. This minimum client buffer size is an u
bound to . This restriction does not apply in our target system which is based on c
without centralized control that store only complete movies. In conjunction with cache se
such buffering limits are not relevant when a caching strategy is applied that stores a
requested movies unconditionally. In conjunction with caching strategies that cache m
only under certain conditions, the problem applies also to cache-based distribution sy
since the cache servers must maintain a amount of buffer space for each title that
cached. Alternatively, the clients could be required to do so, but this approach will not be
sidered here.

3.3 Multilevel Patching

In this section we extend the patching algorithm by additional multicast patch streams.
extension of patching is called Multilevel Patching. It is demonstrated that the server loa
be traded for client network bandwidth.

A variety of schemes that are more difficult to evaluate can be imagined. We could also d
monic or binary approaches to the segmentation of streams into patches, or further opt
tion of non-consecutive portions of streams. All of these approaches tend to work primari
broadcast-like distribution, and waste bandwidth when they are applied to true vide
demand for infrequently requested titles without major changes.

Among the approaches that could be adapted are the stream merging approaches
allow transmission of movies at various speeds. Since our display quality is considered
this means that a stream slowdown is not possible, but that a speed increase is poss
implies also that the burstiness of the bandwidth at the server will increase. There is a po
for savings if patch streams can be joined with neighbor patch streams by increasing

CM 0.5sec⋅
CU 5sec⋅

∆U

∆M

∆M

∆U

∆M

∆M

∆M
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speed. In a real-world implementation this seems rather complex; we have not evaluate
option.

3.3.1 First Multicast Patch Stream

We assume that a client is able to receive up to three streams in parallel. Then, we exte
patching algorithm for the server by the rule: “in every interval
between the starts of two complete multicast streams multicast an additional patch stre

, and play it for a length of ”.
The extension requires the client to listen to a complete multicast stream, potentially

unicast patch and potentially one additional multicast patch. This increases peak receivin
on the client up to three concurrent streams, demanding for higher bandwidth between
and server and higher client computation power. The buffer requirements do not change,
received amount of data to be buffered is still a maximum , although eventually wr
concurrently in two portions.

Chosen Position of First Multicast Patch

Unicast patches deliver only the amount of data not available from the last multicast s
(including complete multicast streams and multicast patch streams). Their average leng
with that the average number of concurrent unicast streams is proportional to the gap be
multicast streams. We therefore start a multicast patch in the middle of two multicast st
starts to decrease the average required length of unicast patches.

With a multicast patch halfway in between two complete streams, unicast patches
patch a maximum gap of . In the same way as seen above, this gives us an ex
number of . The average number of concurrent unicast streams
an arbitrary interval with one multicast patch is halved.

Figure 14: Stream setup example with first multicast patch

tn ∆M+

tn

∆M
2

---------+

tn

tn

3∆M
2

------------+

∆M

Unicast
Patches

position
in video

time

Multicast
Patches

Complete
Multicast

Tn tn tn ∆M 2⁄+, )[=

tn ∆M 2⁄+ ∆M

∆M

∆M 2⁄
∆M 2⁄( )λ 2⁄ ∆M 4∆U⁄=
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There are two cases, depending on the position of the client’s request time in the in
between two complete multicast streams.

• If the client requests a video at a time in the first half of an interval between two c
plete multicast streams (Figure 15), it listens to the unicast patch stream and to the com
multicast stream, immediately playing the unicast. The multicast stream is buffered
played with a delay of .
These clients do not use the multicast patches the server provides.

• If the client requests a video at time in the second half of an interval between two c
plete multicast streams (Figure 16), it listens to the unicast patch stream, to the last
cast patch stream and to the last complete multicast stream. It immediately plays the u

tatn

tn

∆M

2
-------+

ta ta tn–( )+

ta tn–

position
in video

time

Figure 15: Request at timeta tn tn
∆M

2
--------+, 

∈

}

ta tn– complete

patch

parts of
streams
played by
client

multicast
streams

multicast
streams

ta

ta t– n

tb
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stream, the two multicast streams are buffered and played with a delay of
for the multicast patch , respectively, for the complete multicast.

Figure 6 shows that the multicast patch at eventually has to patch the video da
the interval with , which gives that the
latest video data possibly to be patched are at .

Thus, the multicast patch has to cover an interval of data to be patched of , b
twice as long as a unicast patch starting at the same time would have to be.

Evaluation of First Multicast Patch

With a fixed client buffer, but with of peak receiving load compared to original patch
we introduced multilevel patching with one intermediate multicast patch. With the halved
cast load and with one additional multicast patch of length starting every ,
required bandwidth cost at the server is

The gain over non-multilevel patching on the server is as below.

This will be a positive value for large . In our example, we get 27.4 multicast stre
and 13.25 unicast streams concurrently on the server.

Including the stream setup costs for multicast and unicast streams at the server, the c
multilevel patching is :

tb tn ∆M 2⁄+( )–
tb t– n

tb

tn tn

∆M

2
-------+

tb tn

∆M

2
-------+ 

 –

tb tn–

tb tb tn–( )+

tb tb tn

∆M

2
-------+ 

 – 
 +

position
in video

time

Figure 16: Request at timetb tn
∆M

2
--------+ tn ∆M+, 

 :∈
}

tb tn–

tn ∆M 2⁄+
tb tn ∆M 2⁄+( ) tb tn–,– )[ tb tn ∆M 2⁄+ tn ∆M+, )[∈

tn ∆M tn–+ ∆M=
0[ ∆M, )

3 2⁄

∆M ∆M 2⁄
CM

F
∆M
--------⋅ CM 1⋅ CU

∆M

4∆U
----------⋅+ +

CU

∆M

4∆U
---------- CM–⋅

∆M ∆U⁄

Cost1st  mc-patch
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∆M
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With equation (3), this is a gain of :

This again will be a positive value for large .

For our example above, equation (6) gets server costs forλ patching with a first multicast patch
as an equivalent to 40.89 concurrent streams, saving in this example an equivalent of mo
12 streams from non-multicast patching.

3.3.2 n-th Multicast Patch

To introduce the first multicast patch for multilevel patching, we had to extend the avai
maximum client bandwidth to streams, which has to be fully available durin
short time immediately after requests. But if clients can receive concurrent stream
can introduce multicast patch streams by applying the multicast patch recursively
resulting characteristics of multilevel patching with  multicast patches are:

• peak receiving load:
• a time interval of between multicasts, resulting in an average number of concu

unicast streams on the server of

• Server bandwidth cost of

• Server bandwidth and stream setup cost of

• With a gain over non-multicast patching of

Again, these formulae are valid only for large . Also, saved unicast bandwidth s
will be outweighed by additional expenses in multicast path tree setup and bandwidth.
we consider the equations, we get a theoretical optimum of savings over non-multicast

Costλ-patching Cost1st mc-patch–
SM

∆M
--------– CM– CU

∆M

4∆U
----------⋅+=(7)

∆M ∆U⁄

2 1+ 3=
W 3>

W 2–
n

W n 2+=
∆M 2⁄

∆M

2
n 1+ ∆U( )

-------------------------
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S F

∆M
-------- nCM+⋅ CU

∆M

2
n 1+ ∆U

--------------------⋅+
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n 1+( )SM

∆M
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SU

∆U
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∆M
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2
n 1+ ∆U
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The optimum for here is computed for a fixed , as for now we do not optimize the t
dimensional tupel .

The multilevel patching scheme could easily be extended to chose according to a c
buffer and available bandwidth, as existing streaming approaches like MPEG-4 ([ISO98])
port dynamic setup for multi-stream connections. This would allow for a scheme to indiv
ally set up multilevel-patching for each client, dynamically calculating the appropriate le
of patches.

Example

For our example movie above, equation (8) gives an advice to use the fourth (or fifth) mul
patch:

This would result in a multicast patch every 9.9 seconds (resp. 5 seconds). Using the
(fifth) multicast patch on our example, we get server streaming and stream setup costs e
lent to 32.4 (32.6) concurrent streams, which means further savings of 8.4 concurrent st
over first multicast patching. The video server with n-th multilevel patching in this theore
example could provide TVoD while being only about ten streams more expensive than N
at a granularity of 159 seconds (26.4 concurrent multicast streams). As stated above, th
trade-off to the expense of 159 seconds buffer and the triple (resp. ) required burst
width on every client.

The results of Section 3.2 and Section 3.3 can be used for single server systems as wel
our distribution system that is based on caches. However, requirements for multicast com
cation between servers and end-users differ from the requirements on inter-cache comm
tion. In the first case, a real-time transmission of data is necessary which should not suffe
excessive packet loss, but some packet loss is permissible. In the second case, on the c
packet loss in not acceptable when a video is transferred to the cache.

3.4 Motivation of Gleaning for Caching Hierarchies

Caching is a motif of this thesis. Considering the vast number of broadcasting approache
are listed in the introduction of this chapter, this motif needs a foundation. It is hardly ques
able whether a cache-based architecture provides stability to a distribution system. Ass
that an appropriate replacement strategy is applied, the caches should store the most
video titles and thus, be able to serve the requests of a majority of users even when their

0 δ
δn
------ CU 1 1

2
n

-----– 
  ∆M

∆U
--------⋅ n C⋅ M–⋅( )=

n log2

CU ∆M⋅
∆U SM ∆M⁄ CM+( )
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  1–=⇔

(8)
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to the origin of the data, or the original server itself is broken. Similarly, most users are
affected by downtime of a cache elsewhere in the system, and even the customers that
connect directly to that cache may still be able to receive movies, e.g. from the original s

It is not questionable either whether a decentralized cache-based architecture can pr
more dynamical potential for expansion to a VoD infrastructure. Rather than putting the
plete infrastructure in place with future expansions in mind, caches may be owned by ind
dent service providers that compete for the service to a user community. Just like video
shops that are organized in chains or privately owned, cache servers can be installed
when the business potential rises; it is also easier to move or discard cache servers of
size when the business potential decreases in one location.

It is questionable whether caches waste resources by replicating content into severa
servers, which introduces potentially a large amount of redundancy. Stated like this, the
tion originates in the cost of storage and perhaps in the “abundant bandwidth” assumpt
does not take the cost of networking into account. This section presents our combined pa
and caching approach calledgleaningand a view of a distribution system that considers t
cost for storage and for networking infrastructure.

3.4.1 Design of Gleaning

Gleaning has two goals:

• to form the basis for the technical solution to bringing the advantages of patching to d
bution systems that rely on existing clients that are not patching-capable or can not
large amounts of their memory on movie buffering

• to combine the availability gains and bandwidth-saving features of caching with the
cient bandwidth usage of patching

The combination can be made without much consideration to overlapping functionality. G
ing is a distribution mechanism that reduces the load of the sending party, while caching
egies are meant mechanism to manage the storage space of the cache server. The ba
reducing effect of both on the link that connects sending server and receing cache is no
peting either if multicast techniques like the Internet’s IP multicast is used, which is base
explicit joining of the receiver, and not on sender-initiated trees.

Gleaning works as follows: Cache servers are deployed as proxy caches, i.e. client will a
connect to their proxy server to access data on the origin server. If it is intended to deplo
caches in a user-transparent manner, this can be achieved without built-in proxy function
as well, by enabling the origin server to learn about the cache servers and the approxima
tances in the network. Based on this information, the origin server can re-direct comman
the client to the proxy cache.

In the distribution system that is built in this way, each cache server has a dedicted p
node, either the origin server or another cache server, thus forming a strictly hierarchica
tem.

When a client requests a movie title from its proxy cache, and it is stored partially or c
pletely in the cache, it is delivered to this client immediately, unless the caching strateg
marked the title for removal or some other problem is experienced with the copy (e.
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exhausted disk bandwidth). Since we assume that gleaning works with complete movie
only, the presence of a partial title implies that the rest of the movie is in transfer from
upstream cache or form the origin server.

When a client requests a movie title from its proxy cache and it is not present, the p
cache tries to initiate the transfer from the next upstream cache or the origin server, re
tively. To prevent an exhaustion of the uplink by this forwarding of requests, the caching
egy can decide to forbid the request forwarding; the client’s request will be refused in this
If the request is forwarding to a potential sender, and the title is not currently delivered to
cache or end-system, and if sufficient bandwidth is available at the sender and in the netw
new multicast stream is iniated, and the client is invited to the multicast session. If the c
server decides to keep the title, it joins the multicast stream as well

If the stream is already being delivered to a cache server or client, and the sender d
that the patching window for this stream is still open, it orders the cache server to join that
ticast stream. Additionally, it starts the transmission of a patch stream to the proxy cache
proxy cache has to set aside sufficient buffer space for the cyclic buffer to hold the length
patch stream, even if it does not cache the movie; the stream is delivered as a unicast str
the client.

Designed in such a way, a cache server in a gleaning system will not be overloaded more
than in a typical cache-based distribution system. In the worst case scenario that the cac
never join a multicast, it will behave at least as good a cache server in a unicast cache
distribution approach. Similarly, a sending server will never experience more hits than
pure patching approach. In the worst case, each proxy cache forwards the requests of a
client that retrieves unpopular movie titles.

3.4.2 Cost comparison

We examine the feasibility of patching and caching by modeling analytically the neces
effort in an example hierarchical movie distribution scenario. First, we calculate cost func
for various approaches of serving movies to users in hierarchical distribution systems wi
topology of binary trees. Then, we apply this analysis to an example system with som
realistic features.

Figure 17 is a sketch of the base model topology central serverCS, optional cache servers
with an indexi at deptht in the binary tree, and network links . Table 2 lists the symbols t
are used in the formulas, and Table 3 presents the formulas for calculating the cost of the
bution systems. The most important limitations of the model are summarized below, but
this analysis motivates us to realize our approach calledgleaning, which integrates caching
with patching. Basically, cache servers ingleaningbehave in the same way as cache servers
a straight-forward cache-based distribution system, and it is possible to apply identical re
decisions within their caching strategies. The transfer of data into these caches differ
gleaning, by making use of multicast distribution, and of the ability of cache servers to hide
ordering operations within a stream from the end-systems. As described withpatching, the
original sender of the movie decides the order of delivering chunks of the movie, but by m
taining cycling buffers for the later parts of the movies, the receiver is able to view the tit
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order. Ingleaning, the cache server acts as a patching client, and sequentializes the play-
the movie to the end-system. We get a strong hint to combine caching withpatching in the
example below, for a VoD system with rather realistic characteristics, following the assu
tions of the analysis.

The effort to set up the system is modeled as an abstract “cost” for basic server install
(including central server and cache servers), cost of server support for concurrent stream
eries, the cost of concurrent streams support by each network link, and cost for the stor
movies in cache servers. As we assume all movie files to be optimally located in the ca
hierarchy, there is no cost for transporting the movies to store and cache and for unnec
copies. There are several noteworthy aspects to this assumption:

• assuming a perfect distribution of movies to cache servers according to their long-term
vance would also render movements due to relocation minimal

• for a downstream movement, caches that work according to our approach do not ge
additional network load because they work in write-through mode - upstream movem
certainly missing

• if caching strategies are not sufficiently elaborate (or centrally controlled), they will rea
short-term or at least to day-time variations in the request patterns, these calculations w
extremely optimistic

The numerical optimization assumes a distribution of movie hit probabilities according to
Zipf distribution. Although various papers state that the Zipf distribution describes the dist
tion of hit probabilities at any given time very well, a caching architecture is unable to ach
a distribution according to Zipf.

• The relevance of movies is changing with respect to other movies, which implies that
index value in the Zipf distribution is changing,

• Hit rates do not typically conform perfectly to the Zipf distribution because of user beh
ior. The divergence is greater for small user populations, which means that distribution

CS

depth

t=3

t=2

t=1 E1
1

E2
1

E1
2

E2
2

E1
3

E2
3

N1
1

N2
1

N1
2

N2
2

N1
3

N2
3

Figure 17: Binary tree model for the optimization of total networking and storage cost

CS - central server
N - optional cache server
E - network links
t - distance from the central server (“level”)
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tems without an exchange of hit rate information will estimate a movie’s popularity
exact than a centrally coordinated system.

• Movies must be relocated between cache servers according to their estimated rele
This may be done predictively (which reduced accurateness of the estimation), so the
mal location for each movie is achieved timely, but such relocations do still incur additi
network and server load.

• Homogenous distribution systems are unrealistic.
• Not all movies have equal length and data rate.

Note, that a non-hierarchical approach will probably result in additional savings but for hi
chies, any algorithm should be unable to reach the optimum that can be computed nume
from the formulas in Table 3.

To verify the effects of these computations, we present an example that demonstrat
vast options for savings. This example is simplified from the reality that we envision with
combination ofpatchingand caching. For example, we assume thatpatchingis implemented
in the clients, which is not realistic in a widely distributed network of heterogeneous clie
since technical advancement in CPU power and storage space will not lead to an inc
capacity of the low-end devices, but rather to the creation of more compact devices of a s
computing power and storage space..

symbol
used

meaning in the formulas
symbol

used
meaning in the formulas

Basic cost of a server/cache server
installation.

Cost for one supported stream of a
server.

Cost for one supported stream on a
network link at levelt.

Cost for the storage needed to store one
movie in a cache server.

Number of available movies. Hit probability of moviem.

t(m) Optimal tree level for caching
moviem.

r(m) Optimal patching window for moviem.

Table 2: Elements used in formulas

distribution
method

calculated cost formula

unicast
directly

from central
server

Table 3: Analysis of cost effects of patching on caching hierarchies, cf. “Analytical
Distribution Model - Binary Tree” on page 153
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In our example, the movie probabilities are distributed according to the Zipf distribution:

Besides the predefinitions from the analytical model, we choose values for the indiv
parameters. These values are chosen rather speculatively; our orientation were the p
prices that we paid for our department’s commercial video server.

• 500 different movies
• 220 active users (i.e. a binary distribution depth of 10, where most nodes do not cont

server)
• a cost of 25000 $ for a basic server installation
• a cost of 100 $ for each concurrent high quality movie stream supported by a server
• a cost of 350 $ for each concurrent high quality movie stream supported on a network
• a cost of 1000 $ for storage to hold one high quality movie

The location of the caches in the distribution hierarchy for examples 2,”unicast with cac
and 5, “gleaning”, was not optimized. Rather, the caches were moved heuristically ups
until no immediate gain was perceived any more. For the example 2, “unicast with caches

unicast with
caches

greedy
patching

from central
server

patching
with limited
buffer from

central
server

gleaning

distribution
method

calculated cost formula

Table 3: Analysis of cost effects of patching on caching hierarchies, cf. “Analytical
Distribution Model - Binary Tree” on page 153
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approach “installed” caches at levelst=12, 10, 8, 6 and 4 of the binary distribution tree mod
in the order of decreasing movie popularity. For the example 5, “gleaning”, the appr
“installed” caches at levelst=9, 7, 3, 5 and 1. The heuristic prohibited to choose the level 0
the least popular movies which would have been roughly three quarters of all movies.

These numbers indicate, that there are scenarios with a large potential for savings in theglean-
ing technique. When (costly) caches are introduced in agleaningdistribution system, savings
are made with much less expensive necessary system links and storage space (cf. the
rows in Table 4).

Although this model and these numbers are quite illusionary, and we can not expect c
that implementpatching buffers andpatching-capable protocols, this potential for saving
demonstrates that:

1. the use of cache servers generates savings that make up for their installation cost
2. patching with optimized window sizes is the major advancement in savings
3. The most important issue for our architecture is:

The installation of caches in conjunction withpatchingdoes not eliminate the effect ofpatch-
ing. With an appropriately dimensioned cache server, it will even increase the savings by
ing the most popular titles in the cache. Thus, we can proceed to build a wide-area ca
architecture that relies onpatchingfor wide-area distribution of the videos to cache servers t
act of proxies for clients without these specific features.

3.5 Conclusions

In this chapter, we have examined techniques that we have derived frompatching, which is a
TVoD descendant of family of NVoD techniques derived fromskyscraper broadcasting. We
have presented our optimization options for patching and we have presented a TVoD va
of this family that increases the scalability and stability of these systems by introducing c
servers. We have called our approachGleaning.

Gleaning can benefit from all kinds of optimization options that can be applied to patc
From our optimization steps, we have drawn several conclusions. The most important
that the patching window size should not be determined by the receiver but rather b

Modeled Distribution Method Calculated System Cost

unicast from central server 7,445 Mio $

unicast with caches 4,664 Mio $

greedy patching from central server 3,722 Mio $

patching with limited buffer from central server 375 Mio $

gleaning 276 Mio $

Table 4: Example for theoretical effect of the various methods
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sender, which has more information about the overall popularity of a movie title. This is im
tant since optimizations of the window size are also optimizations of the number of concu
streams that need to be supported by the server. Differences in local user community beh
will affect primarily the cache server and is handled by its removal strategy. The centrally
trolled decisions of the origin server, on the other hand, influence the load of the distrib
system.

We have further found thatmultilevel patchingincreases the savings in server bandwid
but is a lot more complex to implement. Furthermore, the number of concurrent stream
are received at the client resp. at the cache server increases. It seems appropriate to im
single-level patching only or at least to limit the number of concurrent streams that are u

Another limit of the patching technique should not be ignored in implementations. F
sufficiently large user population and the top-popularity movies, it is appropriate to app
simpler technique such as batching; Depending on the user acceptance of delays, the d
of a movie can be delayed by several seconds, reducing the management overhead of pa
For each patch stream, a batching window of similar size can be applied - this allows for
tional joining, and especially in conjunction with multilevel patching, limits the total num
of levels that must be supported concurrently.

Another issue is the use of caches in wide-area distribution systems. The network usage,
becomes relevant in large-scale and wide-area systems, is not considered in bro
approaches, since those aim either at smaller scale systems, such as metropolitan a
works, or at systems with real broadcast media such as satellite distribution. The infrastr
for such a distribution system needs (a) immediately deployment to a large initial user po
tion, and (b) is not smoothly scalable to larger areas.

Our use of caches is also important for the stability of the overall system and for the ea
deployment and scalability of the system. The pure financial gain of a cache-based syste
not exceed a centralized architecture sufficiently by itself, i.e. without the stability cons
ations. Another issue with the use of caches is the possibility to implement write-through
ing and to support stupid clients. Such a possibility would allow a deployment with a red
upgrade of the public infrastructure that is already in place.

The negative aspects of gleaning as a distribution mechanism are moderate compa
these gains. It requires a reliable multicast technique, especially when multiple caching
are used and errors could be accumulated in transfers among caches. We must also prev
malicious senders trash the distribution networks by indicating to their clients a need for
ers that are too large.

The caching itself is an issue that is mostly unaffected from this proposed distribu
mechanism. Replacement strategies in the caches remain entirely unaffected by the distr
mechanism. Caches will join the streams that are delivered from the server, which implie
the caches can decide whether a content is cached or not. Consequently, caching strate
vary in gleaning. For example, this allows the combination of gleaning withhint-based cach-
ing, since only removal strategies are affected by the hints. Furthermore, gleaning dem
that a cache sets aside an amount of storage for each video stream that is delivered to a
a given time. This gives leaves three options to the cache implementation:
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• an always-overwrite approach, which requires the complete storage of the full movie at
for some time

• a conditional-overwrite approach with a fixed amount of storage space set aside for te
rary use as buffer for movies that are not considered relevant enough for caching

• a conditional-overwrite approach that shares storage between fully cached movie
cyclic buffers dynamically; this approach is similar to [AlAm96], where movies rece
larger amounts of buffer space on routers, depending on the number of concurren
However, this setting favors smaller buffers for more popular titles, unless they are w
being cached completely.

After these investigations of the distribution system, we will consider other aspects of the
tribution system before it is evaluated as part of a complete system.
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4. Protocol Suite
Since the goal of this thesis is the examination of missing links for a decentralized video d
bution system, existing protocols to support this must be evaluated and if necessary, new
cols must be defined. Especially in combination with the requirements of the patching
gleaning approaches, protocols have to be reconsidered since these approaches ha
introduced only recently, resp. are introduced with this thesis. The fact that this chapte
cedes the investigation of caching strategies is based on the following:

Protocols are meant for data distribution. They are independent of specific decisions
cerning replacement algorithm or distribution techniques.

This opinion has developed during the concurrent work on server and protocol implem
tion and the evaluation of caching policies. Although it is beneficial if distribution techniq
and the caches’ removal strategies fit well, both will be operational in most combinat
although the performance will degrade in some combinations. We consider this assum
basic, since we have observed that this is typically approached as a monolithic probl
existing distribution system. The assumption allowed to work on protocols while optim
replacement mechanisms were not fully investigated.

Based on the requirements that are deduced from the previous chapters in Section 4
existing control and data transfer protocols are evaluated in parts Section 4.2 (stream co
Section 4.3 (video streaming) and Section 4.4 (reliable multicast). In the decisions that
made for the definition of our complete system, we have taken into account that some
discussed protocols are more difficult than others to install for use with a wide-area distrib
system, when only a minimal functionality extension needs to be achieved. Another dec
that was made in preparation to our system design is that we intend to achieve compa
with current Internet mainstream protocols. This is a decision that is not necessarily the
come of a commercial implementation of such a distribution system; alternative protocols
be based on other standardization work or even on proprietary protocols. The protoco
that we design with these goals in mind is introduced in Section 4.5, and protocol elemen
are new in our protocol specifically are described in Section 4.6. Finally, Section 4.7 eval
this step.

4.1 Requirements

The distribution system that we are envisioning imposes several requirements on the pro
that are used in such a system. The problem with the collection of these requirements
uncertainty of the features that need to be supported by the protocols. To add structure to
requirements, we distinguish general requirements, which are required of all protocols th
applicable for our kind of distribution system, generally convenient features, which are u
for many applications but not always necessary, and specific requirements, which are on
essary for some distribution mechanisms. The requirements have been defined accordin
requirements of the distribution systems that we envision; they should be independent
information that is interchanged between caches to increase the performance of cachin
sions as well as of the replacement decisions that are implemented in the caches.
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4.1.1 General requirements

General requirements on the protocols are independent of specific decision concerning t
tribution mechanism, and certainly independent of the caches’ removal strategy. Howeve
thesis examines the distribution with caches specifically, which imposes some general r
ments.

Separate control and data protocols

The separation of control and data protocols is a principle approach that has been implem
in Internet video streaming protocols for years, without much consideration about the rea
Certainly, DSM-CC is multiplexed in MPEG-2 transport streams, but in on-demand sys
this is usually a multiplexing step that is independent from the video stream. The amou
feedback about the stream quality that is transported with the data stream differs from on
tocol to another, sometimes stream setup and QoS negotiation are handled in-band w
data stream, but control information, such as stream location is exclusively transferred o
band.

Recently, the term “HTTP streaming” has been coined1. Basically, this is an HTTP GET
request for a video file, but the server can draw conclusions about the client actions fro
behavior of the TCP stack; this can be consideredimplicit signalling of the control informa-
tion. It allows the server to determine Start, Pause and Stop actions, and it allows scaling
content based on the throughput that is experienced at the sender side. The use of TCP m
unscalable, but with a different transport protocol, it may be.

We have decided not to work on the latter approach. First of all, the separation of co
and data protocols allows the adoption and adaptation of existing protocols. The second
is that it is also technically favorable because of its modularity. Besides, multiplexing a
network level is always possible, as demonstrated by MPEG-2.

Reliable data transfer to caches

For usual MBone-conferences with tools like vic [MJ95] and vat the functionality of RTP
sufficient. As video- or audio streams are transmitted and displayed continuously, small
within the information are of minor significance. It would be more complicated to retrans
lost data, because they may disturb the normal procedure. With respect to a video-transm
the pictures would be displayed incorrectly and the audio be distorted. But there is a diffe
in using unreliable transfer between video cache servers. A cached version of the movi
cache server should be stored 100% correctly to avoid error propagation towards the
With the use of standard streaming protocols, information that gets lost during transmiss
also lost to the caches. The problem is that these errors would be transmitted with every s
that is forwarded from the cache server to a client. This should be avoided since it has
regarded as a degradation of the service quality. The amount of errors would be rising in
nario where movies are distributed in a multi-level hierarchy as well, by being stream-tran
ted from one cache server to another one that is located further downstream from the l
server. During each transmission data can get lost and thus lead to a higher error rate in

1. The term is used in Real Systems product brochures but they are probably not the original source.
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copies. We consider this unacceptable and require reliable transfer to the caches in our
col.

Redirection support

The requirement that a protocol needs redirection support at the service level is trivial for
tribution system that is based on caching. Without support and permission for redirectio
original server would not be able to receive requests from client through a proxy cache s
The use of caches would still be possible, but this would require the implementation o
functionality of redirection in a different layer of the application.

Potentially, this could be the IP layer, such as network address translation as propo
[RFC2391], or it could be implemented in the application itself. The primary drawback w
the first approach is in our view the need for central control. The second control would
substitute but basically, an additional control protocol that could work more efficiently
were integrated with the other control elements.

Support for caches that are not routers

Caches are often implemented as system modules that must be passed by all content in
reach the requesting client. This has been typically the case for CPU caches (there are
tions, e.g. [SoLe97]), and it is typical for web caches. Some web server products are
installed on routers (e.g. [Cisco]). This contradicts our assumption that efficient video ca
will probably be achieved by strategies that apply conditional caching of videos.

Neither can we assume that a video server is a router at the same time; typically we c
even assume that the network service provider is the cache owner at the same time. Thu
tocol should be capable of dealing with cache servers that are not located on the default
ery path between the original server and the client.

4.1.2 Generally convenient features

Features are considered advantageous for most protocols that could be implemented in a
bution systems. In contrast to the general requirements, they are not necessary for the op
but they could save resources or work.

Data multicast support

Multicast support is generally convenient for video distribution as it can reduce the bandw
that is required for video transmission from one server to multiple client considerably. E
cially for conferencing systems, this is an asset. In conjunction with video-on-demand, th
not been used initially, and techniques for the combination of requests into “batches” had
introduced first. These approaches were presented in Section 2.5. With caching, the appl
of such techniques may be considered unnecessary. We do not believe that this function
be neglected since even caches that are accessed by a small user community could bene
batching or similar techniques when highly popular titles are served. In order to suppor
multicast is mandatory.
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Segment concatenation

Some distribution systems require support for the concatenation of content segments. T
ents receive pieces of the content from different sources, caches receive pieces of the
from different sources, or ideas such as content insertion ([VeLi95]) are applied. This cou
handled transparently by the cache servers, by re-encoding or by re-multiplexing the c
before it is delivered to the clients. Such an approach would have the two negative aspec
(a) the server load may be increased considerably, and (b) all traffic would have to r
through the cache server, although the cache server may have decided to redirect the
rather than store a copy of the movie itself and although the client may be able to rece
multicast stream from the original server directly. Thus, segment concatenation would
advantageous feature for a protocol suite in our envisioned distribution system.

4.1.3 Specific requirements

Specific requirements can not be applied generally to video distribution systems. The
either specific for our intentions, or they are specific for distribution approaches that we i
tigate.

Internet protocol

There is not technical reason for this requirement, but Internet protocols have been use
most infrastructures successfully. Furthermore, we have the Internet readily available
Internet standards have always been freely available, and we are more experienced with
net protocols than any other protocols suite.

Caching prevails over multicast

On demand-systems are frequently operated in plain on-demand mode, i.e. without any
cation of multicast. Even in such an application, our protocols should work properly
implement the decisions that are made concerning an appropriate caching strategy. We
multicast for other reasons, but the support for caching takes precedence when there is
flict in the protocol design.

Support for patching

The catching idea of Chapter 3 should be supported; this requires support for request re
tion and for concatenation of stream segments if an efficient implementation is intended
cifically, the concatenation of stream segments must be supported at the client side, if
not want to implement this service from the cache server. The latter approach could be
but the above-mentioned general requirement that cache servers should not be routers
dicts this approach.

Support for write-through mode

Do this potentially from different files on different servers. This is not an issue for us bec
we can operate in write-through mode: if the cache joins a multicast stream too late an
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apply catching, the client listens to the Patch stream that is delivered from a higher level s
first, and receives the remaining part of the video from its cache server

A complete protocol suite is required to co-operate for the implementation of a video
demand system. Completely specified architectures such as DAVIC and DVB can hard
replicated in a university scenario, but - as noted in the Introduction - Internet VoD is a g
ing market, and it is based on protocol specifications that are freely available and, ind
dently from each other, of very limited complexity.

4.2 Stream Control

Since the beginning of streaming media, a large number of control protocols and lang
have been implemented and used by the researchers and also in the earlier products. W
relevance of interoperability at the bitstream level has been recognized early, and soon
that of protocols for data transfer, the relevance of control protocols has largely been negl
A suggestion of this negligence is made by the application of QoS mechanism to content
bution without applying QoS mechanisms to the control channels.

In the recent past, two approaches to stream control have been standardized by ISO
IETF. Since then, standards as well as commercial products make use of these approa
achieve interoperability.

4.2.1 Distributed Storage Media Command and Control

The Distributed Storage Media Command and Control (DSM-CC, [ISO96]) is a part of
MPEG-2 standard. It consists of two parts, the User-to-User part (UU, part 6 of MPEG-2
the User-to-Network part (UN, part 7 of MPEG-2). The UN part specifies the communica
of application and network services for resources, which is not the issue of this section
goal of the UU part is the specification of generic multimedia interfaces that allow client a
cations service access in a platform-independent way. While the specification of UU inc
definition of issue such as data types, a common API, and the user environment, main
functionality is relevant to this section.

To the client, UU appears as an API. i.e. client programs are implemented like applica
that perform remote control over a service. These services include stream operations, file
ation as bulk data, directory operations, session operations as well as communication wi
vice gateways to access services of provider other than the immediate service pro
Extended interfaces provide download functions, subscription to events, viewing and sort
server-side objects, authentication, versioning of objects, or configuration of the commu
tion mechanism itself. The API is described in IDL and uses Corba for communication.

Presentation Description

Presentation description is not an issue with DSM-CC; DSM-CC’s approach to this is
download of environment-dependent applications that behave are understood by the en
tems. An application of this approach is the use of MHEG in the DVB system and in DAV
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The typical environment of DSM-CC is an MPEG-2 based delivery system. In such a syst
is typical that the application server creates an MPEG-2 multiplex which guarantees the
chronized delivery of media. Especially for applications that include uni-directional con
distribution such as satellite television, this is augmented by the concept of an object car
which is a FIFO object cache at the receiver side.

4.2.2 Real Time Streaming Protocol

The Real Time Streaming Protocol (RTSP, [RFC2326]) is an IETF RFC that is supposed
used in conjunction with various other protocols. Its functionality is not generic but rather
centrated on stream control. It references elements of HTTP to which it is weakly relat
can be used with either TCP or UDP as an underlying transport protocol. The data transfe
tocol that is mentioned in the RFC and that interacts most closely with RTSP, is the Real-
Transfer Protocol (RTP). The same approach applies for the session description prot
although no fixed session protocol is defined, the RFC specifies the interaction with the
sion Description Protocol (SDP).

The protocol is a text-based protocol that refers explicitly to HTTP in parts of its desc
tions, and actually it includes several directives from HTTP instead of redefining them.
functionality added in this way includes proxy-support and authentication.

Presentation Description

The Session Description Protocol (SDP, [RFC2327]) is originally considered as a comp
protocol for SAP, the Session Announcement Protocol. However, besides this mode of
bution for session information, others like download from the web or E-mail distribution
also compatible with this kind of information. Basically, SDP provides a line-oriented sy
to describe a multimedia session in ASCII.

Synchronization

The Synchronized Multimedia Integration Language (SMIL, [h:Hos98]), is RSTP’s prefe
approach to deal with distributed multimedia presentations that require synchronized pre
tions of individual streams.

4.2.3 HTTP Streaming

A straightforward application of HTTP has been used for the control of real-time streamin
well. With this approach, which does not control the stream at all except for implicit signa
of request, congestion and stream end, it is at least possible to present video in a straig
ward way. To present video clips for advertisement purposes, this has been proposed as
tion which is applicable at sites with very limited requests.

4.3 Video Streaming Protocols

This section shows that the number of existing video streaming protocols is large, and tha
sents reasons for the selection of RTP as an element of our protocol suite. The handling
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‘competition’ is rather short for the importance of the protocol selection for an impleme
tion. However, the main goal of this thesis is the study of feasibility of complete systems.
tainly, the modifications that are necessary to achieve the functionality that we require
also be achieved with a different protocol as a starting point.

4.3.1 Collection of Internet Approaches

The protocol-oriented approaches of the Internet have been manifold, and they have
implemented at various levels of the IP protocol stack. Because of the number of appro
only a short explanation is given for each of them.

• Plain UDP has frequently been used for straightforward transmission of packetized vid
LANs.

• HTTP-Streaming is essentially TCP; it has been mentioned above.
• A multitude of pure ATM approaches; however, I do not believe that ATM is going

become an exclusive quasi-standard for end-to-end transmission of video.
• The transfer of MPEG2 streams has been specified over many means of transport, inc

specifications by DVB and DAVIC for the use of CableTV network or satellite, over AT
over IP over ATM, or as an RTP payload.

• XTP (Xpress Transfer Protocol, [SDW92]) was a competitor of layers 3 and 4 of the In
net protocol stack. The central intention was the development of a standard with suppo
generic service that could be selected in arbitrary combinations by the application; in
ing multicast and QoS negotiation.

• ST-II (Stream Protocol 2, [RFC1819]) was a multicast protocol with QoS support at the
work layer (an IP companion). It was used with HeiTS (Heidelberg Transport Sys
[DHH+93]) as a transport protocol, or with partial XTP functionality as a transport proto
(called Berkom MMT or XTP-Light, [h:SaDe94])

• IPv6 has added a so-called flow id. This allows out-of-band QoS negotiation for flo
Using these reservations, higher level protocols such as UDP can then make use of t
ervation by sending IPv6 packets with that flow id.

• IntServ (Integrated Services, [RFC2205]) is a receiver-oriented out-of-band signa
approach for dynamical QoS negotiation in multi-party communication. It alloca
resources to receiver/stream identification but can also work with IPv6 flows.

• DiffServ (Differentiated Services, [RFC2474], [RFC2475]) is a point-to-point virtual lea
line approach that allows service providers to interpret IPv4 ToS bits or IPv6 labels in a
sistent way to provide QoS. The means to negotiate and to guarantee the service a
specified yet.

• A variety of research prototypes have applied layered transmission (e.g. [AMK97]).
• A multitude of proprietary protocols over IP and UDP has been used specifically for v

distribution or conferencing - e.g. Apple QuickTime before version 4, Real Systems’ S
Stream ([h:Real99]), the original Vosaic VDP (Video Distribution Protocol, [CTC+96], n
VTEL uses H.323), or its research successor MSP (Media Streaming Protocol, [Hes9

• RTP (Real-time Transport Protocol, [RFC1889]) is developing into the quasi standar
video packaging in the Internet. Since we use RTP, it is described in detail below.
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4.3.2 Internet Quasi-Standard

The Real-time Transport Protocol (RTP) was created to transport real-time data over the
net. The first thing that needs to be noted is that it is neither real-time, nor is it a transpor
tocol. It is an application-level framing approach that allows applications to excha
information about the stream quality.

Originally the Internet was created to transport non real-time data belonging to applica
like telnet, E-mail, ftp. The early Internet development was funded by the military and requ
problem resistance rather than performance. The early applications require correct and
plete data transmission without any time restrictions which is given by the TCP/IP prot
TCP ([Pos81]) for example has mechanisms to guarantee the correct, complete deliv
data. In contrast to this VoD or other real-time applications make specific time restriction
how the data is delivered. Internet telephony, MBone-conferences and all video- and
conferences can not or not satisfactory be realized with the usual protocols. RTP pro
functionality to realize real-time applications, but it does not provide any time QoS (Quali
Service) guarantees. QoS guarantees have to be provided through underlying protocols
example RSVP ([BZB+97]). RTP provides payload type identification, sequence numbe
time-stamping, delivery monitoring and supports multicast if the underlying protocol prov
this service.

RTP is a protocol independent format to transmit real-time data. Usually it is used
UDP (User Datagram Protocol, [Pos80]), as UDP allows multiplexing and does not hav
retransmission schemes like TCP. A protocol dependent retransmission mechanism
probably violate the time restrictions. RTP is used together with RTCP (RTP Control Prot
[RFC1889]) which allows a quality monitoring of the network connection and has mini
control over the session. Furthermore RTCP can be used to identify the sender. The ma
of RTCP is to send periodic control packets to all members of the session using the same
bution mechanisms as the data packets.

Favorable for RTP is also, in opinion, the increasing support by public domain as well as
mercial tools. The following tools and systems have been implemented with RTP initiall
have been modified to use RTP in their recent version: Apple QuickTime, IBM VideoCha
SUN’s Java Media Framework, the MBone tools, Cisco IP/TV.

Also DAVIC, which has up to now (specification 1.4) always referred to MPEG-2 deliv
over broadcasters’ traditional end-to-end infrastructures, is working on the additional su
for Internet protocols in specification 1.5. There original approach for an integrated Int
access meant the delivery of IP embedded into MPEG-2. Now, the delivery of audio-v
material using ‘native’ Internet tools is considered. Early versions of the specification are
rently available. The draft of part 4, which was published in May 1999 and is still rather un
cific, lists RTP and RTCP for stream delivery. It proposes the use of RTSP and SDP2 for
session control and session description, and the use of the Service Location Protocol
[RFC2608]) for service location. The document refers to the Resource Reservation Pr
(RSVP, [RFC2205]) for optional resource reservation and is also referring to routing proto

2. via SAP, HTTP or E-Mail
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transport and network level protocols that are necessary to build a complete delivery infra
ture.

4.4 Reliable Multicast Protocols

The design of a reliable multicast protocol is determined by the requirements of a sp
application or area of applications that the protocol is built for. Different applications imp
different requirements on the underlying reliable multicast protocol. Possible classificatio
multicast protocols can be made by the type of error recovery and the ability of transm
real-time data. [h:WCW99] defines two types of error recovery: Centralized error reco
(CER) and distributed error recovery (DER). CER allows retransmissions only to be perfo
by the multicast source. DER allows retransmission to be performed by all multicast mem
having the correct data. The suitability of the protocol to transmit real-time data depen
how the data is recovered. Real-time applications will accept a lossy data flow but they wi
accept a significant delay. This implies that data recovery should not interrupt the flow
example for an application that accepts lossy data flows but can not handle retransmit
well is a video conference system. If a gap is detected, it is better to display the subseque
instead of pausing the stream, waiting for the lost data and than continue with the play
data. Other applications like a white board conferences may require a delayed repair whi
playing the currently available, outdated data.

Some examples for reliable multicast protocols are SRM (Scalable Reliable Multi
[FJL+97], TRM (Transport Protocol for Reliable Multicast) [SBD96], RMTP (Reliable Mul
cast Transport Protocol) [LiPa96] and LRMP (Light-weight Reliable Multicast Protocol a
Extension to RTP) [Lia98]. SRM and TRM are DER type protocols and LRMP and RMTP
CER type protocols. TRM and LRMP make similar assumptions about loss detection
repair requests as SRM, so SRM can be discussed as an example for all three protocols.
provides sequenced lossless delivery of bulk data (e.g. Multicast FTP), without regard t
real-time delivery restrictions. It uses a windowed flow control and ACKs for the rece
packets. This technique allows a reliable transmission, but if packets are lost, the data fl
interrupted because the lost packets are resent immediately by the sender which leads to
continuous data stream. So this protocol is not applicable for VoD applications.

SRM is a reliable multicast framework for light-weight sessions and application level fr
ing. It’s main objective is to create a reliable multicast framework for various applications
similar needs of the underlying protocol. SRM does not distinguish senders from rece
Whenever data is created, it is multicast to the group. Each member of the group is
responsible for loss detection and repair requests. The repair requests are multicast afte
ing a random amount of time, in order to suppress requests from other members sharin
loss. Every member capable of sending a repair packet also sets a timer and if no repair
is sent from another member it sends the repair packet. After sending this packet a new ti
set in order to avoid any possible duplicated requests from the receivers. This mechanis
to suppress duplicated retransmission requests and duplicated repair packets. As it is p
that the last packet of a session is dropped, every member multicasts a periodic, low rat
sion message including the highest sequence number. How to compute the time for the
is discussed very precisely in [FJL+97]. SRM was tested and implemented inwb, a white
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board application for real-time conferences. It must be mentioned that SRM needs a sp
distribution infrastructure which is not widely available in the Internet at the moment.

A third class of reliable multicast protocols are the ones which include FEC (forward e
correction) as a technique to achieve reliability [NBT97]. Reliable multicast achieved thro
FEC is also applicable for VoD systems, since usually no retransmissions are necessary
the multicast transmission of the video stream. The major drawback of this approach is
error correction information appropriate for the client with the worst connection mus
included in each multicast packet. This will lead to a higher use of bandwidth thus leading
reduced connection quality for the clients. In addition a completely new protocol must be
in the case of layered FEC since this model is not compatible with already existing proto

All of these existing solutions have been taken into account. They have been conside
relation to the one protocol that is currently used for streamed transmission to end-syst
the Internet domain is taken into account as well, which is RTP, the Real-time transfer p
col. All of the above approaches to reliable multicast suffer from one common prob
besides potential other problems, and besides their benefits: they are not compatible wi

Since players of commercial video-on-demand systems which would benefit from a v
distribution infrastructure as envisioned by this thesis are typically working with RTP-com
ant receivers at the client side, an RTP-compliance in the distribution system would be b
cial. Therefore, we have implemented an alternative that fulfills our requirements base
RTP, which is described in the following sections.

4.5 Selected Protocol Suite

The protocol suite that we are proposing in this section is selected in this way due to ou
of RTP compliance, and interoperation with existing tools and protocols. In spite of this g
we want to be able to support the optimization ideas for caching and distribution system
are not supported by current implementations. This demands new protocols that ma
backward compatibility but include our requirements, which we call LC-RTP and LC-RT
The protocols implement the functionality for the requirements that have been l
Section 4.1, and allow experiments for several variations of the distribution system
removal strategies. Concerning the other protocols that are include in the complete suite,
and SDP, we did not need to modify the protocols themselves; however the session desc
that we are distributing may not be considered trivial.

The protocols are intended to unload stream transmission effort from the servers, ro
and networks, while an increase in the necessary effort for the control of the system is a
able. We assume that the control server is probably powerful enough to handle a few tra
tions that are necessary to manipulate the control server.

4.5.1 LC-RTP

RTP with Loss Collections (LC-RTP) implements our idea of a unified protocol for stre
transmission that is compatible with RTP, and reliable transfer of content into the cache
ers. It solves these problems by making RTP reliable, while the ability is maintained tha
LC-RTP capable clients (standard RTP clients) can receive an LC-RTP stream as well.
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To describe LC-RTP the transmission process is divided into two parts. The first part w
like a regular RTP transmission and ends when end of the movie has been transmitted
the BYE message). The second part follows this BYE message and is used to retransmit
data. In this scenario all receivers that are cache servers that have decided to keep a m
the cache, and that have experienced packet loss, will continue to receive packets after th
BYE message. Figure 18 gives a general overview of the different steps that are execute
ing a LC-RTP session.

4.5.2 LC-RTCP

Just as RTP has a companion protocol RTCP for the exchange of information about th
transfer, LC-RTP requires a companion protocol LC-RTCP, which needs to be RTCP-co
ant. In application-defined RTCP packets, the receivers inform the sender about their
after the reception of the BYE packet, unless all of its missing packets have earlier
reported by another receiver.

4.5.3 SDP

The Session Description Protocol (SDP) has been produced by the MMUSIC working g
of the IETF. It was originally intended as a complement for the session announcement pr
SAP to communicate conference addresses and tool-specific information over the M
Alternatives such as HTML postings or E-mail distribution of session descriptions were t
into account as well. With this primary goal in mind, SDP does not support negotiation of
of session information, but is just used for dissemination.

Sender Receiver

Time

Figure 18: LC-RTP Communication

. . .

store data
for lost packets, keep loss list
and reserve disk space

after BYE packet,
send loss list

store data
update loss list
after END packet,
re-send loss list if necessary

if loss lists are received
(before timeout)

schedule and re-send data
than send END packet resent data

and end packet

loss list

data losses

data transmission and
transmission end indication
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With the exception of character encoding rules, this line- and column-oriented protoc
extremely simple. Table 5 shows all of the two character keywords of SDP in the exact ord
occurrence in a session description. Keywords must be in first column of a line, wit
whitespace before or after the equal sign, and are followed by a set of values on the sam
Carriage return and newline characters determine the end of line, without escaping optio

We have found SDP appropriate without changes for our purposes. For that reason, this s
is restricted to a demonstration of SDP’s applicability (in conjunction with RTSP) to the c
plicated case that the patching mechanism is applied transparently to the clients at the c

The movie in MPEG system encoding is requested on Oct 17 17:54:46 (3149164486),
runs for 90 minutes, i.e. until 19:24:46 (3149169886). This initial viewer will receive the

keyword meaning occurrences

v= protocol version 1

o= owner/creator and session identifier 1

s= session name 1

i= session information 0-1

u= URI of description 0-1

e= E-mail address 0-1

p= phone number 0-1

c= connection information 0-1

b= bandwidth information 0-1

time description block >=1

t= time the session is active 1

r= zero or more repeat times 0-1

z= time zone adjustments 0-1

k= encryption key 0-1

a= zero or more session attribute lines 0-1

media description block >=0

m= media name and transport address 1

i= media title 0-1

c= connection information 0-1

b= bandwidth information 0-1

k= encryption key 0-1

a= zero or more media attribute lines >=0

Table 5: SDP protocol format
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sion description of Figure 19. The encoding format, RTP/AVP is supposed to deceive the
that understands only RTP. The only deviation from a regular RTP transmission that wou
announced by a server is the session attributefmtp:lcrtp, which indicates to the cache serve
that our proprietary protocol extension is used as well. Note that the media attributertpmapis
only necessary due to a historical incompatibility of the VideoCharger, which sends MP
streams with an encoding format value 0.

Another user will request the same title five minutes after the start of the movie, i.e. at 17:
(3149164786). When its proxy cache communicates with the original server, it will receiv
session description of Figure 21. This session description contains two time fields, the firs
ing the original time span, which has already started. The second is the display time
patch stream, fives minutes from the current time. In the first media description block, info
tion is given that allows to join the multicast stream; in the second media description block
batch stream is described. It is sent with port information that differs from the original p
This is necessary to allow pass-through delivery of the initial portion of the movie to the c
- the packet sequence numbers of the main portion of the movie, which are higher than
that it expects, would force the client to assume major packet losses in its session.

In case of support for Patching or for a variation of Patching (such as the Catching app
described in Chapter 3 of this thesis), it is necessary to support segmented streams and
retransmission. To support this, another request is re-routed through an LC-RTP-capable
server.

v=0
o=vsadmin 3149164486 3149164486 IN IP4 192.168.2.1
s=phantclip.mpg
i=The Phantom Menace
c=IN IP4 224.2.24.8/16
t=3149164486 3149169886
k=prompt
a=recvonly
a=fmtp:lcrtp
m=video 49170 RTP/AVP 0
a=rtpmap:0 MPEG1/1411200

Figure 19: SDP specification for an initial LC-RTP stream

v=0
o=vsadmin 3149164486 3149164786 IN IP4 192.168.2.1
s=phantclip.mpg
i=The Phantom Menace
c=IN IP4 224.2.24.8/16
t=3149164486 3149169886
t=3149164786 3149165086
k=prompt
a=recvonly
a=fmtp:lcrtp
m=video 49170 RTP/AVP 0
a=rtpmap:0 MPEG1/1411200
m=video 49172 X-LCRTP/AVP 0
a=rtpmap:0 MPEG1/1411200

Figure 20: SDP specification for an joining LC-RTP streams
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The cache server needs to reconstruct the SDP description. Figure 21 shows how the
ple is modified to include the information that the proxy server is giving to the client to im
ment a concatenation of the patch stream and the cached stream into a contiguous sequ
a longer one. In this modified SDP description, several details are of interest:

• the t= field is now showing start and end times that cover the complete movie length w
time offset appropriate for the 5 minutes that the client has arrived after the original st

• thea=fmtp: line is kept for informative purposes
• the session level linea=control:rtsp://cache.server.com/phantclip.mpgindicates that aggre-

gate control is being used; this is necessary and must be enforced by the proxy cache
client would be allowed to manipulate the video sessions independently, the situation
arise that the second part of the movie is displayed in parallel with or with an offset from
first part.

• the media level linesa=control:patch=1anda=control:baseare server-chosen names fo
the stream elements that are delivered.

• the linesa=range:npt=0-360and a=range:npt=360-324000imply for the client that the
second stream needs to be played in sequence with the first one.

4.5.4 RTSP

We have used RTSP as the one control protocol that is currently replacing proprietary c
protocols from the Internet applications. In theory, based on the study of the
([RFC2326]), this protocol should solve all of our requirements for a control protocol if
jointly with SDP in an appropriate manner.

We have implemented RTSP client code based loosely on the Real Networks demo
code (am RTSP 0.6 implementation), and we have implemented the RTSP server code a
when no freely available code such as that of the PRISS server ([h:Stre99]) was heard
have tested our code with several commercial servers and have experienced compatib
well as semantic problems. Examples of implementation problems are listed first:

v=0
o=vsadmin 3149164486 3149164786 IN IP4 192.168.2.1
s=phantclip.mpg
i=The Phantom Menace
c=IN IP4 224.2.24.8/16
t=3149164486 3149170186
k=prompt
a=recvonly
a=fmtp:lcrtp
a=control:rtsp://cache.server.com/phantclip.mpg
m=video 49172 RTP/AVP 0
a=rtpmap:0 MPEG1/1411200
a=control:patch=1
a=range:npt=0-360
m=video 49172 RTP/AVP 0
a=rtpmap:0 MPEG1/1411200
a=control:base
a=range:npt=360-324000

Figure 21: Pass-through SDP specification moving from the proxy cache to the client
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• Implementations are restricted to a (proprietary) interpretation of order and session
mation.

• Implementations follow different versions of the standard.
• Client identification seems to refer to processes, which may be a replacement of the m

user identification on single user client operating system - starting a new session re
killing of the process.

• The mapping of request to files on disk (resp. to assets) could not be determined
• The interpretation of the application header could not be determined.
• The interpretation of the session description header are unclear and experiments hav

deterministic effects.

Semantics problems concern interpretation of (or deviations from) the standard:

• Implementations’ handling of non-responsive clients: how long should the transmissi
the client be continued? (the RFC proposes a 60 seconds timeout period)

• Implementations’ handling of client crashes: When the client returns to the network w
different DHCP address, how to identify? (the RFC proposes to accept session id
authentication as sufficient)

• Teardown semantics of a TCP session: a TCP session could be able to survive a c
channel close, but how long does the server keep the session state if there is no rec
tion? (the RFC proposes not to keep the session when a persistent connection shuts

• Teardown semantics of a UDP session: how can the server recognize a client crash/r

In spite of all these problems, we have decided that the RTSP RFC is an appropriate spe
tion of a control protocol for our goals. In conjunction with an SDP interpretation as the
presented in the previous section, we can address our requirements with an own imple
tion.

4.6 Operation of LC-RTP and LC-RTCP

This chapters presents our protocols LC-RTP and LC-RTCP in detail. First, the protocol o
tion is explained by showing the actions of senders and receivers in the regular transm
phase and afterwards, in the retransmission phase. Section 4.6.2 specifies LC-RTP, ba
the RTP specification, and Section 4.6.3 specifies LC-RTCP. Section 4.6.4 presents resu
were made during the various tests of the protocol, which show its applicability for use
wide-area on-demand scenario.

4.6.1 Design

The design of the protocol is derived directly from its intended operation. As a protocol
operates in two separate phases, transmission and re-transmission, with different require
we explain the design by presenting the protocol actions in these two phases. The first p
transmission, is supposed to be RTP-compliant. The second phase, retransmission, has
requirement.
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Actions during the movie transmission

• SENDER

The sender streams a movie which is requested by a client as a multicast stream to all re
of a multicast group that includes that client. In order to give the receiver the possibili
reserve exactly the required disk space in case of data loss, it is necessary to send infor
beyond the regular information of an RTP packet. In our case this consists of a byte coun
sender calculates a byte position of the RTP payload, given as the relative position
stream start, and transmits this information with the data in an extension of the RTP hea
connection between the byte count and the file position of the stored movie is not always
essary but can increase cache performance in conjunction with an appropriate buffering
egy or file system.

If possible the byte count should be included in the packet, because it facilitates the
chronization between byte count and the data which are represented by it. For example
byte count is sent in an extra packet, or via RTCP, the sequence of the byte count an
packet can be changed, or the byte count packet can get lost. If the receiver receives o
data packet, it does neither know whether any data is lost nor how much data is lost. Thu
not possible to write the data to the file without buffering large amounts of data or alternat
without risking time-confusing repair steps in a later repair phase, because there is no inf
tion at which position the data should be written in the file.

The byte count can be implemented by as offset-list. By comparing the byte count wit
file position of the portion of data that has already been received, exact loss information c
stored in the offset-list. When the sender receives the message of losses, the offset-list
mapped to the file. If the byte count is equivalent to the number of bytes of RTP payload
has been sent through the network, an encoding-independent storage format can be re
As a consequence it is possible to have different file layouts on the sender- and receive
Each cache server implementation has to transform the mapping of the byte count into it
format. For example one cache server implementation stores the file as raw data and a
stores some header information with it.

As a consequence of including the byte count in the data packet, and the requirement of
ing regular RTP clients, only an RFC-conforming protocol extension was an option fo
including the byte count in the payload of the packet would cause problems for stan
receivers, like most of the clients are.

File at the sender

File at the receiver

Payload for LC-RTP packet

byte count

Packet loss

Left empty for insertion of missing
data at retransmission

000.....000

Figure 22: LC-RTP byte count supports retransmission
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At the end of the movie transmission, an end packet is sent including the last byte cou
order to inform the receivers of the normal end of the transmission including informatio
check whether data preceding the end packet was lost. With this end packet the send
transmitted a whole video as a multicast stream.

• RECEIVER

The receiver stores the data and detects a loss by checking the byte count with the last
rized byte count. If a packet loss is detected, the difference between the two byte counts a
length of the actual packet is computed and this computed size can be reserved on the d
a later insertion of the retransmitted data (see Figure 22). The received payload of the pa
then stored after this reserved gap. Furthermore the loss must be written to a loss list. If n
is detected the received data is stored on the disk immediately.

The computed space in the file in case of a loss detection is reserved for several re
The first reason is the file system. Most of the existing file systems do not support any effi
insert mechanism, so other mechanisms must be implemented. One conceivable s
would be an index list that contains all the starting points of the packets. With this solutio
problem of insertion would be solved, but if a data packet must be searched, a file system
must performed. As a file system seek consumes plenty of time, it should be avoided.
tionally, either the file system would not behave like a regular file system, or the data woul
resemble a regular file.

The solution of reserving the correct amount of space on the hard disk is very simple
efficient, because it preserves the sequential nature of the stored data. And this prop
essential for an efficient use of a hard disk, as seeking on a disk importantly diminish
throughput. Furthermore, this allows LC-RTP to be compatible with multimedia file syst
(e.g. [HaSc95], [MNO+94]) which are penalized by inserting or do not support it at all.

Actions after the movie transmission

• SENDER

After sending the BYE message, the sender starts a timer. This timer should be a multi
the worst case round-trip time (RTT) between the sender and the known receivers. This
can be computed with the periodic RTCP packets that are sent for calculations of the ne
quality. The relevant value can be a worst case RTT, so no special RTT to a special cli
server needs to be stored or computed. During this timer period at least one loss list ha
received from a receiver that has detected packet losses. If the timer runs out without rec
of such a loss list, the sender assumes that no loss occurred during the transmission and
nates the session completely.

If a loss list arrives, the requested data is stored in a schedule list. This list include
requested ranges of data and a counter which indicates how many reporting clients mi
specific data range. The counter is incremented if a loss list from a client arrives that inclu
request for data that is already included in the sender’s loss list. The counter gives an ap
ate strategy some information on a schedule for the retransmission of the lost data. A s
strategy might send the data ranges with the highest loss counter at first, because this
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that the majority of the cache servers get the lost data early and can then terminate their s
and leave the IP multicast group.

Resent packets should be of the same size as the packets that were first sent during
transmission in order to allow a simple storing mechanism at the receiver’s side. The se
mechanism doesn’t need to check the range borders but only to check whether the packe
be stored or not. The byte count that is sent now must be the same as the byte count s
first time, as otherwise no guarantees of the receiver-sided recognition of the packets
made. In the same functional procedure as the packet is sent, the schedule list must be u
This means that the resent data range must be deleted from this list.

When the last entry of the list is processed and deleted, the sender re-sends the end p
order to inform the receivers that this retransmission cycle is over. The sender repeats n
procedure of setting a timer and waiting for new possible loss lists to arrive. This proced
repeated until an application-specific retransmission counter has reached its threshold v
until no more loss lists are sent. The retransmission counter prevents the procedure
repeating endlessly in the case of unexpectedly bad network conditions or in case of misb
ing clients.

• RECEIVER

With the reception of the BYE message the receiver finishes the normal procedure of the
mission of the movie and starts the procedure for initiating retransmissions. To avoid a po
overload of the sender, loss lists are sent from the receivers after a random amount o
This number should be chosen randomly, but below one measured round trip time. The lo
should include all ranges of the detected data losses. If ranges are direct neighbors, they
be combined into one range, in order to keep the size of the list small. This ensures th
additional load of the network remains small. The procedure of sending the loss list afte
main movie transmission ensures that no additional network traffic directed toward the
systems arises during the stream transmission of the movie. With this strategy possib
work load computations and access control mechanisms need not be changed.

Every retransmitted packet is analyzed to find our whether the byte count in the packe
the loss list. If it is, the packet is saved at the indicated position in the file by using, if ne
sary, an offset procedure similar to the one of the sender. Concurrently, the loss list is up
If the byte count is not included in the loss list the packet is discarded.

When a new end packet arrives, the loss list must be checked. If the list is not empty it h
be sent to the sender again. This procedure is repeated until the loss list is empty, in whic
the receiver leaves the multicast group, or until the retransmission counter reaches the a
tion-specific maximum.

To avoid a blocking receiver, the session times out if no end packet or other resent pa
are received after a appropriate time, which span several round trip times.

4.6.2 LC-RTP Specification

The design of LC-RTP was made within the constraints of an RFC-conforming RTP im
mentation. Nevertheless the overview gave a general solution of designing a reliable mu
protocols for VoD-like applications.
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The main problem in mapping LC-RTP into RTP is the byte count, as it has to be inclu
into the header of RTP. This is necessary in order to keep content of LC-RTP packages co
ible with RTP-related packaging RFCs and therefore to make it possible for standard RT
ents to receive LC-RTP streams. Figure 23 shows an RTP header.

The only legal way of inserting the byte count into the RTP header and not into the pay
is the use of the extension header of RTP (Figure 24). By setting the x-bit a variable-le

header extension to the RTP header is appended. A header extension contains a 16-bi
field that counts the number of 32-bit words in the extension, excluding the four-octet e
sion header (therefore zero is a valid length). The other field of the extension head
intended for identifying different header extensions. LC-RTP defines two kinds of he
extensions. They are defined to easily distinguish whether a packet is sent as part of the
stream or during a retransmission phase. The only difference between them is the value
identifier field. Each extension header has, in addition to the two RTP dependent exte
fields, the byte count field. For a current VoD application this field should be 64 bit long,
wrap around of the byte count must be prevented. For other applications a simple 32 bit
may be sufficient.

4.6.3 LC-RTCP Specification

During the usual movie transmission the RTP transmission is made as usual, except f
byte count which is included in the RTP header. At the end of the transmission an end pa
sent. An appropriate way to do this is by sending an RTCP packet. This packet should n
the normal RTCP BYE packet, as this is used for other meanings. Thus, an application d
dent extension RTCP packet must be created. An application defined RTCP packet is sh
figure 25.

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P|X|  CC   |M|     PT      |       sequence number         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           timestamp                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           synchronization source (SSRC) identifier            |
+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
|            contributing source (CSRC) identifiers             |
|                             ....                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 23: RTP header ([RFC1889])

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|      defined by profile       |           length              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| byte count (64 bit) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        byte count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 24: RTP header extension ([RFC1889])
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LC-RTP defines two application defined RTCP packets. The first one is the end packet a
second one is the loss list packet. The NAME field of both packets is set to LRTP, as it h
be a four digit ASCII name.

The only additional data transmitted in the end packet is the last byte count of the se
The name of the packet itself is of enough information for the receiver to interpret this a
end of the normal movie transmission. The list appended into the loss list packet shou
appended as a list of byte count ranges. If the loss list exceeds the maximal UDP packet
should be transmitted in several packets. This avoids any congestion problems with th
work.

After the loss lists are sent the sender retransmits the lost data by using the extende
packets as shown above. These minimalistic modifications show that the main work o
RTP is handled by the logic of the sender and receiver. The extension to RTP is minima
should be ignored by other applications. In this way LC-RTP is compatible with other app
tions that participate in the session, like the display tools. This compatibility is very impor
because it ensures that a cache server update can be made in parallel to a customer re

While testing LC-RTP with usual MBone tools an incompatibility was detected.Vic andvat
do not accept any extension to RTP, so they reject all packets with the x-bit set. A comm
the source code explains that an RTP extension is explicitly forbidden through the min
control audio and video profile. We have not found any RFC-compliant work-around to
problem, but sincevic andvat implement the variable CSRC list, we have identified at leas
non-compliant fix. Since we assume that a cache-based video distribution system wou
use mixers, we misuse the CSRC field to transport the byte count instead of the unsup
extension header.

We believe that for the intended application class, the argue that the header extension
ficiently cheap with an overhead of 8 to 12 bytes per packet. Assuming UDP packets w
typical payload of 512 bytes, our header this causes an overhead of about 1,6%. Furthe
this type of extension is defined in the original RTP RFC ([RFC1889]) and should -theo
cally- be implemented by all RTP implementations.

4.6.4 Experimental Results

To investigate the viability of the LC-RTP protocol for wide-area distribution, we have ma
set of long-distance unicast transmissions, we have not yet examined the scalability in
The long-distance tests are supposed to demonstrate the efficiency of LC-RTP in relat

0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|V=2|P| subtype |   PT=APP=204  |             length            |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           SSRC/CSRC                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          name (ASCII)                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| application-dependent data ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 25: Application defined RTCP packet ([RFC1889])
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TCP, which is a regular file transfer protocol that can retransmit on byte boundaries. In
cases the senders transmit content at most at the regular playback speed of the content

We have started with the following assumptions:

• In short-distance environments such as LAN and WAN, LC-RTP can hardly compete
TCP. TCP will typically finish the complete transmission earlier because LC-RTP m
retransmit a few lost packets while TCP done the retransmissions within the regular
back time.

• In long distance environments, TCP transmissions will usually block during business h
because of congested networks. LC-RTP will experience considerable loss. Howeve
overall amount of data that is concurrently in transmission will be higher for LC-RTP
may be sufficient to end the transmission earlier than TCP.

The sites that we try to include in our tests are

• KOM at TU Darmstadt
• GMD IPSI in Darmstadt
• ETRI, South Korea
• MCRLab at the University of Ottawa, Canada
• NIST, USA

One of the early results was the experience that LC-RTP is RTP-compliant, but that othe
tools may be not. E.g. vic and vat, typically the first examples that spring to mind when
MBone and RTP are discussed, crash when they receive streams that include an RTP-c
ant header extension.

Our goal for these tests was to show that LC-RTP perfoms as well and reliable as othe
distribution protocols (e.g. FTP) and can be used for the reliable distribution of AV conte

We transmited two files one of the size of 6 MB and the other of the size of 20 MB (b
MPEG-I movies) from locations in the US and Canada to a receiver located in at our inst
This was performed 5 times for each file from both loacations each time with a different t
mission bandwidth.
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We decided to perform the tests over a larger distance since we expected to have a
possibilty of losses than it might be in a LAN or at connections in Germany.

For each test information about the retransmission was logged at the receiver and the
nal file and the transmitted file were compared to assure that the transmission complete
essful.

Test results

As shown in Table 6 the two files were always transmitted completly without any errors
results we obtained from the logging we performed during the LC-RTP sessions show
retransmissions had to be made in allmost all of the test. The logging information also
firmed that the amount of retransmissions increases with the size of the bandwidth we tr
send the files. Which is definetly an expected behavior. If the bandwidth is set much h
than the actual bandwidth of the link between sender and receiver multiple retransmissio
one packet are more likely. But also in these cases the files were transmitted without any

Bandwidth
[kBit/s]

File Size
[MByte]

Successful

125 6 yes yes

20 yes yes

250 6 yes yes

20 yes yes

500 6 yes yes

20 yes yes

1000 6 yes yes

20 yes yes

1500 6 yes yes

20 yes yes

Table 6: Test Results
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During the tests it also became clear that the quality of the link between Washington, D.C
Darmstadt is better than between Ottawa and Darmstadt.

We also transmitted both files via FTP from both locations to Darmstadt to obtain some i
mation about the performance of a traditional file transfer protocol.

Performance of LC-RTP

After the implementation of LC-RTP was finished we did some measurement to confirm
assumption that LC-RTP is on one hand reliable and on the other hand performing at le
well as other transport protocols. Therefore we did some long distance measurement be
Germany, the USA and Canada. The test that were performed indicate that both assum
are fulfilled by LC-RTP.

During the tests we realized that LC-RTP did perform well in point-to-point tests wh
leads us to the conclusion that LC-RTP must not be used in multicast scenarios only.

Bandwidth
[kBit/s]

File Size
[MByte]

Max. BW
[Bit/s]

Duration
[s]

NIST Ottawa NIST Ottawa

125 6 1047552 1022800 41 42

20 1024048 1024000 160 160

250 6 2147480 2045216 20 21

20 2048104 2048000 80 80

500 6 4294968 3904512 10 11

20 1561080 4096000 105 40

1000 6 8593216 1169880 5 37

20 8192008 20

1500 6 8589936 1213296 5 36

20 5461336 30

Table 7: Test Results (Bandwidth, Duration)

File Size
[MByte]

Max. BW
[Bit/s]

Duration
[s]

NIST Ottawa NIST Ottawa

6 576000 328000 71 126

20 568000 304000 273 512

Table 8: Test Results FTP
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Possible Operation Modes

Caching and prefetching of AV content is a powerful method to increase overall perform
in the Internet. LC-RTP is designed for this environment. LC-RTP is a simple and efficient
able multicast protocol compatible with the original RTP. It needs to be implemented on
web servers and proxies. These servers have to be adapted to LC-RTP and they need m
list implementation, so the adaptation is a very simple procedure. Other tools are not aff

All resources are used carefully and the extension permits an implementation to use
ple method to keep the sequential nature of the stored data without buffering. This metho
siders hard disk performance and possible network structures without wasting resource
main memory and CPU power). Its intention is to allow a maximum number of concur
streams handled by the cache servers. As no additional packets are sent during the regu
sion and the packet sizes are hardly bigger than those of an standard RTP sender, all
control mechanisms and network quality computations can remain unmodified. The onl
ference to a normal transmission is the fact that after the session, a retransmission of t
packets to receivers with LC-RTP extensions is performed. A conforming, standard
receiver would recognize this as a normal session termination, and would not be affe
Unfortunately, we have observed that popular tools such asvic andvat do not completely con-
form to the RTP RFCs. A fix for this situation has been implemented, although LC-RTP’s
compliance is violated in this case.

By using the same ports as the normal communication, no address conflicts will occur.
ticast ensures a minimum load increase on the network, because the packets are sent
members of the multicast group, during a transmission to a regular customer.

LC-RTP also supports late joins and early ends of the transmission. The full value o
LC-RTP extension in combination with a special cache server is not yet achieved by s
caching mechanisms. It is necessary to combined this protocol with something like enh
Patching technique ([HCS98], [GLZS99], [CaLo97]) with LC-RTP, to achieve a relev
decrease in the number of redundant transfers. Since this requires a change in the cach
ers’ semantics for stream joining (multiple multicast streams must be joint into a single
we have decided to implement RTP classes with hooks for fine-grained modifications to
tional blocks.

4.7 Evaluation

Our protocol suite is designed for this environment to allow the investigation of the most p
erful method to increase the system performance of Caching and prefetching in an VoD
ronment. LC-RTP is a simple and efficient reliable multicast protocol compatible with
original RTP. It needs to be implemented only in library and cache servers, which nee
adaptation to the protocol suite. Other tools are not affected.

All resources are used carefully and the extension permits an implementation to use
ple method to keep the sequential nature of the stored data without buffering. This metho
siders hard disk performance and possible network structures without wasting resource
main memory and CPU power). Its intention is to allow a maximum number of concur
streams handled by the cache servers. As no additional packets are sent during the
movie transmission session and the packet sizes are hardly bigger than those of a
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enhanced RTP sender, all access control mechanisms and network quality computatio
remain unmodified. The only difference to a normal transmission is the fact that after the
sion, a retransmission of the lost packets to receivers with LC-RTP extensions is perform
conforming, unmodified RTP receiver would recognize this as a normal session termin
and would not be affected. Unfortunately, we have observed that popular tools such asvic and
vatdo not completely conform to the RTP RFCs. A fix for this situation has been implemen
although LC-RTP’s RFC compliance is violated in this case.

The protocol suite also supports late joins and early ends of the transmission. Howev
full value of the LC-RTP extension in combination with a special cache server is not ach
by simple caching mechanisms. Only in conjunction with a stream scheduling and/or dis
tion strategies such as those of Chapter 2 and Chapter 3, a relevant decrease in the nu
redundant transfers can be achieved. Since this requires a change in the cache servers’
tics for stream joining (multiple multicast streams must be joint into a single one) we h
decided to implement RTP classes with hooks for fine-grained modifications to funct
blocks.

One further enhancement would be the reduction of the overhead for retransmission, whi
proprietary mechanism and not necessarily RTP-compliant: a combination with the p
block scheme of [NBT97] for retransmissions may reduce the required bandwidth additio
It will be even more efficient than the original parity scheme because the LC-RTP is
based on the loss collection reports, to find the optimal parity group size before startin
retransmission.

A performance enhancement could further be achieve by combining the protocol suite
an adequate file system.It works best with a file system that is designed to reserve space
file system for the data that would have been contained in lost packets, without relevant p
mance overhead. This data should be easily inserted into this reserved space when retr
sions arrive at the receiver, again without much performance overhead. Of course, the pr
suite works also with standard file systems (such as Ext2 for Linux) or multimedia file sys
(such as IBM TigerShark for AIX). To achieve a better performance, we have been workin
a file system called OCFS - the overwrite capable multimedia filesystem, which extends L
Ext2 with several ideas taken from the Fellini multimedia filesystem. It is not sufficie
developed yet to present details. For a design overview, see Section 10.1.
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5. Security and Copyright Protection
The goal of this thesis is the demonstration that decentrally organized wide-area video dis
tion systems can be a feasible approach towards the achievement of commercial vid
demand. Therefore, this thesis presents missing links. Historically, video-on-demand sy
have been kept closed and centralized, which I consider an inhibiting factor for both the s
ity of those systems as well as wide-area distribution of multimedia content in general. C
mercial success depends on the independance of content providers and service pro
content providers must be enabled to collaborate with an arbitrary number of service prov
as the service providers must be enabled to work with multiple service providers.

The independance of the collaborators makes such an open environment more susc
for theft and illegal re-distribution than a closed, centralized system. To address these se
issues, this chapter provides an overview over existing as well as new arguments and
niques that make wide-area distribution of video with caching applicable. The aspects th
considered are secure transmission and copyright protection. The first section ref
approaches for encrypted and partially encrypted transmission of video content, which a
evant to the goals of this thesis but which were never a key research topic in preparation
thesis. This is followed by a presentation of our complementary protection mechanism c
Partial Corruption that was initially presented in [GMDS98]. The partial corruption appro
requires that consideration is given to protection quality that can be achieved on video e
ings, which is done in the following section. After the discussion of protection for the trans
sion pathes, copyright considerations are addressed in the following sections. First, a g
overview of existing watermarking techniques is given, followed by a section that prese
multicast-capable marking approach called the Chameleon stream cipher that was prese
[AnMa97]. After a short section on the error insertion that was applied as an approac
marking in our partial corruption scheme, a final section integrates ideas from partial co
tion and Chameleon into a new delivery scheme, Remark, that applies encryption and m
mechanisms for video delivery in distribution chains that include intermediate untrusted
age nodes. With this new approach, it is possible to solve the security concerns in a distri
system with intermediate untrusted caches.

5.1 Secure Transmission by Encryption

Approaches to video encryption can be considered just another application of typical cr
graphical tools, and in that case, it is subject to the same attacks or criticisms. Typical en
tion approaches can be subdivided into two groups: stream ciphers and block ciphers [S

Stream ciphers work on single input characters that are transformed based on the key
state changes in the cipher according to the previous input character. They are suita
hardware implementation, very fast encryption, or small amounts of data that need to be
mitted with small delay and without bandwidth waste (such as audio data without paddi
telephony).

Block ciphers work on larger blocks of input data (typically 64 bits) with transformat
based on a key and potentially, on the previous input block. Block ciphers are suitable fo
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• software implementation,
• strong encryption,
• large amounts of data,
• data that is not time-critical and can be collected until an encryption step is affordable
• data that can be transmitted with padding bytes.

[Sta95] describes four operation modes for block ciphers: Electronic Codebook, Ouput
back, Cipher Block Chaining and Cipher Feedback. Figure 26 shows sketches of the enc
steps of these operation modi, where plaintext blocksPi are encrypted into cipher blockCi
using an encryption step parametrized with a keyK. The crossed circle symbolizes an XO
operation. The figure demonstrates the dependance of Cipher Block Chaining and C
Feedback on the plaintext. While this characteristic increases the strength of the ciph
straight-forward application on streamed media requires lossless transmission. Since th
not be guaranteed in our scenario, the application of this kind of operation mode would re
session synchronization points. Since Eletronic Codebooks are easily decrypted, this
Ouput Feedback as a straightforward mode with streamed video.

The initial approach towards video encryption was the straightforward encryption of the w
stream. Various more efficient encryption algorithms were implemented recently, typically
way that makes an involvement of an MPEG ([ISO93]) parser necessary. To save band
partial encryption was introduced. An initial approaches presented in [KVMW98] is base
the content-independent encryption of bytes with constant-sized intervals of unencrypted
tent in between. While the content becomes unpresentable, the encrypted data is easily
fied and can be attacked in a variety of ways.

K K K

PiPi-1 Pi+1

PiPi-1 Pi+1 PiPi-1 Pi+1

K

PiPi-1 Pi+1

CiCi-1 Ci+1

K

CiCi-1 Ci+1

K K K

CiCi-1 Ci+1

KK

CiCi-1 Ci+1

(a) Electronic Codebook (b) Output Feedback

(c) Cipher Block Chaining (d) Cipher Feedback

Figure 26: Operation modi of block ciphers (cf. [Kun98])
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Maples and Spanos present an approach of partial encryption exclusively of I-fram
MPEG movies ([MS95]). [AgGo96] shows problems in I-frame-only encryption; they can
quently be re-constructed from intra-coded blocks in P- and B-frames. They encrypt P- a
frames as well. SEC-MPEG ([h:MeGa94]) is an application of this technique - however
motion vectors do still allow to recognize object borders. The authors of [AgGo96] pro
shorter GoPs to increase the number of fully encrypted I-frames, which is inappropriate i
scenario because it increases the required bandwidth significantly.

Tang proposes a scheme of reordered DCT coefficients ([Tan96]). This has the advant
operating on decompressed video with an overhead that is close to negligible since on
order of DCT coefficient processing must be changed. Futhermore, the protection agains
force attacks is better than in standard encryption approaches such as DES and IDEA.
ever, the efficiency of compression is reduced, which increases the required bandwidth;
tical analysis allows frequently a re-ordering of the DCT coefficients. Another criticism is
the approach requires strong interaction with the presentation software and hardware; in
this encryption on demand is extremely expensive since the content needs to be fully pa

Qiao et.al. propose a scheme called VEA (video encryption algorithm) that works e
sively on the data bytes and does not interpret the MPEG data ([QNT97]). They explo
entropy in the MPEG data stream to use part of the video itself as a one-time key for the v
The video is segmented into blocks that have a size that fits to the underlying encryption
rithm. Every other block is XOR’ed with its neighbour and left otherwise unmodified. T
neighbour block is fully encrypted. This approach reduces the cost of encryption by a
47%. Still, each byte of the video data is manipulated once for each transmission. It is im
nently important to use this approach in a content-independent way because an analysi
otherwise decode the XOR’d elements and use this knowledge to find the encryption ke
probability of a succesful attack grows when the approach is applied recursively.

Kunkelmann ([Kun98]) works on JPEG-based codecs and requires a modified pars
partial encryption. Only the DC and low frequency AC coefficients are encyrpted.
approach is flexibly scalable by the number of encrypted coefficients. The most relevant
coefficients of a DCT are always encrypted, and depending on a parameter that defin
strength of the encryption, additional coefficients of the DCT block are encrypted as we
refinement makes different decisions for inter- and intra-coded blocks. Kunkelmann
present in [KRSB97] a variety of applications of this partial encryption of the complete v
stream, for use with a security gateway, and come to the conclusion that a mix of parti
stream encryption and variable length code encryption is the most efficient for their app
tion. They consider a partial encryption of 10% of the data appropriate for VoD applicat
while full protection requires a major part of all data to be encrypted to prevent reconstruc

5.2 Secure Transmission by Partial Corruption

Under the impression of the video protection by partial encryption, we developed anothe
and computationally cheap solution and presented it in [GMDS98]. In contrast to ty
approaches to video protection by encryption, which are generically applicable, inclu
applications such as video conferencing or video archiving, our goal was specifically the
tection of videos in a wide-area delivery system in which (potentially encrypted) videos
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stored on untrusted and (potentially) insecure intermediate nodes for a relatively long
The specific goal of commercial video-on-demand inspires two demands:

• futility : a theft of movies that are stored in untrusted caches should be futile
• notification: it should be necessary to contact the content provider for each retrieval

movie

The existing encryption approaches are relatively computing intensive and put a heavy
on a VoD server when they are executed in real-time. Since an encryption key can not
used for any two receivers due to thenotificationdemand, tranditional encryption mechanism
have to be performed for each receiver of a stream independently. Kunkelmann et.al. rep
increase of CPU utilization by 10.5% for the playback of the video stream when decrypti
necessary. The server would spend this amount of computing power per delivered stream
if the computing power of servers would increase in such a way that these resources co
expended, such a scenario has additional negative impact on the tuning options that are
able for servers. Since large parts of all data streams need to be manipulated for each r
the optimizations which have been investigated in earlier video server work and wor
aggregating requests such as batching ([DSS96]) are reduced to schemes for unload
servers’ disks; memory, CPU and networking requirements grow linearly with the numb
concurrent requests due to the per-usage processing.

Our intention was the development of a mechanism that is able to work with caching
prefeteching to reduce the requirements of the networking infrastructure for our distrib
system. The mechanism should be computationally cheap for the content provider’s s
and the cache servers, in order not to overload the server with the task of modifying the c
for an arbitrary number of concurrent unicast transmissions which would make the applic
unscalable.

With the two goals in mind, the Partial Corruption approach was developed, w
addresses these demands but does not provide a generic solution to cover video encry
general. For some multimedia applications such as video conferencing, perfect protectio
major requirement of the communicating partners. In commercial VoD, not the perfect pr
tion of content is a necessity, but a reduction of the viewing quality below an acceptable le
already sufficient to solve thefutility demand.

Partial Corruption works by unencrypted, but partially corrupted transmission of the bulk
movie’s data, which allows the use of caching, and the additional encrypted point-to-
transmission of a minimal amount of data that is necessary to reconstruct the complete
media content. This unloads the servers and networks from the necessity of client-sp
encryption and from the subsequent point-to-point transmission of complete movies; it a
the use of caching for the corrupted, major part of the movie. The corruption works by des
ing part of the data entirely in the freely distributed part of the movie. Since the data th
required to complete the movie is not present in the corrupted movie at all, attackers ca
break any encryption algorithm to decode the missing information.

In contrast to many partial encryption approaches, the corruption of movie data in
approach is content-independent. Content-independance, in this context, means that fo
ing parts of the original movie that are to be corrupted, no consideration is given to its con
– 78 –



rupted
t con-

m is
art of
ally
sec-

tomer.
ually
ation

opy

r, e.g.
om-
low
out-

key,
ronize

om a

am or
made

t por-
over

hich
ssume
lished.
such as video data, audio data, or header information. Correct replacements for the cor
part of the data are transmitted to the customer by means of an encrypted point-to-poin
nection.

The organization of a distribution system that supports this protection mechanis
sketched in Figure 27. The video transmission is performed in two phases. The bigger p
the video is corrupted and it is made (from the content provider’s point of view) public
available in cache servers in the first phase (this part is labelled “corrupted video”). In the
ond phase, a point-to-point transmission is used to deliver the missing bytes to the cus
These missing bytes are fully encrypted with a client-specific key when a video is act
requested (“unicast portion”). This scheme provides the content owner with the inform
that a request has taken place, which solves also the thenotificationdemand. It gives the con-
tent provider the billing option, and provides an identification of the receiver of a perfect c
of the movie.

The unicast portion is encrypted on the server side using a personal key of the receive
a key provided by a trusted third party. If the unicast portion is small in comparison to the c
plete video, the computational load of encrypting this portion of the video is relevantly be
that which is induced by using an MPEG parser. Also, less interaction with the optimized
put paths of video servers or video cache servers is necessary.

At the receiver’s side, the unicast portion is decrypted using the personal decryption
and established synchronization approaches (e.g. from [JG97]) can be applied to synch
the unicasted partial transmission with the main part of the data which is received fr
nearby cache server.

The decision whether the encrypted data can be consumed directly from the data stre
whether a download is necessary depends mainly on the observed throughput. It can be
independently by the client while the stream is being received. Assuming that the unicas
tion makes up 1% of an MPEG-1 video and repairs defects that are uniformly distributed
the length of the movie, the required point-to-point throughput is approximately 2 KB/s, w
is streamable in large parts of the Internet nowadays. For the bulk of the video data we a
the presence of a cache server to which a 1.5 MBit/s streaming connection can be estab

Real-time Real-time

Corrupted

Unicast

Resynchro-

Server ClientCache Servers

Key
Encoder Key Decoder Key

Encoder Decoder

Distributor

nization

Figure 27: Distribution System for the Partial Corruption approach

Video

Portion

Unicast Transmission
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5.3 Protection Features of Partial Corruption

To the extent described in the previous section, our approach can be applied content in
dently and format-independently on all kinds of streamed media data. This does not mea
the approach provides an effective protection for all encoding formats. The small subset o
that we intend to corrupt is not generally sufficient to confuse an arbitrary encoding algor
The reason for this is not the generic use of encoding formats but the reduction of the k
edge about the stream which is necessary to corrupt the data sufficiently to remove perc
information. We have applied the scheme to MPEG-1 [ISO93], for which it is appropriate.
certainly also applicable for MPEG-2 [ISO96] or H.263 [ITU96] with Huffman codin
[Huf52]. Other video compression approaches such as fractal compression should be a
as well. For plainly intra-coded formats such as Motion-JPEG [ISO93b], reconstructio
comparison of neighbour frames can be automatized easily; applying our scheme to this
requires at least a reconsideration of the content independence.

In typical MPEG-1 groups of pictures (GoPs), however, I-frames, which are the basi
repairing frames, are sufficiently far apart in time to make this automatic reconstruction
cult for large parts of the video. D’Ardia et. al. have presented results in [DFV97] that sh
relevant variation between consecutive I-frames in most kinds of video transmission su
sports, news or movies. The scheme could probably not by applied to talk-shows becau
low variation between consecutive I-frames allows reconstruction of the sequence.

We have investigated the percentage of data that needs to be corrupted in an MPEG-1
stream to reduce the video quality to a ‘teaser’ or worse quality. ‘Teaser’ quality is a pres
tion quality that makes a content easily recognizable but unenjoyable without decryp
repair or descrambling. PayTV networks are frequently applying ‘teaser’ quality scramblin
attract customers. In contrast to other approaches, which work on the uncompressed i
we make use of the two vulnerabilities of MPEG to data corruption or data loss ([GMDS

• error propagation by relative encoding through motion vectors
• error propagation by decompression

The first vulnerability is that the destruction of an MPEG-1 I-frame affects all frames in
following GoP. In a video that has been compressed with a typical GoP length of 15 frame
error is expanded in time by the relative decoding in P- and B-frames and will often affe
15 frames.

The second vulnerability is introduced by the compression scheme. MPEG-1’s Huffm
compression improves the effectiveness of our intentional corruption of single bytes of
Since the Huffmann algorithm is bit-oriented rather than byte-oriented, a typical Huffm
decoder implementation is unable to recover from the error for the rest of a data segmen
thermore, a complete Huffmann decoding of the data is necessary before the corrup
detected because all bytes except for the special values 0xff and 0x0 are meaningful
Huffmann decoder. As a result of this error propagation from a corrupted byte to the res
data segment in a frame, the number of bytes that need to be destroyed to corrupt a com
MPEG frame completely is much lower than the number of bytes necessary for an un
pressed frame. To verify this second vulnerability, we have tested various clips and para
sets. Tested players are listed in Table 9.
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Because of the error propagation, the destruction of larger blocks with the same overa
of corrupt to correct bytes turns out not to be appropiate. The reason for this is the effec
Huffmann decoders generate corrupted data from the bytes immediately after the firs
rupted bit. This effect is not increased by longer series of corrupted bytes. The corrupti
single bits may be as efficient as the corruption of bytes, but it is not advisable in our
because the bit changes increase rather than decrease the number of CPU operations.

As mentioned above, the mechanism of our approach is content-insensitive. It is gen
assumed that reconstruction of headers for MPEG-1 is relatively simple because c
encoders produce CBR streams and use always the same header data anyway. Thus, i
experiments we took care that all headers of a video are correctly re-inserted. The rem
errors are disturbing enough to yield results that are unacceptable for commercial exploi
We have also reconstructed the audio parts of the stream in most of the tests for a few re
First and foremost, the players synchronize their timing to the audio clock and we want
remove the effect of timing errors from our experiments. Second, in spite of the conti
operation of the ActiveMovie player, Windows would frequently hang when the audio de
drivers received too much corrupted data. Third, measuring the level of destruction in an
track requires devices that we did not have available.

Quantitative Observations

We started experiments with a destruction ratio of 1%, assuming that this would not be
cient to destroy the video sufficiently to render it unviewable. However, using an error size
byte, the error propagation rendered movies unplayable to two MPEG players (ActiveM
VideoCharger Player) and showed only artifacts in other (MpegTV). This observation
made even after full reconstruction of all headers and the complete audio stream. Fig
demonstrates the effect that the corruption of 1% of randomly chosen bytes has on a
image. Since the basic compression mechanism of JPEG images and MPEG I-frames

All of our test clips were approx. 1.5 MBit/s MPEG system streams from various sour
and decoders. Movie lengths were between 17 and 615 MBytes. We have performed
playback experiments using various MPEG-1 players on various platforms:

Berkeley mpeg_play SUN Solaris

MpegTV’s mtv Linux is a trademark of Linus Torvalds

MpegTV’s mtv SUN Solaris

IBM VideoCharger Player (based on
Microsoft ActiveMovie)

Microsoft Windows 95

IBM VideoCharger Player Microsoft Windows NT

Since mpeg_play is incapable of handling errors, and both mtv and VideoCharger w
more or less identical on all platforms, these are effectively two tests.

Table 9:  Players used for Partial Corruption Experiments
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same, the reader gets a good impression of the effects that this destruction has on an
movie.

Subsequently, we considered even lower error rates and found 0.5% to deliver bad q
and 0.1% to provide a quality sufficient to read blocks of text that remain immovable for
eral seconds, e.g. in the trailers. With these error rates we are still adequately above c
capabilities of restoration to good quality. Currently, these mechanisms are able to han
error rates of about to 10-7 well (which is equivaluent to a lower byte error rate due to possi
multiple hits in bytes). The rather limited restoration capabilities may be due to the fact
this kind of restoration is not a research topic at this time.

Here, a question comes in to focus: which options are available to a data pirate? Most
ably, we have to add additional security mechanisms. We assume that the encryption alg
and the key exchange mechanisms protect the data from being stolen by an eavesdropp
ing transmission (Figure 27) and thus, that the encrypted part of the content remains saf
primary concern is then whether the unencrypted data is protected from restoration.

In our experiments we have distinguishedfixedandvariable byte values used for the cor
ruption of the original stream, and the applications of this corruption atperiodic or variable
offsets from each other.

An attacker may easily identify both a fixed byte value (by gathering statistics on freq
cies, see Figure 29) and a periodic offset (by the use of auto-correlation). Since this mak
toration easier, neither should be used to ahieve better concealment. To preven
identification it is essential to vary both the replacement distance and the replacement v

Achieving variable offsets

To get around the corruption of bytes at equal distances throughout the video, we app
Poisson distribution and a random seed per movie. We write bytes from the original vide
file (the unicast portion) and afterwards, destroy those bytes in the original video. The
value is transmitted to the receiver before all other content that is sent in the unicast tran
sion. The client’s implementation of the distribution function must be identical to the serv

Figure 28: Original JPEG image and the same image after the corruption of randomly c
sen 1% of all bytes
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e.g. we have used the rather limited, but floating-point free, implementation of the C
library [h:CNCL96] with 32 bit signed integers. Under this assumption, the client is abl
replace the corrupted bytes with the decrypted bytes when it receives them over the u
connection.

Selecting appropriate replacement values

In our first approaches we evaluated the effect of inserting constant values (bytes) into
streams for simplicity reasons. However, we found that such bytes were too easily identifi
an attacker. We have responded to this by trying to replace the correct byte with a corrup
in such a way that the chances of identifying this byte as corrupt by statistical analysis o
stream or part of the stream is minimal.

To do this, we have examined the entropy of the video data. Signal theory states that
information density of a data set requires a high entropy value of that data set. The entr
computed as follows: the relevanceI of a bytei value depends on the frequencyhi of that byte
i in a data set ([Hil87]).

With (1), the entropyH is calculate as the average relevance of all byte values by

Formula (2) allows the computation of an information difference
between a data sethorig and a modified data sethnew. A positive value indicates and increase
entropy, a negative value indicates a decrease in entropy. If the entropy value is high all
subsets of a data set, it appears chaotic.

We have examined the entropy value of MPEG-1 movies and we have found high en
values between 97.4% - 99% in our example movies, indicating a high information den
which is also perceived as a high level of randomness or a as very chaotic appearance
goal is to present a less informative stream you have to present something like a blank
The optimum would be that some special chosen bytes are presented very often and t
quency of the other values converge to 0. The probability of finding less frequent values i
but especially those values should be changed. However, the most frequent bytes in MP
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Figure 29: Byte value frequencies in original movie and after fixed corruption
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header and padding bytes. Thus, a byte that assumes either of these values that is obvio
the wrong place could be identified quickly, which simplifies reconstruction of the orig
(Figure 29 demonstrates the ease of a statistical identification of such a value). We con
that lowering the entropy in this way is ineffective. To hide the corrupted bytes in su
movie, it is appropriate to use an approach of “desinformation”: we try to select corru
bytes for insertion in such a way that the entropy is strictly increasing. At the same time
corrupted byte replaces a correct one in a data set of high information density, which im
that a byte with high information content is removed - the impact of the replacement o
information itself is extremely high. Since the increasing entropy is perceived as an incre
chaotic appearance of the content, it is harder for an attacker to indentify the corrupted b
statistical means.

Implementation

Although not strictly required by the Partial Corruption approach, we apply our corrup
approach to the data of a video stream as it is streamed. We are able to control wheth
want a higher or a lower entropy because we can choose the value of the corrupted byte
output stream freely.

Control or padding bytes have high frequencies. Thus, their relevance in the calculat
the entropy valueH is low according to formula (2).

Because the entropy of compressed video streams is typically very high from the star
most effective to choose the least frequent byte from the stream to replace the original va
any position. To increase entropy means that all values should come close to an identic
quency.

Thus, choosing a value with high frequency (and it is very probable to be hit) and repla
it by a value with low frequency (optimum would be the value with lowest frequency accor
to formula (2)) has the greatest effect on the overall entropy value, which reaches its max
with a uniform distribution of all byte values.

For our scheme, we have decided to simplify the finding of these least frequent va
Instead of collecting statistics of the complete video stream, we select the value for ins
by identifying the bytei with the lowest relevanceI(hi) by calculating on all
bytes that have been observed previously in the stream.

Figure 30 demonstrates the nearly invisible changes in byte frequencies that can be ac
by this means: even the differences in the byte frequencies between original and manip

I hi( ) k hilog⋅=
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Figure 30: Byte value frequencies in original movie and after statistical corruption
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movie are hardly detectable. Thus we assume that the optimal fill byte value for hidin
replacement inside the stream can be found by observing the byte frequencies. Note t
probability to change a byte value with high frequency is high, although not optimal in
case since we do not search actively for frequent bytes in the stream.

A potential danger to this approach would be the use of exactly the same formula
attack to identify the positions that have been manipulated by us. Since the entropy of M
streams is extremely high from the start, this approach can not be used to identify the po
of these bytes once that they have been inserted following our approach.

Conclusively, we can state that this approach to partial corruption is a direct countera
to frequency analysis that is used in all statistical attacks.

5.4 Watermarking for Copyright Violator Tracing

The schemes presented so far protect from the theft of data that is moved into and sto
caches. However, an authorized receiver of the movie, who has the full quality data ava
may choose to record and resell it. Such a customer is typically considered acopyright violator
(sometimes also called atraitor).

The prevention of such copyright violations is hardly possible unless dedicated hardw
used that is protected from manipulation by the customer. Since such an approach is unli
succeed with video-on-demand (consider analog capturing of television screen), the pr
copyright violations is a more realistic issue. Major efforts in this direction are currently c
ducted by watermark researchers under the labelfingerprinting. The idea is to insert customer
specific marks into a movie. The unauthorized reseller may decide to request the movie
ple times or to cooperate with another copyright violator in order to use a collusion atta
voting mechanism) to eliminate the marks (we must always assume that the protection
nique is known). It is important to find a scheme that will yield a sufficiently large numbe
remaining marks to single out the unauthorized reseller and take further measures to pro
contract violation. In this context, it is acceptable that the content provider needs to use a
force approach to identify marks that remain after the execution of voting steps. Fingerpr
is basically watermarking with the specific goal of identifying copyright violators, wh
watermarking is more generally applicable. Thus, an introduction requires an explanati
watermarking and its application in fingerprinting.

Watermarking is applicable to all kinds of media: still images, audio, video, and even
modelling. In this context, mainly video is of interest. Many of the existing video waterma
ing scheme are extensions of still image watermarking techniques. The latter must pe
well with respect to the following criteria ([Ditt99]):

• visibility: often, the watermark should be hidden completely from the human perceptio
rare cases, it is supposed to be visible

• robustness: a watermark should be resistant to attacks such as de- and re-compressi
metrical transformation, shearing or zooming

• capacity: the amount of information that a watermark can carry
• complexity: the introduction of a watermark into a content should be of limited comple
• security: the ability to exactly identify one or more copyright violators
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Video adds changes the requirements to a watermark and adds some more criteria to
whether a marking approach is applicable ([Ditt99]):

• authenticity of order: the watermark should be resistant to, and possible prove, a cha
order in the frames of a video

• modified visibility requirements: watermarks that remain invisible in still images m
become disturbing in videos

• modified robustness requirements: watermarks need to resists cuts, re-ordering, inter
coding, filtering and scaling

• modified complexity requirements: the performance of insertion and detection algorith
even more important for long videos

• modified capacity requirements: the insertion of information into videos simpler than in
case of images since more data is available to insert the marking information

• error correction: the increase in available capacity allows the introduction of redun
information into the watermark

Fingerprinting consists of four elements:

• the identification of potential markable spots in the content that must be protected
• a watermarking approach to introduce the information into the content
• a fingerprinting algorithm that selects the marks for insertion, based on the numb

receivers and the required security level
• a detection tool that can identify the copyright violators who have cooperated to remov

marks in their respective copies of the content

[Ditt99] provides a very recent overview of existing watermarking and fingerprint
approaches as well as new approach and detailled evaluations.

According to [DBS+99], a fingerprint that is intended for unqualified identification of co
right violators who cooperate to identify and remove the unique marks that they have rec
must fulfil the following condition: if a protection against a collaboration of up tod attackers (a
so-called collusion attack) from a set of up toq users is requested, it is necessary to identify
least marking positions in the movie. The number of marking positions is identical to
length of the fingerprinting key. Keys are generated in such a way that each group ofd custom-
ers from theq potential customers share exactly one mark that is not shared with any othe
tomer. This computation implies that the attackers have an advantage over the defenders
copyrights. For a linear growth in the number of collusion attackers, the size of finger
must grown potentially.

These marks must be hidden in the movie by a watermarking approach that is unperce
to humans; it is also important that the same marks from different keys are introduced in s
way that a collusion attack can not identify the existance of the mark from the differenc
their marking effect. [Ditt99] presents a watermarking approach that is able to introduce
fingerprints with additional redundancy to increase the robustness of the mark.

All existing fingerprinting schemes have a relevant drawback: either the marks are
duced at the receiver side of a transmission, which is inherently insecure, or they requi
personal delivery of the marked content to each customer and thus, can not interopera
multicasting or caching.

qi
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An alternative technique that can be used to insert personal marks, and which c
extended to use multicast and caching is the insertion of random marks. Like a regular w
marking approach, this can be exploited to prove copyright violation in a way that make
danger of manipulation to the decoder software irrelevant. The following sections are
cerned with such techniques.

5.5 Marking with the Chameleon Stream Cipher

Chameleon is a stream cipher for the integration of copyright violation tracing for data str
that are distributed by multicast. It was proposed in [AnMa97]1. Roughly, it works by encrypt-
ing a data stream with one key, by transmitting the encrypted stream and then inserting p
random errors into the data streams during decryption by only providing decryption keys
are slightly different from the encryption key (an application-dependent number of bi
negated). The generated error is minimal and differs from one customer to another. If the
tent can be segmented into equally-sized blocks, such as uncompressed audio strea
scheme allows the exclusion of errors from large parts of these blocks.

Specifically, Chameleon is not assumed to be working on its own, but always in com
tion with a stream cipher that does relevantly stronger encryption than Chameleon itself -
meleons goal is primarily the introduction of marks into the stream, not encryption.
original Chameleon mechanism works as shown in Figure 31.

We extend this mechanism by random permutation of the chosen long words of step 2. W
that additional step, marks would always appear in exactly the same bit position, and col

1. Thanks to Fabien Peticolas, who pointed to this protection approach that works with multiple decry
tion keys.

1. First, a key a for a random number generator is chosen.
2. Next, a set of random long words is chosen, e.g. 512 kByte of 64 bit words, ie. 216

words. This is called the key B.
3. Using the random number generator (initialized with key A), k 64 bit-aligned 64 bit

words are chosen from key B.
4. The k chosen words are XOR’d with each other and with a word of the plaintext.

Figure 31: The Chameleon algorithm
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attacks have a better success probability when the number of error bits in the key B is low
extended mechanism works as shown in Figure 31.

Using this scheme, the stream is encrypted and transmitted to the customer. Each cu
receives a personal key B’, which differs from B in a variety of random bits, and receive
key for the random number generator A. Computations in Section 10.2 indicate that 212 is a
good number. The customer owns also the random number generator. Using key A to st
random number generator, the customer draws the exact sequence of words from B’ a
were used for the encryption, and permutates key B’ in the same way as well. The resul
words are XOR’d with the encrypted content and produce the defective plaintext. With
number of XOR’d words k=4 and 4096=212 marked bits, this bit error rate reaches just belo
0.1%.

Problems

The Chameleon cipher is a lot cheaper in terms of data transfer than the partial corru
approach, since e.g. it does not add any transmission overhead to the original stream at
one of Chameleon’s problems is that the movie is still perfectly intact until it is decryp
which allows an attacker who is able to perform a decryption to escape unrecognized.

In spite of the good value for the number of bit errors in a key, this introduces another pro
which becomes visible when the stream is decrypted with the personal B‘ key. With this n
ber of marked bits in keys, and a straight-forward use of this key in decryption, we hav
unacceptable number of errors in the decrypted movie. For example with approach app
an MPEG-1 codec, this would be ruinous as the bit error rate effects a .75% byte erro
which we have shown to be sufficiently destructive to distribute the remaining informa
entirely without encryption (see page 81).

The Chameleon paper offers an approach to this problem. If too many errors are count
ductive, use key A to select bytes that can be defective; Figure 32 shows such a selection
A is unique per movie and not per copy, all copies in a collusion attack are affected in the
bytes. These bytes will be identifiable by the attackers because they have the keystream
ator available but the protection from collusion attacks remains. The reason for this i
explained in the original paper, but the reason that an attacker would have problems to r
a manipulated byte with a correct one is the high entropy of the movie (compare with the

Figure 31: The extended Chameleon algorithm

1. First, a key a for a random number generator is chosen.
2. Next, a set of random long words is chosen, e.g. 512 kByte of 64 bit words, ie. 216

words. This is called the key B.
3. the words that are chosen in step 2. are permutated and shifted randomly (by drawin

64 bit words from the keystream generator for XOR’ing and shifting), which is be an
extension to the original scheme

4. Using the random number generator (initialized with key A), k 64 bit-aligned 64 bit
words are chosen from key B.

5. The k chosen words are XOR’d with each other and with a word of the plaintext.
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byte hiding on page 83). The brute force attack could work by using an output error dete
to identify errors in the display and to modify the original byte accordingly until the erro
repaired.

Another problem arises from its modification of bits which is, in contrast to the partial cor
tion approach, mainly uncontrolled, i.e. with Chameleon, it is impossible to prevent
destruction of header information when a compressed VBR (variable bit rate) strea
destroyed. This header destruction can only be prevented by working on the uncomp
video data stream. In a VoD scenario, there is also arbitrary time and computing power
able for off-line creating of the encrypted stream at the server side. This causes a prob
the receiver side, where the decompression and display facilities for the video streams a
ically implemented in hardware (MPEG-1 is implemented in hardware in dedicated dev
MPEG-2 uses hardware decoding in nearly all devices); the transport and demultiplexing
ities, on the other hand, are typically seperated from the decoding because additional inf
tion needs to be extracted, e.g. MHEG objects in the recent UK DVB installation. Thu
would be more convenient to have a mechanism that marks compressed data.

The Chameleon paper talks about audio data, which is typically decompressed comp
before being passed to the hardware. However, there is no efficient and reliable audio
marking scheme available yet ([Ditt99], p.76).

Note that the random number generator, or keystream generator, can certainly not
feedback from the operations on the B key. Operations on the content are permissible
under the (usually invalid) assumption that there is no packet loss in the video transmiss
there is rare packet loss, key B feedback can be applied under the condition that the key
generator implements session synchronization points, which reduces the efficiency of the
back partially.

5.6 Protection Features of Chameleon

The interesting feature of the Chameleon approach is that it protects both the key B, wh
easily available to the receiver, and the content. A collusion attack on the key itself wil

Words not chosen by A
that remain unencrypted

Words chosen by A
to be encrypted with B

decrypted by client 1 using B’

decrypted by client 2 using B’’

Figure 32: Partial application of Chameleon for movies

Multicast
Transmission
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with a high probability; the remaining bit errors allow to reliably identify the attacker. A p
posal is to use a key length of 222 bits, and to insert about 212 error bits into the key for each
receiver. The probability that a bit error is identical in the keys of two attackers defines
probability that an error is not identified by two collaborating attackers. With a key lengt

bits and a total of (resp. ) bit errors per personal key there is a proba
ity the 2 attackers fail to identify at least one bit of (resp. ). This is iden
fies a set of possible keys and attackers, which is rather small since the chance for a pe
have this error bit is 2-10 (resp 2-11)(computation in Section 10.2.1).

With a 3-party collusion attack, this is a bit more complex; a collusion attack may fail in
cases. Either a bit error may remain unnoticed, ie. all 3 keys have an error bit in common
vote may be incorrect because two keys have an error bit in common. With a 3 party coll
attack and a key length of bits, the probability of any remaining errors is
with , the probability is , and with , the probability that at least one
remains unnoticed is (computation in Section 10.2.2). In case of the same error de

but a longer key, the probability that a collusion attack on the key itself fails is increas
For example, ,  yield an error probability of .

The decryption of the content introduces the bit errors of the keys into the presented
tent. Since each bit of the key is applied randomly as one in a group of four bits, and the
ation that is performed is an XOR operation on for randomly chosen words, the bit
probability is

which yields error probabilities and average error numbers as presented in Table 10.

Since the error distribution from the modified key into the decrypted content is linear,
appropriate to compute the probability that a collusion attack identifies all marks in a m
from the amount of marked data, the key length and the detection probability for tha
length.

5.7 Marking Extensions in Partial Corruption

We have examined a couple of schemes that insert infrequent byte errors into the video
randomly and found that completely random errors are easily fixed by applying voting me
nisms. The initial idea that we presented in [GMDS98] was to choose a random seque

error prob. 0.00098 0.00049 0.00194 0.00098 0.00389 0.00195 0.00775 0.00

errors/MB 8184 16352 32640 65025 4094 8184 16352 32640

Table 10: Error probabilities for different key lengths

N 222= n 212= n 211=

P12 0.982= P11 0.632=

n 211= P11 0.314=

n 212= P12 0.963= n 213=

P13 1≈

n N⁄

N 223= n 212= P12 0.73=

P bit in decrypted content is wrong( )
4 n

N n–( )!
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intervals of the repair stream for each movie, into which errors are inserted rando
Figure 33 demonstrates how this results in widely spread marked bytes in the repaired
that is finally presented to the user. The movie-dependent, but customer-independent se
of section from the repair stream that may contain errors is done for the following reason
the same total number of errors, the probability that collusion attacks fail can be raised
the number of potential positions of those error in the stream is reduced. At the same tim
errors are spread out widely and thus, the movie quality is not reduced in comparison to
pletely random placement of the errors.

The specific approach for error insertion works as follows: for each delivery of the strea
uniform distribution is applied to put one byte error into each interval. Similar to the dis
tions of a watermark, each individual copy can be identified reliably by these rando
inserted errors when the provider keeps the random seed values in a database. For each
the movie, the bit error sequences can be compared with the series of bit errors which ar
erated by the seed value on file using a brute force approach.

If the attacker chooses a 3-party collusion attack to eliminate the bit errors, errors re
with some probability that can be used to identify at least two of the original customer. Le
length of the movie beSf, the length of unicast portionSu, with . If the average
offset isO and the length of each interval isI, there is a probability of that at leas
one byte error remains. For a 1GB MPEG-1 movie, 0.5% encrypted transmission,
bytes (resulting in a byte error rate in the movie) and , this computes
one byte error probability of 0.537. Smaller intervals increase this probability considerab

Figure 33: Random error insertion in Partial Corruption

sections chosen

bytes chosen for

Multicast

potential remaining

Restoration

Extraction
original movie

orig. repair stream

corrupted movie

repaired movie

personal repair str.

Server

Client

corruption

randomly for
error insertion

error bytes

Transmission

Unicast
Transmission

to client

T Sf Su⁄=
Sf OT I2( )⁄
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Problems

The size of the repair stream is 0.5% of original movie’s length, which is still a lot; to oper
the required point-to-point throughput between the content provider and each custom
about 1 kByte/s.

The partial corruption approach is based on the observation of the concept of partial en
tion. It is mainly intended to reduce the effort of unicasting complete, encrypted streams
decrypting these streams at the client side) while protecting from the theft of data durin
transfer phase or from the service provider’s cache, respectively. I.e., it is aimed at ca
architectures. In the trivial setup, the customer would receive a broken stream, an enc
patch stream, a decryption key, and finally after decryption and merging, an unmarked, p
copy of the movie. The bit-destruction ideas were added in a straightforward way to fix
obvious flaw.

The bit-destruction approach is easily overcome by a single malicious service provide
orders decryption keys -or who observes his customers’ traffic- until all bit errors have
removed by collusion.

5.8 Remark Approach to Marking and Secure Transmission

With the experiences from the previous techniques, we have developed a new technique
Remark - for its ability to insert marks for a customer and for a service provider independe
Remark is the integrated solution for commercial video on demand scenarios:

• It supports distribution hierarchies that make intense use of caching
• Its marking schemes identify malicious service providers and malicious customers ind

dently; thus it does not require the content provider to trust its service providers or cus
ers

• It enforces a contact between customer and content provider which permits logging
charging, but this contact is only cursory

• Its marking scheme, although based on randomness, is extended to prevent errors in
cant bytes of the data stream

Remark is derived from a combination of the Partial Corruption and Chameleon approac
handle both secure transmission with cache server support and copyright protection. It fix
problems concerning throughput requirements that were noticed with Partial Corruption
the video-specific limitations that were noticed with Chameleon. Remark’s copyright vio
tracing scheme includes an identification of the cache owners (service providers) as well
individual customers.

Operation

In contrast to the previous schemes, the content preparation of Remark is rather com
Figure 34 is a sketch of the sequence of steps that are necessary. Starting with the o
video, keys A and B that are unique to this video are selected. These keys are used to
random number generator as required by the Chameleon cipher. Another key C is c
uniquely for the video, which is used for the corruption step according to the Partial Corru
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scheme. Using key C, a corrupted movie is derived from the original movie, which is su
quently encrypted partially using keys A and B as in the modified use of Chameleon app
for videos. The resulting corrupted, encrypted movie is distributed freely.

Additionally, key C is used to extract the repair stream from the original movie, whic
replicated an arbitrary number of times, and a fingerprinted scheme is used to introduc
errors into each of these replicas (the result is labelled “Repair Streams with Client Mark
Figure 34). The A key is used to identify the positions in the original movie that are potent
marked by any of the possible variations of the B key, an MPEG parser is used to identify
tions in the movie that must not be modified to maintain an acceptable video quality. Com
ing these two position lists, a list of positions is extracted which must not be destroyed b
Chameleon decoder. For each of these positions, repair indicators are introduced into the
streams; these repair indicators and the bytes of the repair streams are ordered to main
same order as in the original movie.

Each of these extended repair streams is than encrypted individually (with a key D
domly chosen for each copy) using a typical video encryption approach and are distribu
cache servers.

Client retrieval of the content is explained with Figure 35. A client who decides to retrie
movie title contacts its closest cache server. The request indicates the movie, provides a
key to encrypt any responses, and a signature for potential proof of authenticity. The
server adds to this request its choice of repair stream, its own public key, and its own sign
this request is forwarded to the content provider.2 The content provider will store the reques
for potential proof of the transaction, than answers with the set of keys that is required fo

Corrupted
Repair

Figure 34: Content Preparation in Remark

Original

Repair Streams

Distribution

Chameleon

Distribution

Encrypted

Video
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Encoder

Stream

w/Client Marks

keys A,B

key A

Chameleon
Error Location

MPEG Spot
Location

Add Cham.
Repair Marks

Repair Streams
w/Double Marks

Encryption

key C
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playing the movie title: the D key for the chosen repair stream, the C key to identify re
stream positions in the corrupted movie, and the A and a cache-specific B’ key to decry
corrupted movie. This set of keys is encrypted with both public keys and signed.

The receiving cache server applies the first decryption step to the set of keys and ad
signature. This is forwarded to the client. The client decrypts the set of keys and sta
retrieve, in real-time, the corrupted video and the selected repair stream from its cache
When a repair stream has been transmitted once, it must be considered expended by th
server, since the content provider will not re-issue the decryption key. Due to this restrict
cache must monitor the number of hits on each movie title and request additional r
streams in due time.

The decisions that are taken in the decryption and merging process are shown in the p
code of Figure 36. Key D is used to decrypt the repair stream. This stream contains two
of data: bytes that are required to replace the corrupted bytes at the position indicated by
and repair indicators for badly destructive modifications that may be introduced by the Ch
leon decoding of the corrupted movie. The resulting video stream containing some non
errors is forwarded to the presentation device.

2. This could be applied recursively to include all service providers that seperate the first cache from
content provider.

Chameleon

Corrupted

Merging

Decoder

Figure 35: Distribution System in the Remark
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Protection features

Based on the results of Section 5.3, it is appropriate to extract randomly 1% of video data
a movie and to replace that data with random bytes according to the entropy calcul
Although the Partial Corruption approach allows other sizes than bytes, it is important th
destroyed units are very small (single bits or bytes) because the repair streams should
small as possible with the decompression algorithm doing their work for them. Usually
corruption of 1% of a movie’s bytes should effectively confuse any MPEG-1 player if they
randomly chosen.

The number of customer-specific errors that are introduced into the individual copies o
repair streams can be tuned according to the environment. If the potential for collusion a
is considered high, but the risk for theft low, it may be appropriate for an MPEG movie
select bytes for potential destruction from P and B frames or from I frames’ crominance
selectively, and to increase the error ratio in the displayed movie. If the opposite is the c
may be more interesting to reduce the error rate in the displayed movie but make those
more grave: identify primarily I frame data and P frame motion vectors and select errors
are located in this data (note that we assume that header can always be reconstructed e

i = generate from RNG1
j = generate from RNG2

do
play up to min(i,j)
if i < j

get word W from SB
compute next RNG1 XOR B XOR W
compute feedback on B
if (SF has ri)

compute next ri
get word V from SF
play V discard W

else
play W

endif
i = generate from RNG1

else if i==j
discard next word from SB
get word W from SF
if (SF has ri)

compute next ri
play W
generate from RNG1
compute feedback on B

else
compute next RNG1 XOR B XOR W
compute feedback on B
play W

endif
i = generate from RNG1
j = generate from RNG2

else
discard next word from SB
get word W from SF
play W
j = generate from RNG2

endif
while still data in SB

Figure 36: Decryption in the combined approach

• SF - repair stream, with pre-generated
errors, somehow encrypted

• SB - Bulk stream, broken and Chame-
leon-encrypted

• i - offset to next word that is affected
by Chameleon

• j - offset to next byte that is affected
by partial corruption

• ri  - repair indicator in repair stream
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Without such additional considerations, the efficiency of the insertion of customer-spe
marks is identical to the results of Section 5.7.

The Chameleon cipher for identification of the contributing cache server does not manip
uncompressed content data in this approach. Rather, it manipulates the compressed data
(except for the repair data). Thus, the bit error rate must be below 10-3 (which yields for
MPEG-1, subjectively, an unaccaptable quality) and above 10-7 (which is considered ‘repair-
able’). For a 1GB movie, this gives us between 10 Mio and 1000 potential bits.

The figures from Section 5.6 that evaluate the protection of the B key in the Chame
approach indicate that it is not appropriate to reduce the key length or the number of m
from the proposed 222 and 212, respectively. Since the algorithm generates an average of12

marked bits for 512 KB of potentially marked data with these numbers, a random choi
only 1% of all words of a 1GB movie (or 10 MB, respectively) for consideration in the ma
ing process allows an average of 80000 marks to be introduced into the decrypted stream
sidering that this data is at least as well-protected from a collusion attack as the B key, this
appropriate number of marks.

Since a less disruptive approach for the insertion of marks would be advantageous, som
sideration should be given to this. For the time being, the removal of the worst effects o
dom marks in movies are addressed by Remark by the repair indicators. The common pr
of Partial Corruption, Chameleon and Remark is the possibility to detect errors in the Huf
decompression step. The following may be a potential fix to this: by allowing the MP
encoder to create only Huffman tables that are slightly weighted (for a limited penalty in c
pression efficiency). The Huffman tables are built in such a way that they have many sequ
of identical length for different compressed representations which differ in exactly one
With a rather high effort for creation, this allows a repair stream that inserts personal “inco
correction bytes” that are neither detected in the Huffman decompressor stage nor in an
stage of an MPEG player. A fingerprint is than represented by the sequence of dec
whether to use such a replacement value or not.

It may be necessary to add additional data for consistency checking to the repair stream
erwise, the merging function could be used to insert tracable junk data into a movie
merged version of broken stream MS and junk patch stream would give away all pote
locations of defective bytes, which decreases the effort of collusion attacks.

Evaluation

A variety of approaches has been considered and had to be discarded, since they w
applicable for the protection of a decentralized video distribution architecture. Our Re
approach provides a comprehensive means of affordable but secure transmission and o
right violator tracing in a multilevel distribution system. Its marking schemes identify m
cious service providers and malicious customers independently. The basic design do
include marking of more than one service provider in one delivery. However, the system c
operated in a hierarchical manner as well by applying additional encryption and signing 

Remark is scalable with respect to the number of service providers and to the numb
users served by each provider. It is very resource-saving for a delivery system that inc
– 96 –



t the
server,

and.
of all
elow

erage
nter-

ol, nor
o and
aches
end-to-end communication - which is does by design to permit logging and charging a
content provider’s site. Obviously, the client needs a broadband connection to its cache
but without such a connection, there is no need to consider anything like video-on-dem
The wide-area throughput requirements are much lower than this. The combined size
keys that need to be delivered from the content provider to the client on-demand is well b
1 MB. Considering a five-minute unencrypted preview phase for a movie, this gives an av
end-to-end bandwidth requirement of 3.4 KB/s which is available in the most parts of the I
net today.

Neither does it impose any special requirements on the design of the transport protoc
on the server design. Synchronization that is necessary for the merging of corrupted vide
repair stream is easily solved at the client side using established synchronization appro
such as [JG97].
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6. Simulation Modeling Basis
The number of aspects that can be potentially considered for a wide-area distribution sys
large. Due to considerations presented earlier in this thesis, we take only distribution op
into account that include caching and de-centralized management. Alternatives wou
investigations in other areas such as multicasting ([KVL97], [GLM96]), client-caching
forwarding ([HCS98]), scalable best-effort streams, etc. This study deals with video cac
because it is a path that has been taken with low quality video on the Web and that may
into a commercial business when higher qualities can be supported.

Since the overall goal of this thesis is the design of a wide-area distribution architectu
general, the requirements for an investigation have to be refined. We can assume that a
of architecture are able to perform in some way. For example, we are aware of the know
advantage that a central architecture has implicitly in placement decisions when centrally
trolled caches are used. We will not try to investigate the error resistance of our architec
such investigations are currently undertaken e.g. in [SAW97]. We assume that we can n
control the topology of the network nor the placement of cache servers. We try to iden
well-balanced pair of distribution mechanism and replacement strategy for a decentralize
tem. It must be applicable to a wide range of predefined network bandwidth/server size c
nations to remain valid for some generations of network and server technology. Thus
metric must allow a qualitative evaluation of the following requirements:

• small number of service declinations by users due to waiting time
• small number of service refusals due to network overload
• resistance to variations in movie popularity due to the time of day
• resistance to local variations of user interests

Besides these criteria -which can be represented by a single number, the percentage of s
fully requested movies- we need additional values:

• percentage of storage and network usage
This indicates whether and in which way an example system in our test was over- or u
dimensioned.

• average time between caching and removal of a title
This indicates stability of a caching strategy’s decisions.

• cache hit ratio
This indicates quality of a caching strategy’s decisions.

Since these are indicators that a strategy can not be considered fully performance-tested
values are an important part of the performance testing but they are not part of the perform
metric. We are using them as indicators of the direction that our investigations have to f
subsequently.

These constraints as well as abstractions that we have introduced into the model of the p
distribution system are presented in Section 6.1. The traffic that is generated in such a di
tion system by user requests on inserted content is considered in 3 sub-sections. Sec
presents and evaluates existing work on workload modeling that could be found in the l
ture. A specific issue related with existing workload models is the application of knowle
– 99 –



n of
tion
el, and
larity
f real-

n 6.6.

ogical
o be
con-

s of

start

expect
istrib-

ate it.
is in
tion, or

on of
ies in

like a
such

a

that is derived from the user requests’ property of being Zipf-distributed. The investigatio
the applicability of this distribution is presented in Section 6.3. This is followed by a sec
that argues for separate models for movie life cycles and for user requests on such a mod
that presents our models. Section 6.5 introduces the problem of variations in movie popu
throughout a single day, and our approach as evaluating their effects in the absence o
world data. The simulation program that builds on this knowledge is presented in Sectio
Finally, the state of this model is evaluated in Section 6.7.

6.1 Topological Considerations

This sections presents a collection of considerations that have influence on the topol
modeling in a wide-area VoD simulation. Several characteristics of VoD traffic need t
accounted for, respectively can be exploited, in our simulation. We consider the following
straints valid for VoD systems in general.

6.1.1 VoD Characteristics

The following characteristics are specific for video-on-demand, i.e. they apply to all kind
video distribution, independently of the distribution architecture.

Access Patterns

In a VoD system, we expect movies to be typically consumed once per request, and from
to end without major requirements to seek or rewind operations.1 We restrict our investigations
to non-interactive access patterns.

Read-Only User Access

Although VCR operations may occur, all requests by users are read-only requests. We
that this allows much simpler strategies than in other cache-exploiting system, e.g. in d
uted databases, to yield adequate results.

Read-Write Owner Access

In our model, we can assume that only the origin of the information can change or upd
Since we expect that this is very rarely performed, we exclude it from our model. This
contrast to news-on-demand systems, which should be able to revoke news after publica
to update figures that are included.

Delayed Replacement

Furthermore, the situation is less difficult than other environments where synchronizati
multiple copies is an issue. Although it may be questionable from the legal side that cop
caches are replaced or updated at some time after the master copy, this does not seem
vitally complex issue that needs to be reflected by the simulation - mainly because
updates are extremely rare for movies.

1. Observations in VoD field trials -that are to my knowledge undocumented- indicate that seeking is
rare operation, but that the movie start is a typical candidate for fast-forward operations.
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Large Objects

We assume that objects are large and that loading times are large as well. It may be appr
in a real system to perform a bulk transfer from a higher level cache server or the ori
server to the lower level cache servers, rather than using streamed transmission. Howev
large scale decentralized infrastructure, load-balancing web servers that use throughpu
surements, bandwidth sharing and other streaming mechanisms rather than plain TCP
file copy have proven their effectiveness; we assume therefore that controlled streaming
appropriate approach in a decentralized caching architecture; especially in conjunction
techniques such as DiffServ ([RFC2475]) that allow “better best effort” transmission f
upstream server to cache.

Our model assumes thus streaming, which allows distribution mechanisms to explo
additional advantages of multicast transmission for complete or partial movies.

6.1.2 Characteristics of VoD with Caching

In the following, several real-world implications of the use of VoD in a cache-based distr
tion system are discussed.

Limited Cache Size

Our caches are supposed to be small w.r.t. to the size of the objects that are cached. Al
the increase of available bandwidth and the decreasing price for storage space implies fo
people that limited cache size will not be a problem any more in the near future, we believ
this is not the case. Rather than this, the resources will be consumed by a increase data s
is demanded for on increased quality for several hardware generations. Today, a 72 GB2

can hold approximately 1,000,000 web pages, which is sufficient for only 100 average M
1 movie or 12 MPEG-2 movies. This implies to us that complete replication of all titles is
an issue right now.

Complete Caching of Objects

Although our focus is on streamed media, we do not consider the case of partially keep
video in a cache server. This would be done in case of an approach that is intended to de
the startup latency, while the bulk of the video data is delivered from a remote server. Ou
ting assumes that servers operate on complete videos because we assume unpredictab
packet loss and server downtime.

Write-through Caching

In contrast to web caching techniques, we do not apply store-and-forward of complete v
which would add ridiculous delay before delivering the data to the end user. A solution w
be to use store-and-forward transmission of blocks of the video. This would add only a lim
per-hop delay to the transmission and could be exploited.

This contradicts our decision to store only complete videos. The assumption that
caches will typically not be installed on routers but rather be installed on dedicated mac

2. http://www.storage.ibm.com/hardsoft/diskdrdl/ultra/72zxdata.htm
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inspired a different solution. Assuming that the cache needs to communicate with both or
server and client through a router or firewall (and potentially using the same network inte
in both cases), this doubles the amount of data that a server (and the network) has to ha
forwarding compared to receiving the data only. Further, packet loss and jitter can be hidd
the cache only if some undesirable delay is introduced before the data is forwarded to th
ent.

Since the currently available video servers tend to use RTP for the transmission, we
sider it sensible to accept the additional jitter and packet loss, reduce the delay, and tra
the video using RTP to transfer to a multicast address that both client and cache join. A
patible extension to RTP for reliable transfer of the object to the cache has been implem
to make this approach feasible and is documented below. Using the multicast approac
cache server’s interfaces (and potentially, the network to which it is connected) experienc
load per cache miss and the client experiences less delay in case of a cache miss.

Cache Servers Located off Routers

We assume that cache servers are typically not located on routers for various rea
although this contradicts probably the philosophy of router manufacturers. Routers shou
optimized for passing packets from one network interface to another with as limited a del
possible. Video servers, on the other hand, reserve resources for scheduling the CPU, th
ory or the disk in order to optimize data retrieval and playout.

In spite of this assumption, we simplify the model by identifying cache servers with rou
This is considered a permissible simplification because we have presented LC-RTP in S
4.5, which allows write-through caching in such a way that a cache that is located off the r
will listen to the video stream at the same time as the initially requesting user receive
video stream. We have also proposed a use of the RTSP protocol that allows piece-wise
ery in such an environment, assuming that the client is capable of some synchronization

This does not violate the assumptions that we made for write-through caching sinc
server throughput model covers a situation where the cache server is located in a ne
which is attached to the router and through which the data stream is transferred once i
direction. Figure 37 shows the simplifications that are made in the model.

6.1.3 Structural Simplifications

The topology that we use for our simulation model is a simplified view of a distribution s
tem. Rather than assuming that an original server is located in an end system or that the
nal network is not a backbone, our model assumes a hierarchy that places the original
into a top-level backbone network.

On this basis we consider ways to deliver individual video streams from a content pro
through a broadband network to a customer. We do not distinguish whether the netw
shared with other traffic (as might be the case with the Internet as a backbone of this syst
whether it is a network that is dedicated to the video-on-demand system (as might be th
if current cable television infrastructure is recycled to these ends), because we assume
both cases the required resource capacities in the network are sufficient for streaming the
in real-time if a transmission is actually started.
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Network Overload Detection

This condition is not entirely compatible with the other assumptions that we make in inv
gating an Internet-style network for video distribution. We do not make the assumption
cache servers are gateways or routers at the same time, either. This makes it technical
cult to assume admission control for the distribution system.

For a simplification of the simulation, however, this assumption is very valuable, as we
for the detection of network overload. Furthermore, it is conceivable to implement this me
nism as an enhancement to a distribution system, e.g. one that is based on RTP using IP
cast: since cache servers communicate hierarchically and the clients communicate onl
their assigned cache server, those caches can collect information about the network sta
refuse to deliver streams due to network overload as soon as they receive notifications of
packet losses at their clients, e.g. in case of delivering with RTP by listening to RCTP rec
reports.

No QoS model

We would expect a VoD system to exploit resource reservation option in the network as so
they become available. Specifically with our protocol, LC-RTP, we assume a relevant p
mance increase with reservation mechanisms of the IntServ ([RFC1633]) or Diff
([RFC2475]) approaches.

In our simulation, we simplify the model by assuming admission-controlled transfe
streams, since a streamed transmission needs to rely on the availability of bandwidth.
this without explicitly modeling the time that would be required for bandwidth negotiation

cache servers

archive
server

Figure 37: Distribution System Simplification
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is assumed that the overall delay can be used as a model for such signalling activity that
essary before the actual start of transmission.

Ignore Indirect Routes to Caches

We can expect that networks exist where users have redundant connections to severa
servers, or where cache servers themselves are not organized in a tree. For our deliver
ture, we ignore this possibility. The reason for this simplification is the assumption that a
ferred delivery path arranged in a tree structure will be used for delivery under typical net
conditions, i.e. without overload or connectivity loss.

Local Delivery Decisions

There is no technical need for immediate forwarding of the access information to the orig
the information. Such a need is introduced by security concerns and the requirements for
right protection. However, in Chapter 5 we have presented a means of reducing this com
cation with the origin of the movie to an amount that is hardly relevant in comparison to
data transfer rate. In the simulation, we will neglect the forwarding of information to the or
unless demanded by the investigates strategy.

6.2 Overview of Workload Models

Various approaches towards modeling the load of video servers have been proposed in th
ature. Usually, they are not designed for simulation models which consider the amount of
action that takes place from the user’s point. Rather, an analysis is performed to deriv
worst case situation that a server (or network) can cope with.

6.2.1 Reasons for Workload Modeling

Workload characterization involves studying the user, network and server environment,
key characteristics, and the development of model that can be used with a variety of pa
ters. Once a workload model is available, the effect of changes in the workload and syste
be evaluated by changing the parameters of the model. Workload modeling is required in
formance analysis, if the investigation is analytical or if it uses simulation.

If the system exists already, an alternative approaches for an investigation are measu
and the use of trace files that capture real workload as an input for a simulation. In case o
the field trials that have been implemented in various countries world-wide would per
allow the use of traces. However, no such traces are made available. Alternatively, trace
applications that are considered similar to VoD traffic can be applied. The following sec
present techniques that have been applied and the restrictions of these models.

6.2.2 Modeling for Momentary Load

One approach is the modeling of single video streams as they are accessed and played
generally done in order to understand how the operation of a single machine or clus
machines can be optimized. Little and Venkatesh take this approach in [LiVe94b] with the
of optimizing disk I/O operations in a single system. Their approach is to build an analy
– 104 –
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model for access probabilities based on the work by Ramarao and Ramamoorthy [RaRa
[TMD95], Tewari et al. optimize the I/O utilization in a server cluster and use Poisson
cesses to model the user accesses to the server, with the mean value chosen accordin
tle’s Law [Litt61]. Golubchik et al. investigate in [GLM96] means for sharing video stream
a video-on-demand systems that holds when VCR controls are permitted to the user. The
model is analytic and assumes a Poisson arrival process. Their goals do not require any
standing of long-term movie development.

These approaches are useful for optimizing playout, stacks or disk operations in a sy
but neither take user interaction into account once that a movie is playing, nor do they
model the play time of a single clip in any way.

The modeling of VCR commands requires a model that includes modeling of user hab
applying these VCR operations. In [DaSi95], Dan and Sitaram analyze the caching of da
single servers or server cluster under various interactive workloads and models inform
such as access skew (the distribution of requests on stored clips), the clip length distri
and the viewing time. While they do not consider the aging of individual movies, since
need is for a short-term model, they consider the distribution of hits on the available video
chose the Zipf distribution to model the video popularity. This Zipf distribution is examine
Section 6.3. [Cher94] has proven that this formula applies to popularity distributions am
videos. It is noteworthy that this distribution, which is typically used as the basis for inves
tions on video server operations, is completely independent of the number of users that
the set of movies.

Nussbaumer, aiming at optimizing caching in a single server system or cluster, also as
the Zipf distribution [Chen92] to model video popularity [NPSS95]. The distribution of vide
or blocks of videos over multiple machines for load-levelling or availability purposes has
investigated in [BeBi96].

Barnett et al. [BAB95] aim at minimizing the storage costs in a distributed system and a
caching mechanisms to do this. This requires the kind of long-term analysis we also disc
this paper. They base their considerations for long-term popularity (in the absence of
available video-on-demand trial results) on numbers from CD sales. The model they deriv
double exponential curve for the distribution of user accesses on videos and a movie pop
development with only one raising and one declining side. They evaluate various caching
egies.

6.2.3 Modeling Variations from Day to Day

In previous models, the issue of day-to-day variations in video title popularity was
addressed in any way that can be sufficient for our scenario. The reason for this is that pr
work dealt mostly with short-term problems on the order of seconds at best that have
addressed by other studies in the video-on-demand field.

It has already been shown by Barnett [BAB95] that the Zipf distribution, being stati
time, in itself is not well suited to simulate long-term developments. Because of this, it is
applicable to investigations that consider temporal changes.

In order to compensate for this and to add to the Zipf distribution a long-term dyna
change in time, Dan and Sitaram [DaSi93] have created a model based on a modified ro
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of movie rental probabilities. They take into account that the distribution of movie renta
any time can be approximated by the Zipf distribution but that the ranking among the mov
changing in time. They assign an index number for the Zipf distribution to each indivi
movie title, and its current popularity is calculated by the Zipf distribution, the movie with
lowest index number is the most popular movie of the day. After a fixed amount of time,
values are calculated by rotating the indices. To reduce large jumps in the relevance of
cific movie, the left half of the movie indices is swapped before and after the rotation. By
ing the rotation, they try to simulate dynamic changes in the rental probability of individ
titles for the cache of a single server.

They did not create this model for long-term variations and it is not applicable in that c
The graphs in Figure 38 demonstrate the drawbacks of this shifting approach that becom
ble when the amount of change in relevance is observed. The figure shows also anothe
tion of using the Zipf function that simply permutates the indices. Each of the graphs show
absolute change in relevance that a movie experiences from one day to the next. Grap
Figure 38 shows this for the rotation model, assuming 150 movies. The comparison de
strates that this model does not provide sufficient realism for long-term considerations
the movement of movies between cache levels is an issue. Graph 2 shows the rele
changes for a system with 150 movies that assumes a daily permutation. In compari
these two models, graphs 3 and 4 provide two examples of relevance changes for real m
from a movie rental store with a small user population.

The comparison demonstrates that an algorithm which calculates the location of mo
copies in a distribution tree with respect to relevance can not be verified with either of the
models.
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(3) relevance change of a real movie
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(4) relevance change of a real movie
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(2) relevance change in a permutation model
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(1) relevance change in the rotation model

Figure 38: Day-to-day relevance change measurements
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6.2.4 Conclusion

We have examined the workload models that were used in several video-on-demand pap
found that they have been typically developed for investigations concerning server p
mance, and that they have been used for investigations on the scale of several seconds
minutes. If a caching strategy does not account for day-to-day variations at all, videos
most probably be shuffled back and forth among small caches close to the end user wh
strategy is implemented in the real world. The important issue is that day-to-day variatio
neither reflect on large user populations nor on central server systems. They exist primari
to randomness in user access patterns and not due to popularity changes in the mov
cycles. Thus, we have concluded that a new model needs to be developed.

6.3 Problems of Workload Models Based on the Zipf Distribution

A lot of earlier work is based on the observation that hit rates behave according to the Zip
tribution, and that caching, prefetching etc. can rely on this. This distribution is defined a

where . This is the original definition of the Zipf distribution, presented to desc
the distribution of word lengths in the English language. In video server documents, a sub
of Zipf functions is often used referring to the PhD thesis of Chervenak, which assumes
i.e. the typical assumption in the video on demand literature is

In the formula,n is the number of available movie titles.i is the index of a movie title in the list
of n movies that are sorted in the order of decreasing popularity. It is one of validations fo
90:10 rule of thumb for popularity distributions.

To verify the applicability of the distribution, we compare it to our own data which origina
not in a movie magazines but which is the anonymized data of 2 years of a local rental
with a small number of customers. We compare all days of one month in the period cover
the movie data and sort 250 representative movie titles by their popularity at these days3. The
resulting data is compared with the Zipf distribution forn=250. Figure 39 shows the first 100
entries of the resulting curves. It presents the curves for the two days with the lowest and
est hit rate on the top 10 movies in one month in comparison with the Zipf distribution for
same number of movies. The month was chosen randomly.

This demonstrates that the Zipf distribution with , although quite similar to the ac
rental probabilities, is somewhat optimistic, at least for small user populations. The u
curve that was derived in this month may be restricted by the number of copies available
rental store. The lower curve is not affected by this but shows that the diversity in user s
tion is wider than accounted for by the theoretical function.

3. Movies are counted per rental and day, i.e. one rental for 2 days counts 2, 2 rentals in 1 day coun
Movies are typically rented for less than a day due to the price structure.
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Marshall and Roadknight have expressed their doubts about the use of this distribution fo
traffic modeling in [MaRo98] on the basis of anonymized web cache traces. We have res
tions concerning the application of this rule for system evaluation as well. While we will
disagree with the observation of Zipf behavior in VoD scenarios -our video rental data is n
open disagreement-, we have problems with the creation of a long-term workload mod
this basis - something which was not needed for the investigations of [Cher94]. The follo
short analysis of hit probabilities is intended to demonstrate why we consider it unfit a
input of a model.

For simplicity, we assume a fixed distribution of movie access probabilities in accord
with the Zipf distribution - i.e. we make a snapshot observation of an access distribution
consider this legal because the change in movie popularity is a long-term effect. The
compute the hit probabilities for each user in a population at that time, and compute the
age deviation of the access probabilities from the mean.

Our observations support the position that a Zipf distribution is well suited to desc
observed popularity distributions. However, we do not believe that this distribution can be
to generate user requests. The first argument in our favor is given by the standard devia
each moviei’s probabilityz(i). Let us assume thatN movies are distributed according to a Zip
distribution with . For clarity, we call movies with indicesn andn+1 for an accord-
ing to the Zipf distributionneighbors, and movies with the lowest indices themost popular
movies in the following explanation.

We define the random variable as the portion of hits on the moviei whenU independent
draws are made from a set ofN movies. The expected value of this random variable

. The variance of this of  is , where

When this is used to compute the coefficient of variation , and compared to the re
change of hit probabilities between neighbor movies, we can observe that the deviation
the Zipf behavior is hardly relevant for the most popular movies. But even for moderately
user populations, this deviation exceeds the relative difference in hit probabilities bet
neighbors in the Zipf series. Figure 40 tries to demonstrate the problem by illustrating the
ficient of variation and the relative popularity difference between consecutive movies.
graph allows the following observation: the deviation from the expected value is more im
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Figure 39: Rental probabilities compared with the Zipf distribution
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tant than the order of the items that adhere to the Zipf function. This in turn implies tha
Zipf distribution may be a good means for observing reality, but it is not a sufficient basi
modeling reality.

In [BGW97], we had assumed that this was a problem for small user populations; how
the exponential property of the relative difference in the Zipf function indicate that this p
lem will require extremely large user population to apply successfully a 90/10 or even an 8
rule-of-thumb.

To clarify this problem even further, we generate probabilities for an ordered setZ of mov-
ies according to a Zipf function (see Figure 39). We randomly draw movies fromZ according
to the distribution; we repeat this experiment for 500 up to 1,000,000 draws. The time f
that we are covering with these draws is irrelevant - it must be limited to a sufficiently s
interval that popularity changes of the movies due to aging (i.e. their life cycle developm
can be ignored. We try to find out how well these draws fit with the predicted ordering. We
ate another ordered set of the same movie, with an ordering according to the decr
number of actual hits in our experiment.

For the first 100 movies ofZ, Figure 41 shows the absolute distance between the mov
rank inZ and . Only the 100 most popular movies (with the lowest indices) are shown in
figure, and the largest distance shown has been limited as well. For the movies with h
indices, a system designer would not care because rarely requested titles are not expect
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Figure 40: Illustration of Zipf neighbour change vs. coefficient of variation in hits.
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cached. The distance is increasing for those movies. The most popular movies are so
expected; for slightly less popular movies, the actual and predicted position is dive
quickly unless the number of draws is huge. The figure demonstrates that the deviation
actual hit counts of a movie is relevant even for large numbers of draws. It demonstrate
that there is a relevant gain in knowledge about a large number of selection.

The assumption that the Zipf distribution is still a good means for describing hit distr
tions is supported by Figure 42; Figure 42 (a) is a graph of relative hit probabilities ofZ and .
They fit perfectly, which indicates that is, in spite of a different order, still observed as a
distribution. Figure 42 (b) underlines this by showing the differences between the rel
weights ofZ and .

Conclusion

We agree with other authors that the Zipf distribution can be used to describe observe
request distributions. Even when the user population is small, the identification of the top
is probably good. However, even when the user population is large, the prediction for the
age titles is bad - it may be perfectly appropriate to a replacement strategy as simple a
with as good results as a much more complex strategy. The number of titles that have a
chance of being recognized is growing, slowly, with the user population size. Under the c
tion that this observed property of the Zipf distribution of movie popularity is correct - wh
we do due to the data of [Cher94] and [BGW97] - this implies that gaining information ab
hit probabilities is advantageous for caching strategies.

For modeling of the user behavior at larger time scales that are relevant to our distrib
system and replacement strategies, the movie popularity’s property of being Zipf-distrib
can not be exploited. It lacks the time-dependency, and it ignores the immense differen
hit rates between caches with a small number of users and the complete user population
following, we will separate these two issues to create a better model.

6.4 Separation of Movie Life Cycles and User Behavior

Our approach is to distinguish between movie life cycle modeling and user modeling.
behavior of users who want to see a movie and the development of individual movies se
be decoupled in reality. This may reflect the situation that a user’s decision to watch a mo
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based mostly on the available spare time rather than the existence of an interesting mov
our model, this implies that the insertion of a relevant number of movies into our model a
one same time does not generate any increase in the overall number of rentals. Althou
new movies are in the most popular phase of their life cycle the number of accesses to
remains low because the number of users, respectively the time they have available for
ing, is limited.

The independent modeling is also more convenient for modifications. It allows, for ex
ple, the experiments that concern daytime variations of movies’ popularity. In the basic
we assume that there is no reason for a user to arrange his own schedules according to
timetables. Thus, the time at which a movie is retrieved is completely independent from
choice which is based on the movie’s popularity at the time of retrieval. Since we have no
any relevant data on daytime variations of users’ interests available, the daytime vari
introduced in other simulations is modeled by a simple sinus curve on top of the movies p
larity.

6.4.1 Demonstration of the Population Size Effects

We have two sources of data available for the video access information that we can use t
date our model. On the one hand, there is the VideoWoche magazine, which presents st
that are derived from the weekly input of some hundred video rental stores, and on the
the (anonymized) databases of a single video rental store. The available data covers r
the same time, 1995-1997. The magazine’s content limits the information that we rece
information on the movies that are considered the top 100 country-wide.

Figure 43: Comparison of rental store (left) and magazine numbers (right)
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Figure 43 shows the comparison of the data from VideoWoche magazine (right) an
curves of the rental store (left) for two movies (Highlander 3, Lion King). We have cho
these two movies as examples because they were the ones that experienced the largest
of accesses to themselves of those movies that remained in the top 100 list of VideoWoc
several weeks during the observation period. If less popular movies had been chosen, th
larity in trends between this example data and the magazine could have been illustrated o
smoothing the rentals, e.g. by showing the average rentals in three days. By selecting
movies, the similarities become visible without any smoothing, while the day-to-day varia
of the single shop remain easily visible as well.

We find that such figures supports our assumption that the number of users who ac
provider (which we call its user population) has a major influence on the smoothness of
gle video title’s development. The size of the user population in a hierarchical system i
only relevant as an overall number. The observed increase in the variation of movie popu
for small user groups can be relevant for distribution algorithms.

6.4.2 Long-term Life-Cycle modeling of Movie Life Cycles

Newly published movies exhibit typically, but not always, a steeply rising start peak of
interest. The observation of the rental behavior shows that all movies share a general de
of user interest in them, but this decrease is not identical for all movies and it is frequ
interrupted by increases of user interest. Once a movie has been inserted into the syst
rental probability will never return to zero. On the contrary, the relevance of old movies ca
quite high. We did not make a detailed category study, but marginal checks showed tha
the start peak is less relevant (although existent) for movies rated PG-18 but the sustaine
vance remains generally high.

In our approaches to create a model that reflects the long-term behavior of real movie
had experimented with discrete models to integrate the rental behavior as reflected at a
store. These models were discarded because they needed too many parameters with n
nation for their necessity.

Splitting the available data into a an underlying curve for long-term behavior of a movie
a random effect that is mainly dependent on the size of the user population led to a more
priate model. We observed that the underlying curve seems similar to a variation of the
nential curve that is used to describe, e.g., the spread of infectious diseases. We
parametrized version to take into account the quantitative difference in the number of re
the steepness of the loss of interest and the remaining interest in a title. This function is

RP t( ) a e

2

10
---------- t

10 b×
---------------– b

t
---– 

 

× c+=
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Figure 44 shows what this function looks like.

We found parameters applicable in the case of movie rentals by least square-fitting the fu
with the movie rental data.

Figure 45 illustrates that the parameters calculated from the least-square fitting with real
data of a video rental store are typically small and show no obvious correlation. The chec
ifies that the coefficient of correlation for each pair of parameters is tiny (the biggest is 0.0
a and c, where a can be considered the decline of popularity and c as the remaining popu

Because of this observation, we select the parameters for movie modeling indepen
from each other. For the individual draws that determine the parameters of a newly ins
movie, we use the exponential distribution. That gives us the basic functionality of freq
small and rare big parameters.

6.4.3 Effects of User Population Size

Among the most important observations that are not intuitively clear before they are obs
is the vast divergence of user access behavior from the average behavior when user popu
are small. The coefficient of variation depicted Figure 41 has illustrated this effect.

Figure 46 demonstrates how our model imitates the effects on the rental probability of a s
movie, and also how it recreates the smoothing effects of increasing user population size
life cycle of the example movie and all other movies used for the experiment (initially 15
new movie each day) is defined as presented in Section 6.4.3. Each draw is consid
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request for one movie, the number of hits indicates how many of these draws select the
ple movie. In contrast to the simulation model that we develop, the number of hits per day
fixed for this experiment.

Figure 39 implies that caching algorithms that are designed under the assumption that th
distribution provides a worst-case or at least an average-case boundary for movie hit pro
ity may underestimate the number of cache misses in a server at a low level of a distrib
hierarchy.

In Figure 47 we show how daily hits according to our model are distributed and com
them to the real-world rental probabilities that we used in Figure 43 before to illustrate
divergence from the Zipf distribution. From 50 draws, we show the highest and the lo
curve. The behavior of our life cycle function yields a more wide-spread hit distribution w
compared with the real world data. It is definitely more pessimistic then the Zipf distribu
We observed also that our model will typically generate curves closer to the lower c
which implies that a distribution of hits over multiple movies is the typical case, while the g
eration of higher curves, which implies the dominance of a single movie, is a rare occurr

Since we have not been able to acquire information about potential user behavior, i.e. the
and frequency of requests to the system, we have no adequate model for this. In our inv
tion, we have thus used a Poisson distribution, which is memory-less and does not pref
specific time during the day. We are aware that current television practice differs from s
smooth model of user requests throughout the day - on the other hand, the rental shop d
we have available has shown evidence that financial incentive can convince customers t
movies in the early morning hours. The greater divergence seems to exist between th
tomer behavior during day-time hours (children) and night-time hours (adults). The next
tions deals with the problems of such day-time variations.

0

0.5

1

1.5

2

0 50 100 150 200 250

m
ov

ie
 h

its

days

50 requests per day

0
1
2
3
4
5
6
7
8
9

0 50 100 150 200 250

m
ov

ie
 h

its

days

500 requests per day

0
10
20
30
40
50
60
70

0 50 100 150 200 250

m
ov

ie
 h

its

days

5000 requests per day

0
100
200
300
400
500
600
700

0 50 100 150 200 250

m
ov

ie
 h

its

days

50000 requests per day

Figure 46: Smoothing effects of growing user populations
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6.5 Day-time Variations

With web caching, depending on the size of the cache space can result in three effects:

• the web cache content stores and replaces continuously and unconditionally, e.g. a
tents are replaced once per day, because the space is too small to keep material; ite
frequently hit only once

• the same, but the user base is large enough: items are still hit many times
• the web cache is fairly large, and items are removed mainly because their expiry da

their assumed expire date has been reached

With videos, we have a lot more knowledge about their relevance. We have earlier invest
their long-term aging behavior that would warrant a large amount of cache space to b
aside for the most popular movies.

For short-term investigations on the time-scale of a few minutes, as it is used by v
server research work, this model would yield a sufficiently exact model. However, a si
Zipf distribution of hits is probably sufficient for such a time scale anyway. Our investigat
aim at a larger time scale; several days are intended and the goal is to understand the mo
of movie titles among video caches in an environment of several caches to interact. How
our long-term model can not successfully describe an effect that is observed in the real w
depending on their genres, movies’ popularity differs with the time of day as well. We k
that various TV shows exhibit a different level of attraction depending on the time of day w
they are broadcasted. Such day-time variations exist in the TV for various reasons, and
of the schedules have undergone a historical development. For example, comics stri
aimed at children and are on display primarily in the early morning hours, sex and crim
adults and are on display at night. Though there is indication that this assumption would
be true for VoD, we have no appropriate figures to rely on:

• television assumes this user behavior as well, and the programmes are structured ac
to sociological studies rather than feedback from experiments

• theme channels, which would be sources of information based on their daytime-related
ularity, have a very restricted customer base - and providers do not want to surrender fi

• hotel TV is atypical for our scenario
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Figure 47: Rental probabilities compared with RP curves
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• video rental stores (that were investigated in our older studies) can not provide inform
about the time of the actual viewing

• laws prevent some movie genres from being broadcast at certain times of day

We can assume that TV schedules are a lot stricter than actual viewing behavior in VoD
tems would be; video rental data support such an assumption. Day-time variations ar
influence by local law, in some countries such as Germany, certain genres must not be
ered at all times of the day.

In our simulation, we examine the performance of typical caching strategies for com
objects in VoD structures first. These are simple algorithms such as FIFO, LRU, LFU, L
IRG. These may not reach the performance limit that can be achieved with more intel
strategies, especially those for cooperative caching. One indication that cooperative cac
worth the effort can be drawn from intense web caching studies such as [Tewa98] an
Squid architecture; we expect that the advantages of such strategies for videos will be
greater since more meta information about the user response to available content can lik
stored per item than with web caching. The main reason that we make this assumption
the size of a single data item as well as the overall number of available data items for vid
demand movies is such that a large amount of collected meta information can be affo
which is an important difference in comparison to web caching.

For the moment that only approach that we can follow is the modification of the original lo
term model with various kinds of relevant daytime variations. Our intention is to verify
some algorithms (of medium sophistication such as the IRG) loose a lot of their advantag
dumb strategies such as FIFO when daytime variations occur, e.g. in terms of bandwidth
sumption between a cache server at the head end and its uplink server.

Due to the lack of a model, we choose some random waveforms with a 24h cycle to m
the long-term probability of our modeled movies. Such waveforms are a sinus wave, saw
and skip function with various intensities of affect on the original movie relevance.

6.6 Implementation

This section gives a compressed overview of the features and restrictions of the simulatio
gram that is the basis of the investigation. It presents the abstraction of the delivery pat
finally, the resulting class hierarchy. The decisions that are the basis for this design are a
pressed form of the arguments for abstraction and simplification given in Section 6.1:

• Since the size of user populations has a major influence on the effects that prevent
servers from detecting video aging, its model must be realistic. This means that the nu
and randomness of requests must be kept on the level of a one-to-one simulation.

• The same applies to the number of cache servers that are connected to a higher-leve
server.

• It is assumed that multicast can be exploited.
• It is assumed that control communication experiences no delay except for the delay

introduced by the distance between two nodes.
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• Cache servers are assumed to implement write-through caching without additional de
the stream that is transferred from am upstream cache server to an end system. This is
LC-RTP which provides protocol extensions to RTP and enables it to support end
delivery and server-to-server file transfer at the same time.

• We assume that data is always streamed at playout rate between servers. Alternativ
cache communication may require bulk transfer at higher rates. This limitation of the s
lation could be removed in the future. To achieve results earlier, this simplifying deci
seemed important.

• For pre-distribution among caches we allocate network bandwidth only once since the
RTP extensions provide for reliable multicast.

Selection Process

Figure 48 shows the simulation model that we are using. It is built with various applicatio
mind. It can be attached to a multitude of simulations for distribution models, allows the
ple addition of an enhanced user model, and implements correctly the life cycle model tha
derived from our recent studies. We have also taken care that the addition of communit
cific interests can be supported by adding alternative weighting functions to the movie b

The list of movies that are available to the system is maintained by a component c
movie base. The stored information contains the age and the parameters of the specific
title. From this information, the current popularity of the movie with respect to the overal
of available movies is computed according to the life cycle functionRP(t). Since our current
model has a temporal resolution of single days, and new movies are inserted at a rate of
12 simulated hours, the movie popularity changes only twice in a simulated day. We mak
of this to implement a faster movie selection by computing a second list of the mo

Figure 48: Movie Selection Process
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weighted by their popularity. The popularity is normalized so that 1 is the sum of all m
popularity.

A random process, this is a Poisson process until we have more information on sam
user behavior, decides when a user decides to view another movie. A random number
interval ]0..1] is generated and sent to the movie base. This random number identifies un
a movie in the list of movies weighted by their current popularity, and the movie is returne
the user as the selection. This movie title is then used in the simulation as the movie t
requested from the head-end server to which the user is connected.

We keep the global probability of one movie to be selected from a large number in line wit
probability defined by its life cycle by using a single generator function. This function se
randomly from a common database for all movies. Otherwise, if we had a random sele
mechanism built into the user model, probably with an independent number generator
user itself, bad random number generators could spoil the results.

Due to this approach, a movie has a probability of being selected by a user of the s
which is in line with its life cycle function. We assume a true on demand system in whic
users are equally informed about the availability of a movie, and the movie is equally a
tised towards all users. Since the topology of the video-on-demand system is assumed
based on physical constraints and not based on user interests, the probability of a movi
requested is the same for all users. Consequently, the request probability to each movie i
at all head-end servers that serves the same number of users.

The centralized approach has more advantages. A central movie base allows logging
selected movie and cross-checking for viability of results. Statistics can be kept with the s
movie to the end of the simulation rather than evaluating raw data afterwards. The insert
new movies is more easily modeled if only one database of movies is maintained, a
reflects better the model of a single distributing source for the specific movie. The numb
entries in this movie base is increasing throughout the simulation once per interval (e.g. d
to account for the number of movies that are actually published.

The introduction of intervals is used for another simplification in our model. The rental pr
bility of all movies is updated after an interval that is fixed for one simulation run. In this w
the weighted list of popularities can be re-used for the requests arriving in one interval in
of recalculating the exact probability value for each user request. This simplification s
computing time and seems permissible because the user behavior is not modeled on a
day scale.

The user model is based on the probability that a user will want to see a (any) mov
defines the time at which a user will see a movie. We expect to enhance this request for a
later with certain additional information, like the category of the movie requested. It will a
be enhanced towards modeling time of day. Right now, this part of the model is simple
open for enhancement in future versions of the simulation.

Users are modeled as individual entities that initiate the retrieval of a movie. We expe
number of customers of a single video-on-demand server to be approximately constant,
roughly constant interest in watching movies, i.e. the total number of movies that are retr
by the customers is fixed. Since there are no restrictions to retrieving any video at any tim
true video-on-demand system, the model does not take any dependencies between
– 118 –
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Figure 49: Simulation Class Hierarchy
– 119 –



nden-

ts the
d user
the class

ging
highly
time
their
s the

ction

asses
istribu-
nt all

r, the
tribu-

ategies
moval
server.
est for-
ete for
ller
quires

differ-
simula-
ple of

ward

ation
rea

s for
rests
users into account. The only way for users to exhibit similarities is because of inter-depe
cies arising from the handling of their requests by the on-demand system.

Class Diagram

Figure 49 presents the class hierarchy of the simulation. The class hierarchy implemen
two main elements that are dictated by the independent modeling of movie life cycles an
behavior. Each of the presented classes has also an instantiating class that represents
during parsing of our simulation specification language.

The movie life cycle is defined at the creation time of a Movie object and stored in an A
object that is instantiated at the same time. This separation allows the development of
complex models for movie life cycles that include long-term variations as well as day-
variations, while movies can be re-used freely. Movies are stored in the MovieBase after
creation. This MovieBase implements the “decision” process for the users and define
existence of a movie in the provider’s Archive - these two interconnections link the sele
model to the distribution model.

The distribution model starts with a Base class, which is inherited by the abstract cl
Node and Connection. The child classes of these two abstract classes implement the d
tion tree, as nodes and vertices of the system. The child classes of Nodes impleme
machines that are involved in a distribution, namely the Archive at the content provide
Servers and the Users. The Server implements a large part of the functionality of the dis
tion system, by instantiating one Strategy, one Storage and one Aggregation each. Str
are varied frequently and control the acceptance of movies into the Storage, or the re
from the Storage. Storages implement the amount of storage space available to the
Aggregations implement the pass-through feature of the system; they exist because requ
warding time can be exploited by request aggregation. Storages and Aggregations comp
downlink bandwidth as well. The access to this link is controlled by the AdmissionContro
class (preemption is implemented), which is necessary since streamed transmission re
throughput guarantees.

6.7 Evaluation

We have dealt with the completeness and appropriateness of our model, and with its
ences from and enhancements over previous approaches to a achieve a basis for VoD
tion. We have also presented the design of our simulation program. We are aware of a cou
restriction of our model:

• We lack information about request distributions, and thus we use a limited, straight-for
user model. We assume Poisson distribution to remove dependencies.

• We lack information about real-world day-time variations. We assume that such inform
could only be drawn from field trials that publish their results, probably also from wide-a
PayTV NVoD system; neither have published such results.

• There is no information about local behavior of user communities - although this exist
certain. European cooperations in TV productions have shown that the diversity of inte
among countries is very hard to overcome.
– 120 –



could
lt with
l of the
ould

s and
video
and the
small
whole
in this

, we
e been
time.
e, the
. As
rces
lieve
dict-
luster-
tainly
ld be

have
s, we
In spite of these restrictions, we consider our model a step beyond existing ones that we
have used for our investigations. In contrast to many of the earlier studies that have dea
short-term effects of user requests on servers and networks, this thesis requires a mode
overall effects of caching on a wide-area distribution system. While the older models c
without restriction of their accurateness neglect mid- and long-term popularity change
their effects that become visible in a range of minutes, we can not do this. The caching of
objects that are moved in the network at playout speed takes place on a scale of hours,
removal decision takes place on a scale of days - the latter is specifically important for
caches that are not able to store the results of all requests that have occurred during a
day. Due to these strong differences, the basis of the simulation model that is presented
chapter diverges from the models that have been required for the short-time modeling.

If we would, in comparison, use the older models unquestioningly in our simulations
would experience a series of problems. For example, the existing short-term models hav
time-free, or have been enhanced with a rudimentary notion of popularity change in
Examples have been given in Section 6.2. With these simple notions of change in tim
popularity changes of movie titles would behave unrealistically, either smooth or chaotic
an effect of overly smooth modeling, the simulation would indicate required network resou
far below the actually required values. With chaotic behaviors, the contrary applies. We be
that through the separation into two models, the predictable ‘aging’ quality and the unpre
able user ‘choice’, we achieve a behavior that comes close to reality. We concede that a c
ing of interests has not been investigated yet; if such a clustering existed, it would cer
indicate that the installation of a cache server (of unspecific size) for each cluster wou
appropriate.

Daytime variations may have a strong effect on popularity at a certain time. Since we
not had access to any material that would allow the modeling of such popularity variation
are applying selected modifier functions to the popularity to investigate possible effects.
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7. Simulation Results
This chapter of the thesis investigates the effects of distribution mechanisms and remova
egies that have been mentioned in the previous chapters. It addresses only a strictly
number of the questions that could be investigated in continuation of the previous chapte
the facilities of the simulation program.

Although simulations are typically used to model systems in great detail, the investiga
undertaken here aim at conceptual differences between strategies. For various reasons
sive studies of the detailed results are not considered a good idea. One reason is that a
the long-term popularity development of movie titles is investigated closely in this thesis
user model that is available at this time is very limited due to a lack of publically availa
information; the broadcasters who collect this information consider it confidental. Another
son is that the number of caching strategies that should be applied for a detailed investiga
large, with a growing number of caching strategies that spring into existance in coordi
web caching.

Still, even when the investigations are limited to the examiniation of concepts, a vast num
aspects and their interaction can and should be investigated in addition to the conclu
drawn from this chapter.

The following simulations were modelled with a specific set of parameters in mind. Additi
parameter sets would have been interesting, but in spite of intensive tuning and parallel e
tion, an investigation would take up to one week, which makes this impractical. The band
required for streaming of one movie is supposed to requires 1.5 Mbit/s of the raw net
bandwidth, which reminds of MPEG-1, while the raw network bandwidth available is cho
as 155 Mbit/s and 622 Mbit/s. This ignores the protocol overhead in ATM, or the effec
VBR MPEG streams. Network delay is constant for each link, and mainly intended for ex
nations of the original cache level of movie that are received by the users. Although pos
overload situations at the servers are not considered in the simulation, except for exh
downlinks or filled caches. The results of Section 7.1 imply that user population sizes of 5
10000 concurrent users are applicable, which can be served by large-scale video serve
ucts that exist today.

Due to the presented analysis, we expected an overwhelming influence of the distrib
mechanism chosen, and a limited influence of the removal strategy. The simulation, how
dictates different conclusions.

7.1 Effects of increasing user populations

Analytical investigation indicated that proper placement andgleaningwould be highly benefi-
cial. However, the placement that is found by the analytical model requires a strong coo
tion between caches in the hierarchy, to prevent cache servers close to the customer (we
the lower levels) from caching the most popular movies. For practical reasons, it is note
lower level cache servers have, on the contrary, a high inventive to prefer the storage
most popular titles. Doing so reduces the dependency on available uplink resources f
– 123 –
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most popular titles and results in the highest average user satisfaction. We envision less c
ation in this simulation and demonstrate the beneficial effects of gleaning nonetheless.

We have stated in the previous chapters that user populations have a major impact on th
bility of caching strategies to determine, without additional information, the most popular
tents. These contents should then be cached. However, the implemented local strategy
was not considered in detail up to now, plays a major role in the efficiency of a cache; at
where the most popular titles are concerned. Section 6.3 indicates that there is no mea
efficiently determining medium popular contents. Figure 50 is intended to demonstrate
key issues considering caching of the most popular titles:

• conditional overwrite strategies can be highly efficient compared to unconditional over
strategies

• the limited uplink bandwidth is quickly exhausted and the performance degrades imm
ately when storage space is limited and does not allow the strategy to store a suffic
large working set of titles

The setup of the conditional overwrite test consists of a single server with 155 MBit/s up
capacity and varying cache sizes. The caching strategies that are shown in the Figure
(additional removal strategies are shown in the appendix):

• FIFO: The first-in-first-out strategy.
• LRU: The least recently used strategy. In LRU, each hit to a cached element makes

least probable element for removal, new elements are always cached and replace th
probable element for removal from the cache.

• ECT: In the original inter-reference gap strategy all requests are counted and for
cached element, a history is maintained. An entry in the history is a distance betwee
consecutive hits to the stored element, expressed in intermediate requests for oth
ments. When a new content is requested, the content with the largest average
replaced. ECT is an IRG-variation that keeps the hit array for an element even after
been removed. It is a conditional replacement strategy: first time selections are a
cached, but after being removed once, the history for the entry is not deleted and take
account in all consecutive caching decisions. Like in the original IRG approach, the si
history for each entry is 8. The short-hand ECT is derived frometernal history,conditional
replacement andtemporal gap size.

Before the initial simulations, we expected that LRU would be a good reference strateg
learned that this is only true for strategies that cache items unconditionally. Among those
egies, its performance can be considered a reference. Its efficiency is better for small c
that hold only the most popular titles. These most popular titles are those that are hit
often than any possible sequence of different other titles that is long enough to take u
entire cache space. The observed popularity distribution which represents the popularity
is falling exponentially, while the number of consecutive misses that a title can take wit
being removed from the cache is strictly linear with the cache size. This implies that LRU
be efficient in comparison to more complex technique as long as the caches are sma
respect to the number of available items. The results of for several unconditional over
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Figure 50: Effects of caching strategies on user hit rates and throughput
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strategies are compared with LRU in the Appendix 10.5. They support this consideration
comparison with conditional strategies is more interesting.

The potential of conditional overwrite strategies is demonstrated in the hit ratio gr
Figures 50 (a)-(d); compared with unconditional overwrite strategies, the ECT strategy
support a multitude of users with the same cache size.

These results may be typical for simulated caching strategies of content that ages s
with respect to the number of requests to the cache, but important differences to other ap
tions of caching exist due to the application scenario. With web caching, for instance, the
mation that would be required to store ECT information would exceed the size of the av
content quickly and thus, would be an unacceptable waste of storage space. For movi
have the size of some gigabytes, the caching information takes only a negligable amo
space. For applications such as paging, swapping or CPU caches, the option of cond
overwrite does not exist since local presence of the data in the cache is required for an
tional system operation. Distributed databases need completely different considerations
their consistency requirement.

Without consideration to the bandwidth consumption on the uplink, the hit ratio figures 50
(d) could be interpreted as an indication that a simple strategy can be used without pen
conjunction with an affordable amount of disk space (e.g. 96 GB) to serve a realistic numb
users (e.g. 5000) by installing a single cache. The Figures 50 (a’)-(d’) show the usage
uplink between the cache and the library server. They demonstrate that there is in fact
alty. While the demonstration of the advantages of the conditional overwrite strategy are h
as convincing as the hit ratio above, the better resource use is clearly visible.

The fact that it is less clear in these graphs than in the hit ratio graphs is an inherent eff
the simulation design: users have a limited patience (5 minutes) and cancel the movie r
after this time and thus, they waste only 4.5% percent of a movie length (90 minutes) i
waiting state, then they cancel their request and retry up to 3 times with a newly drawn ti
the uplink is not exhausted, all of these requested titles that are not cached will be served
library server directly. As soon as the uplink is exhausted, requests will be either refused
server or cancelled by the user, whichever happens first.

Based on the results of these first simulations, we present the following simulations exclu
with the conditional overwrite strategy ECT, which achieve considerably better results tha
unconditional strategies. Results with other strategies can be found in the appendix.

Starvation effect

We detected that a cache starvation phenomenon that is not expected with a conditiona
write strategy can still impede the performance of a cache server under rare condition
tially we noticed this due to a simulation bug that was subsequently fixed. It can occur u
two conditions that involve conditional overwrite strategies on relatively small cache serv

One condition requires an extreme overload of the uplink. Due to this overload, the c
will rarely receive the movie that it has decided to store locally. When the caching decisi
finally honored, the popularity of the movie is decreasing again already.
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The other condition, which assumes that the cache does not deliver streams from a
copy any more when it is scheduled for replacement by a requested, but not yet inco
movie. Under this additional condition, the uplink overload needs not be as bad as for th
vious condition, yet its effect is worse. The cache is quickly deprived of movies that are
served, yet the probability that an incoming movie from the next level server is a title th
chosen for caching is not predictable. It is mandatory for a caching mechanism to allow
cache server either to refuse user requests instead of forwarding them when they can
served, or to be able to inform the next level server whether a movie is requested for cach
well as for forwarding.

We modified our strategies to refuse user requests to contents that are not selected fo
ing. The chosen threshold is reched when requests are pending that would result in a re
ment of 50% of the cache size.

Increasing number of movies

Our previous investigations were made with a changing set of 500 movie titles that were
currently available for selection by the user. Each title ages according to its randomly g
ated parameters and is removed from the set of available titles after 500 days.

Taking the fact into account that movies have an individual residual popularity (Sec
6.4), we assume that the hit ratio of a cache is falling when the number of concurrently
able titles increases in an otherwise unmodified scenario. This is also predicted by the Zip
tribution. The actual effects of this variation can be seen in Figures 51 and 52, which sho
results of a presentation with a fixed cache size (64 GB) and two different user population
(5000 and 10000). We increase the number of available movies gradually from 500 to
and examine the effects on a cache server that caches and discards titles from the cache
ing to ECT and that has an exclusive (i.e. non-shared) uplink. We notice a strong influen
the number of titles on the efficiency of the system.

Figure 51: Decrease in hit ratio (a) and increase in uplink usage (b) with increasin
number of available movies, uplink capacity 155 MBit/s
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Figure 51 illustrates that the hit ratio decreases quickly with an increasing number of ac
ble movies for both 5000 and 10000 users. We notice that the decrease of the hit ratio i
siderably more moderate when the uplink is 622 Mbit/s rather than 155 MBit/s w
(Figure 52).

Obviously, the exhausted uplink results in the unexpectedly steep decrease in hit ratio
happens in spite of the protection that we use in reponse to the starvation effect. The lo
indicate the efficiency reduction would be much worse without this protection.

We conclude that popularity of movies should be taken into account when titles
exchanged between cache server. A high average success rate (i.e. number of users who
their requested title out of all requested titles) can be achieved in several ways. One ap
requires that the higher level cache server stores the frequency of requests to movies an
preferes the transmission of more popular titles; to prevent starvation of lower level cache
ers, these should be able to indicate requests for movies that they intend to cache. A
tively, lower level cache servers could derive this decision on their own, probabl
conjunction with hints (Section 7.4), and stop requesting movies when they detect tha
uplink its overloaded; this approach is prone to misbehaving neighbours.

On the other hand, these approaches may reduce the attractiveness of video-on-dema
service that delivers rare movies to the user.

7.2 The Bandwidth Effect of Gleaning

To demonstrate the advantageous effect of Gleaning, we consider two levels of caching,
cache servers at the first level serve 5000 users each and apply ECT. These first level
share an uplink that connects them to the second level cache.

The two scenarios shown in Figures 53 (a) and (b) differ in two simulation parameters
the first scenario, we use a 96 GB cache and a 155 MBit/s shared uplink. For the secon
nario, we use only a 64 GB cache and a 622 MBit/s shared uplink. The figures show the r
probability that is experienced at the client rather than any hit ratio or throughput values

With the scenario of Figure 53 (a), we achieve a 98% cache hit ratio that accounts fo
small number of requests to popular movies that is forwarded to the second level serve
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Figure 52: Decrease in hit ratio (a) and increase in uplink usage (b) with increasi
number of available movies, uplink capacity 622 MBit/s
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know that the cache serves most requests directly and that the requests to titles that
cached are spread over the set of uncached titles. Of course, the number of these r
grows with the number of first level cache servers that are served by the second level
server, and the shared uplink between first and second level is exhausted at some time,
ing in service refusals. With a refusal probability below 1%, a connection of 10 first l
caches to one second level cache server seems appropriate.

It is interesting that we observe only small differences between unicast delivery, bat
with a 5 minute window and gleaning. This is obviously due to the rareness of consec
cache misses at the first and cache hits at the second level. We notice that gleaning pe
slightly better in this scenario than unicast and batching.

The results change radically when we examine the scenario of Figure 53 (b), which a
only a 94% cache hit ratio at the first level cache. This change in cache size provides a
probability that movies are requested in shorter sequence at the second level cache ser
assume that this results in a better performance of batching and gleaning. The investi
shows that this assumption is only partly correct. Batching performs even worse than un
the explanation is the increased delay in delivering the videos, which increases slight
probability of cancellation due to an impatient user. The application of gleaning, on the
hand, demonstrates that it can operate efficienctly in this environment; an increase in r
probabilities can not be seen in Figure 53 (b).

We conclude that gleaning can be highly efficient in a de-centralized setup, even thoug
optimal placement of movies in the distribution hierarchy is not achieved. To operate more
ciently than simple distribution mechanisms, a multicast network and a considerable nu
of connected caches is needed, where the set of movies that is cached at the first level m
similar for each cache.

7.3 The Hit Rate Effect of Daytime Variations

For a conclusion of single server effects, the effects of strongly varying popularities fo
titles throughout the day were simulated. This is intended to understand the effects of the
world phenomenon that different movie genres are preferred at different times of the da
wanted to understand in which way the expected replacement of the cache content affe
performance of the caching strategies.

Figure 53: Refusal probabilities depending on user hit rates
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The assumed result was earlier that the frequent exchange of movies between levels
hierarchy would severely affect the overall bandwidth requirements. This assumption ch
subsequently with the observation that techniques such as gleaning can strongly reduce
width requirements. The simulation results support the opinion that there is no penalty in
time variations, but they indicate also that the reasons are different.

The realism of our daytime variation simulation is limited by the lack of a proven mode
real-world user behaviour. Several potential sources have been considered and discarde
the lack of realism. Broadcast television uses a self-fulfilling model by assigning times o
day to certain genres. Rental stores do not collect data on the actual viewing times of the
tomers. Hotel television has a very restricted programme. Pay-TV channels like Pre
World in Germany would be an appropriate source of information, but right now this infor
tion is not released.

To examine the basic properties of daytime variations, we decided to apply additional v
tions with a 24 hours cyclic behaviour to the long-term popularity curves of our movie mo
We start with a sinus function that is applied to 50% of the long-term popularity value at
time. Within a 24 hours period, the popularity of a title varies between 50% and 150% o
popularity that is defined by the long-term model. For Figure 54, the daily popularity pea
each titles is chosen independently throughout the day. To save computing time, the po
ties are not recomputed for each selection that is made by a user, but only every 10 m
(simulated minutes).

It is probably more realistic than total freedom of choice that users prefer certain gen
certains days of time. This would result in concentrated requests on movies in a cyclic ma
Some titles are reaching peek popularity in the morning, and some in the evening. To ac
for this, we have added simulations that create two daily hot spots. A movie would hav
daily peek popularity either close the one of the other hot spot. The following simula
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Figure 54: Development of hit ratio (a) and of uplink usage (b) with increasing numb
of users, daytime variations with random peeks
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locates these hot spots at 14:00 and 20:00 hours. The results can be seen in Figure 55.
tion results for other removal strategies and less incisive parameters are shown in Sectio

By themselves, these figures are no more but another demonstration of a conditional ove
strategy that delivers good hit rates in spite of an exhausted uplink. When compared with
other and with Figure 50 (b), which shows results without daytime variations, the hit
increases when the variations are intensified. In spite of changes to the content that is k
the cache, the “working set” of most popular movies, the hit ratio is increasing when the
all number of movies in the system is kept constant. This happens in spite of an overlo
uplink - it is typically exhausted from cache misses (although the refusal probability is b
1%).

We conclude that the constant load on the uplink for delivering movies from higher l
caches renders the rotation of a complete cache content irrelevant. The assumption of
throughput link between the first level cache server and the second level cache server, w
the basis of an on-demand access to less popular titles, results in an unnoticable excha
movies between the levels when the popularity changes. The decision to model popu
changes only by 66% instead of 100% of the highest value results in movements of onl
level in the typical case.

7.4 The Hit Rate Effect of Hints

Hint-based caching has been proposed for web caches by Tewari. It works by an excha
request statistics between neighbouring cache servers, which consider this additional in
tion in their own caching decisions. It is shown that the information exchange between c
improves the quality of caching decision in individual caches considerably. Among the ad
tages of hint-based caching over centralized decisions are its resistance to connection lo
the ability to account for regional differences in preference by considering the information
is received from neighbouring caches only with a predefined weight.

In the scenario of this thesis, the effectiveness of hints is unclear. On the one hand we
quality enhancements in our scenario which considers exclusively large objects that are
theless stored completely in the cache servers. On the other hand, the ECT strategy is
collect information for all available titles, and the storage requirement is small enough in
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Figure 55: Development of hit ratio (a) and of uplink usage (b) with increasing numbe
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parison to the content size to actually keep this data. To validate the effects of hints that is
to augment an ECT strategy we simulate a system that receives hints from 1, 2, 3 and 4
in the neighourhood, respectively, that have the same size and user population as the ex
cache server. We want to find out how important the faster update of ECT with hints is in
parison to an ECT strategy that relies only on local information.

We observe that the information from the caches in the neighbourhood influences m
the quality of decisions for small user communities when the unweighted memory of the
strategy is big. The number of titles is very small compared to the amount of web conten
the number of items that can be cached is extremely small in comparison to the num
items that a web cache can hold. The popularity of the movies changes slowly, while the
ber of hits to titles are considerable. This combination allows the ECT to make good deci
even if its memory holds the information of a whole day. Thus we expect that the quality o
caching decisions depends primarily on a good relation between the memory size and th
population size than on the support by hints. Figure 56 supports these considerations; t
ures show two example scenarios with 2000 movies, daytime variations with two pee
cache size of 32 GB and an uplink bandwidth of 155 MBit/s (note that the scale on the X
is logarithmical in contrast to the other simulation results). The chosen values are intend
produce results with quickly, with small user populations. In the figures, the number of hin
constant for each curve, rather than relative to the number of users that are attached to a
The effect of these hints is reduced when the number of users increases, but in the give
nario, the effect is not totally lost until the starvation effect breaks the strategy.

It is also important to note that the larger log of the ECT strategy in Figure 56 (b) has n
no effect for small user populations. For larger populations, it prevents misjudgement o
contents’ popularity, and the hints continue to improve the strategy.

The experiments were also performed without daytime variations. The results are si
although the effect of the hints is less dominant. The reasons for the reduced relevance
hints is the slower change in movie popularity. The slower change allows even the log e
in large logs to remain relevant for a decision, while this is not the case for the shown sim
tions with daytime variations.
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7.5 The Strategy Degradation with Multilevel Clients

If the cache servers at the first level demonstrate any efficiency at all, a 2nd level cache
without directly attached clients will not experience a distribution of the hits that can
approximated by a Zipf distribution. For web caching, this has been documented by Ma
and Roadknight ([MaRo98]). We observe the same effect in our simulation but we have
achieved hit rates around 75% for second level caches with the same capacity as their a
first level caches.

Clients sets that retrieve the same content from various levels of the hierarchy are aff
the interaction of independent hierarchical caches adversely. Figure 57 shows this sit
which we call “multilevel clients”: the cache server of the second level serves clients dir
as well as through cache servers of the first level.

In such a scenario, the problem of the purely hierarchical interconnection is the tenden
higher level servers to store primarily the contents that are also stored at the lower level. T
intuitively clear since the number of users that they are serving is considerable larger th
number of lower level servers that are served. Thus, the Zipf distribution of observed req
explains that the movies with average hit rates (that are not stored in the lowest level se
do not sufficiently affect the higher level servers to store mainly these movies of averag
rates. We can assume that top popularity titles and average popularity titles are stored
higher level servers, in spite of potential variations in the popularity order that is perceive
the higher level server. The only option that is allowed by a purely hierarchical distribu
infrastructure (which should be assumed as a beginning of Internet VoD, just as the Usen
etree distribution system started the internet expansion) is to expand the number of title
are stored at higher level; on the contrary it is pointless to make low level servers large.

users

archive
server

1st level
cache server

1st level
cache server

2nd level
cache server

usersusers

users

users

Figure 57: Multilevel clients

“serves”
– 133 –



ovies
solu-
ached

dback
ategies
ions.
atistics
hile

t were
livery,
r this
. Spe-
pro-

ching
l actu-
y small
rma-

g-dis-
le. An
r level
ther

ion to
ces

r cache

e net-
r an
native
EG-2
st be
cancel-
This can probably be solved by leaving the hierarchical assumption and by allowing m
which are stored at lower levels to be retrieved from their higher level servers. A simpler
tion is the reservation of parts of the larger second level cache for serving the directly att
clients.

7.6 Simulation Wrap-Up

The simulation program that was used for this chapter was developed to reflect many fee
aspects of video delivery that can not be considered in analyses. Several caching str
were introduced in alternative versions to investigate the quality of their removal decis
The possible observations included delays, refusal and cancellations at the client side, st
for all or single network connections or servers, and statistics of all or single movies. W
this chapter demonstrates only a tiny portion of the investigations that were made, mos
necessary for the understanding of the interdependance of components in the video de
but not relevant for the demonstrated results. The simulations that were performed fo
chapter led to new insights that were at some points not in line with the expected results
cifically, the results demand the user of conditional overwrite strategies and confirm the
posal of using hints. It is shown that a starvation effect must be considered when ca
strategy and distribution system are designed, and it confirms that very small caches wil
ally be able to respond to a large number of requests, even though caches that serve onl
user populations can gain strongly from long-term observations and from additional info
tion to achieve a good hit ratio.

Use conditional overwrite strategies

Conditional overwrite strategies can be applied in streaming media delivery because lon
tance video streaming from a higher level cache server to the client is technically possib
application of conditional overwrite strategies allows caches to operate at a much highe
of efficiency than typical, unconditional overwrite strategies that are required for many o
applications of caching.

Use hints

Hints allow faster reactions to changes in the movie popularities, and allow better adaptat
daytime variations of movies’ popularity. Unless there are well-known regional differen
between co-located user communities, hints should always be exchanged between thei
servers to increase the performance of the selected removal strategy.

Network requirements

The simulations were configured with MPEG-1 content and streaming-capable backbon
works in mind. For a real-world application of commercial video-on-demand, MPEG-2 o
alternative format may be more appropriate, but MPEG-1 seemed applicable for an alter
to the video rental stores that is envisioned in this thesis. The main influence of an MP
scenario will be the increased danger of the starvation effect. A real-world strategy mu
able to suppress this effect more aggressively than the simulated strategies, e.g. by the
lation of transmissions at the higher level cache servers.
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Small caches achieve good hit rates

In spite of the existing 80/20 rule-of-thumb that is applied in estimations of cache efficie
the experiences with web caches that store vast numbers of pages due to a single, unr
request made me wonder whether the life-cycle model and the randomly generated
requests would actually stay within the bounds of this rule-of-thumb.

It did, and more importantly neither the long-term nor the day-time variations in user p
larity had any relevant effect on the hit ratio.

Future work

The simulation should be extended in the future to cover additional aspects. Among th
the requirements to choose a metric for measuring the quality of a cache filling. This w
allow to investigate the effects of client that connect to cache servers at various levels
distribution hierarchy.

Furthermore it is an important issue to simplify the user model further, as a preconditio
the simulation of larger distribution trees in acceptable time. Such an improvement would
allow to model non-hierarchical topologies as well. The existance of cross-traffic and the
munication among peer will be worth an investigation. We are currently working on a pro
that would benefit from information about caching among peers. The first new topology
must be considered in this case concerns the support of several root servers. Assumi
wide-area distribution of video-on-demand would actually develop in the Internet, compe
between several providers would be seen. In this case, a cache would be part of several
trees, and must arrange its decisions accordingly.

Another issue is the need to model a mixed workload, including for example movies
news clips, or even web traffic. This is necessary because it is conceivable that an un
tional removal strategy should be applied to news clips with their small size and short
cycles.
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8. Conclusion
The goal of the thesis was the investigation of a caching-oriented infrastructure for wide
video-on-demand without central control. This investigation has been restricted to a co
data distribution system, while data management aspects, stream synchronization and re
reservation have been left out. These are considered connected but independently s
research topics that are also under investigation. Storage subsystems have been examin
peripherally as well.

At the beginning of the thesis, earlier work on VoD distribution systems has been struc
and evaluated. One conclusion of this evaluation was that single-server research has con
primarily the short-term effects of user requests on the video server and on the distributio
tems. While this is relevant to the servers in a wide-area distribution system, it was consi
possible that traffic would be more strongly affected by long-term traffic variations when
distribution in the backbone network applies caching. Two examinations contributed to
investigation. On the one hand, statistical data of the popularity of rental movies were
lyzed, and an aging model for movies was created. On the other hand, the Zipf distrib
which is frequently employed for user request modeling in VoD was analyzed. It was de
strated that although it describesobserved hit ratesto an available set of movies appropriatel
it does not provide sufficient information for a realistic model of these hit rates of a longer
span.

A structuring of existing caching techniques was also performed in order to understan
basic properties that make up a strategy. This investigation allowed the separation of the
ing mechanisms into the two main elements: thedistribution mechanismsand thereplacement
strategy. Although they impose requirements on each other to operate efficiently, and alth
the effects of the combination is experienced by end users in terms of delay and refusal i
cases, each can be exchanged individually. The replacement strategy influences w
retrieval actions must be performed by a server; more efficient replacement strategies ac
higher hit ratio and reduce the number of streams need to be received at the cache. The
bution mechanism influences the efficiency of answering responses to retrieval actions.
efficient distribution mechanisms reduce the number of concurrent streams that need
transmitted from a cache or library server.

The existing ideas for VoD distribution mechanisms were examined and in particula
stream tapping/patching idea was found as a candidate that can be integrated into a
based distribution system. With the so-calledλ-patching, an independent server is giving
practical means of identifying the optimal time before sending a full-length rather than a
tial stream. While patching promises large bandwidth savings in an analytical comparis
combination with caching reduces bandwidth requirements further. The analysis revea
the technique is not only applicable for the decentralized architecture that is developed
thesis. It proposes even better efficiency for a large-scale distribution system that can po
content in the ideal position in a hierarchical system due to a central controlling instance.
it diverges from the target of the thesis, this consideration was not continued in detail
approach that is considered for the decentralized case combinesλ-patching with caching and is
calledgleaning.
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After the presentation of the potential for technical viability, an altogether different issue
could prevent the implementation of a wide-area distribution system was addressed. Thi
cerned the copyright problems which are inherent to a system that stores content in m
copies on untrusted hosts. This thesis does not refer to security issues that are indepen
video delivery. Security issues that protect the video stream, cache servers or the ho
closely investigated in various other research areas and have been considered out of sc
this thesis. Results of such work can be applied to the video distribution system. With c
right protection, the application of existing work to a de-centralized distribution architec
was not possible. To make a decentralized infrastructure viable, an copyright protection
tecture namedremarkwas developed that implements the possibility to identify copyright v
lators by error insertion. The approach is able to identify cheating cache servers and ch
end-users indenpendently by repetetive steps of error insertion and error correction
approach requires the direct delivery of a very low bandwidth sub-stream from the conten
vider to the end user. This sub-stream is necessary to extract an enjoyable video qualit
the delivered content. This allows the content owner to enforce a download notificatio
each request that is made to a video. Theremarkarchitecture has the potential of supportin
personalized marks that are not visible as errors in the video stream, which was not furthe
sued in this thesis. The variation requires a detailed analysis of the video stream to p
stream variations, but this needs not be done in real-time.

With technical viability and legal problems addressed, the issue of backward-compatible
tocols was investigated. VoD field trials have resulted in numerous protocol implementa
many of which are proprietary. Typical Internet development, however, has demanded tha
cess for new protocols depends on its operation with the currently existing Internet infras
ture and protocols. With this in mind, a protocol suite was designed that is compatible
established standards and products, works well with proxy caching, supports segm
streams that are required by patching-related techniques, and allows reliable transfer of c
into caches servers. The resulting protocol suite consists ofLC-RTP, LC-RTCP, RTSP and
SDP. The latter two are standard control and description protocols that allow distribution
tems that include abilities such as proxy caching and re-direction (RTSP) and protocol su
for segmented transmission of content (SDP). LC-RTP and LC-RTCP are variations of th
quently applied streaming protocol pair RTP/RTCP that is implemented in many product
research prototypes for streaming media. Our variations allow interoperation with exi
RTP-compliant clients, they are reliable to achieve perfect reproductions of the original co
in caches servers, and they allow segmented transfer of content to implement technique
asgleaning. The protocols have been implemented. Their multicast-capability and long
tance functions were experimentally verified. An observation was that long-distance
streaming (e.g. inner-European and trans-Atlantic) is possible and that it is, in terms o
transfer, more efficient and robust but less fair than standard-compliant TCP implementa
While the protocol suite can operate as it is, we have concluded that an augmentation
long-distance transfers by reservation techniques such as the IntServ of DiffServ appro
would be advantageous; alternatively, a forward-error-correction approach could be add
the communication among servers, at the expense of additional bandwidth.
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With the infrastructure in place, the selection of appropriate removal strategies for the
servers wrapped up the work. The investigation of removal strategies determined a set o
for a good strategy, and it demonstrates the limits beyond which these strategies need
tuned. First and foremost, it was established that conditional overwrite (the ability of a c
server to determine that an uncached content is not relevant enough for caching and
rather be passed through to the client) can raise the efficiency of the strategy considerab
allows the support of much larger user populations without increased storage or uplink ca
ties, compared to unconditional strategies. This ability is rarely found in other application
of caching since the information that needs to be maintained outgrows the storage gain in
other areas. The typical size of VoD content makes this efficient in our case.

Further investigations demonstrated that Hint based caching can improve this kind of
egy considerably if both the cache size and the user population are small. It is shown that
tectures loose performance if cache servers are not dedicated to serving either users o
level cache servers.

With all of these elements, the possibility to design and implement a wide-area True Vide
Demand system that is based on decentrally organized caches is demonstrated. In spite
the topic is not exhausted by far. Appropriate cooperative strategies can be investigated,
user models are needed and, as a precondition for commercial success, more research
in the area of copyright protection for untrusted multiparty communication is required.
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10. Appendices

10.1 Design of the Overwrite-Capable Multimedia File System

One of our working issues is the design and subsequent implementation of an overwrite
ble multimedia filesystem (tagged OCFS). Since overwriting of data is not a typical featu
multimedia filesystems, the relevance of such an operation is not necessarily clear.

For a filesystem implementation to interact with a reliable multicast protocol, it is neces
that lost data is recovered and the transferred file is finally available completely. With prot
such as TCP or some reliable multicast protocols, a windowing mechanim is used that re
mits the lost packets quickly in such a way that gaps can be filled in a main memory buff
the receiving system. The drawback of such windowing protocols is the unreliable end-t
delay on the application level that renders them unuseful for real-time stream transm
unless they are augmented by strict QoS guarantees.

Our reliable variation of RTP is fully compatible with continuous media streaming, but
amount of data that must be expected to arrive at the client before retransmitted data fi
gaps in the original stream of the first transmission precludes the buffering of the arriving
until all gaps are filled. By adding the overwrite feature to our filesystem, we are able to
the arriving data to disk linearly, to leave gaps (zeros) in the file, and to fill in the gaps la

10.2 Protection from Collusion Attacks

10.2.1 Collusion Protection of the Chameleon Key, 2-party Identification
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10.2.2 Collusion Protection of the Chameleon key, 3-party Collusion Attack
:

10.3 Cost Calculations for Distribution in Binary Trees

The calculations for the costs of the different distribution models that are compared in “M
vation of Gleaning for Caching Hierarchies” on page 39 are based on a binary tree as sho
Figure 17. This binary tree is definitly not an absolutely correct representation of the real w
and I do not at all believe that future VoD distribution architectures will look like a binary tr
Video cache servers will certainly not have one up and two downlinks and be located
router. Rather, I assume that that Internet-style architectures grow to become architectu
VoD.

Nevertheless we deciced to do the cost calculations based on a binary tree becau
allows us to model many other network layouts by the fact that some of the links are set t
is obvious that it is not possible to model all possible layouts of VoD architectures. Our m
e.g. has the limit that a cache server of a higher level can only be connected to a maxim
two cache Servers in the level below. On the other hand we do this calculation in order to
upper limit of the costs and are able to show that techniques like caching, Patching, an
combination of both will lower the costs in general. It is our goal to include this technique
our simulation for video caching in order to receive more detailed resulsts.

We think of a binary tree distribution architecture of depthd.
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We denote a link in the tree by its levelt and its index at this level,n: . If we select an
arbitrary link, it is called . Similarly, cache servers are labelled and , respectively.
convenience, we consider a client rather than a cache server. We assume that the c
handling one video stream at each link at a levelt is equal to another at the same level an
that the cost for storing a video in each cache server at level t is equal to another
same level. We name these costs for each link or server and , respectively. For co
ing the average cost at one levelt, this value can simply be multiplied with2t.

We assume a set of movies . All of these movies have the same len
measured in time,L1 and the same data rate. To express the requirements of cache filling
assume also an average timeLr after which the popularity of all movies changes and optim
positioning needs to be recalculated.

We assume that each end-user in the system is watching exactly one video at any tim

10.4 Analytical Distribution Model - Binary Tree

For simplification, our example calculations assume binary distribution trees as show
Figure 17. With appropriate weight and cost settings we can model a limited class of bala
hierarchical distribution topologies compliant with these assumptions. We are currently w
ing on a more complex and realistic simulation for video caching integrating these techn
in order to receive more detailed results.

We think of a binary tree distribution architecture of depthd. We denote a link in the tree by
its levelt and its indexn at this level: . If we select an arbitrary link, it is calledEt. Similarly,
cache servers are labeled andNt, respectively. For convenience, we considerNd a client
rather than a cache server. We assume the cost per concurrent video stream to be the s
for each link on one levelt. Also, we assume the hard disk cost for one video to be
each cache server  on one levelt. The numbers of links and caches at one leveltare2t.

We assume a set of moviesM. All of these movies have the same length, measu
in time, L1 and the same data rate, but possibly different draw probabilitiesP(m). In caching
scenarios, we assume that each cached moviemi is stored in all caches of one optimally chose
level t(m).

The necessity to have sufficiently large central servers that are able to handle the num
streams that are concurrently requested imposes a costS0 for the basic installation of each
server, and a costS1 for each concurrent stream that is supported by a server. Each end-u
the system is watching exactly one video at any time, ie. . The number of clien
very big compared to the number of different movies and active (cache) servers, the pop
of movies is constant for all clients. This gives us draw probablities being independent of
and hierarchy location, but also gives the problematic postulation of a majority of inactive,
zeroed cache servers. We enforce this by defining the base server setup costS0 sufficiently
high.

10.4.1 Unicast: No Patching, No Caching

The simplest approach to deliver video is the distribution from a central server via unicast
allows all kinds of video-on-demand features, but is intense in terms of network as we
server load. We calculate costs for such an approach first.
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Since there are no movies stored in the caches there will be no storage costs:
Network costs for each currently running movie: , which are the cost of a comp

link from the central server to the end-user. As every client is watching exactly one mov
any point of time, the overall network cost for streaming is T
interarrival time is irrelevant in this case, because no streams are shared. With this and a
ber of clients of , the central server approach has an overall cost of

10.4.2 Unicast: No Patching, Caching

Network Cost

This implies that networking costs are generated only for the delivery of the movie from
cache server to the clients that are located downstream from this cache server or, in te
the binary tree, in each subtree with a root node at levelt(i). The networking costs for this
movie and for this subtree of depthd-t(m)can be calculated as in section Unicast: No Patchi
No Caching:

Although the formula concerning the distribution probability of the movies does still apply in this case (the su
probabilities equals 1), this should not be integrated into this formula, because the optimal levelt(m) is different
for each movie, depending on its probability.

Server Cost

Since there are2t(m) cache servers at levelt(m), the above networking cost occurs2t(m) times.
The cost generated by the moviem that is stored at levelt(m) is then

The resulting storage cost for a moviem on all cache servers at levelt(m) is
The cost of the capacity needed by this cache server depends on the average number

current streams it has to serve for each moviem. This is calculated from the hit probability o
the movie and the number of clients that the cache server serves. The setup cost for a
cache server on levelt is

A cache server has to be set up if its level is the optimal cache level for any movie,
installation cost for serving clients is as .

As we assume a constant system state, there are no cost to store or stream movies
root server cached elsewhere.

Simplified and increased by the network cost, this gives the following formula for the o
all cost for our model with caching:
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10.4.3 Greedy Patching with central server

The simplest form of Patching is Greedy Patching without buffering limits at the clie
Besides the fact that clients will be overly expensive when they are built to buffer com
movies, we have shown in [GLZS99] that the optimal restart time in terms of server
depends onP(m) and thus, the largest required buffer does not need to hold a complete m

However, we assume this kind of Patching to find an approximation for the cost of a d
bution system. Assume a binary distribution tree of depthd, caching is not applied in this tree

For each moviem, we define  for ease of reuse of the formulas.

Server effort

Since this approach is using a central server,S0 is needed only once. The number of stream
that need to be served concurrently is also reduced in comparison to the unicast case
central server. The formula is derived as in Section , and yields the setup cost, the basic
cost for multicast streams of m and the total cost of unicast patc
streams:

Multicast portion

First, we try to calculate the network load that is generated at each level of the binary tre
to the probability of a joint stream for multiple clients; ie. we want to find a formula for savi
of network bandwidth in the upper levels of the binary tree. We assume a random distrib
of the clients that share a stream of moviem in the overall set of clients. The probability of a
network link to be involved in a multicast playout of a specific movie is the probability, t
any client below demands that specific movie. This probability is

which means that at each levelt, an average of links are involved in th
same multicast of moviem, and a cost that is generated at level t by the multicast stream

Unicast portion

At the same time, the unicast patches need to be distributed to the clients. These u
patches require a direct transmission from the central server to the end-user, and this
transmission behaves mainly like a regular video transmission according to Section 10.4.
major difference is that the length of a unicast patch is less than a full length video tran
sion rather the length of the unicast patch is on average 1/2 of the patching window, which
this case the full movie length ([GLZS99]). Thus, the load of unicast streams at levelt is in this
case:

ηm P m( )=

S0 1 1 ηm–( )2d

–( ) S1⋅ 2
d 1–

S1+ +

P En
t

not  involved( ) 1 P En
t

servesm( )–

1 P Nki

d
does not requestm( )

i 1=

2d t–

∏– 1 P N
d

does not requestm( )
i 1=

2d t–

∏– 1 1 ηm–( )2d t–

–

=

= = =

1 1 ηm–( )2d t–

–( ) 2
t⋅

1 1 ηm–( )2d t–

–( ) 2
t

Ct
E⋅ ⋅

1
2
--- ηm2

d
Ct

E( ) ηm 2
d 1–

Ct
E⋅ ⋅=
– 155 –



vel

ith the

sav-

g in

ceive
imits
ulti-
restart
bility

icast
ms for

e cen-
-
rse
g

Overall cost

When the unicast and multicast formulas are combined, the overall cost at let
is

and the overall cost of distribution of all movies, through the whole tree is the summation

Savings Compared To Unicast With Central Server

The average Greedy Patching case is not costlier than the unicast with central server. W
inequality

the comparison of the server efforts to Section 10.4.1 gives a possible
ing:

Together with the comparison of network load below this is a first hint to integrate Patchin
the delivery system.

10.4.4 Patching with limited buffer and central server

When the restart rater(m) for the multicast stream of a specific moviem is increased, i.e., the
window size to covered by patch streams is reduced, then the probability that clients re
the same multicast is reduced, but the use of a limited patching window size realistically l
the needed buffer size at the client. As in [GLZS99], we assume for simplicity that the m
cast transmissions are repeated regularly, and that the length of such a cycle is called the
time. The restart time here is expressed as a portion of the movie length: The proba
for a client to join a specific multicast playout of a specific moviem follows as

Server effort

With a patchiong window of , we calculate the average number of concurrent un
patches to be served according Section . Ie. that the number of concurrent unicast strea
m is

This yields the number of concurrent unicast streams that need to be supported by th
tral server at each time. Unlike for Greedy Patching,r(m) is assumed to be optimal but differ
ent for differentm. The server cost for unicast streams is which is inve
proportional to the restart rate! The server cost per moviem for multicast streams is increasin
with the restart rate:
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Multicast portion

The multicast cost of the distribution system is calculated as in the Section , with the rede
. As r(m) copies of the stream can be active at any time, the average load at levet is

Unicast portion

The computation of the unicast load of the distribution system is the same as in the last se
but with the reduced average length of the unicast patch streams, the values differ. Wi
redefined value , however, the formula remains the same as in the previous section, th
a levelt is

Overall cost

The combined costs of elements yield the average cost for a distribution system tha
Patching with a central server and movie-dependent window sizes for the delivery of un
patch streams.

10.4.5 Patching with Caching

We assume that for large hierarchies, savings can be increased by combining patchin
caching. To verify this, we start with the inner part of the formula from Section . We ass
that for each moviem there is exactly one levelt(m), where this movie is cached in all server
We calculate the server cost for one cache server form. The depth of the distribution sub-tree i
d-t(m). Analogous to Section 10.4.4, for this movie, the effort to support streams on the c
server (without basic setupS0 and the movie storage cost , which can be calculated a
Section ) and on the network links below this server is given by

This cost occurs once for each server at this level, and that cost, in turn, needs to be calc
once for each moviem. This results in an overall cost for Patching with caching of
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10.5 Simulation Details

10.5.1 The Hit Rate Effect of Daytime Variations: Increasing numbers of
movies1

The input script for the simulation series is given in Figure 58. The content type specifies
“Baer” style movies will be produced that die after $MOVIES days. The popularity of th
titles undergoes some variation from the Baer style to introduce daytime variations. 50%
movie popularity depends fully on the Baer parameters and the other half is modified
sinus curve. The phase of of the sinus curve has its peak either close to 14:00 or close to
simtime.

In the nodes definition, you may notice the user type “ManyUser”. Since users in
applied scenarios are always connected through ADSL and receive at most one stream
link is never overloaded. To reduce main memory during simulation, these user have

1. task7.4, IncMC155 and IncMC622

PARAMETERS
{
        SEED    $RAND

       CONTENT TYPE MOVIE
          { BAER * { 0.5 + { SINUS( . 14.0 ) | SINUS( . 20.0 ) } } }
        * DEATH($MOVIES)

        CONTENT PREPARE $MOVIES

        LOG START $MOVIES + 3
        LOG GROUP 1 CONN "atms"
        LOG GROUP 2 SERVER "he"
        TERMINATE $MOVIES + 15
}

Figure 58: Parameter setting for 10.5.1
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combined into the new type “ManyUser”. Given enough uplink bandwidth, the behaviou
this user type is identical to the model of single users.

NODES
{
        NODE World {
                TYPE World
        }

        NODE User {
                TYPE ManyUser
                SET COPIES $USERS
        }

        NODE HeadEnd {
                TYPE Server
                SET CAPACITY $CAPACITY GB
                SET STRATEGY IRG1 ( "eternal", "conditional", "time" )
                SET STATGROUP 2
        }
}

Figure 59: Node descriptions for 10.5.1

CONNECTIONS
{
        CONNECTION ATM {
                TYPE Bus;
                SET THROUGHPUT 622 MBIT/S;
                SET LENGTH 30 MS;
                SET STATGROUP 1
        }

        CONNECTION ADSL {
                TYPE P2P
                SET THROUGHPUT 150000 MBIT/S
                SET LENGTH 5 MS
        }
}

Figure 60: Network descriptions for 10.5.1
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With this test, the influence of an increasing number of concurrently available Baer m
on the hit ratio and throughput was examined. The figures 62-65 demonstrates the resul
general impression that an increasing number of concurrently available movie titles will r
in a reduced efficiency of a cache is trivial. The observation that doubling of the user po
tion has hardly any effect on the quality of the cache filling is less trivial.

HIERARCHY
{
        World -> ( mirdochegal ) {
              ATM -> 1 * {
                HeadEnd -> ( mirnochimmeregal ) {
                  ADSL -> User
                }
              }
        }
}

Figure 61: Topology for 10.5.1
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Figure 62: Decrease in HitRatio with increasing number of available movies, uplink
capacity 155 MBit/s
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Figure 63: Uplink requirements increase with number of available movies, uplink
capacity 155 MBit/s
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Figure 64: Uplink requirements increase with number of available movies, uplin
capacity 155 MBit/s
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10.5.2 The Hit Rate Effect of Daytime Variations: Random sinus wave

The daytime variation modeling is obscure due to the lack of a proven model of real-world
behaviour. Several potential sources have been considered and discarded due to the
realism. Broadcast television uses a self-fulfilling model by assigning times of the day to
tain genres. Rental stores do not collect data on the actual viewing times of their custo
Hotel television has a very restricted programme. Pay-TV channels like Premiere Wo
Germany would be an appropriate source of information, but right now this information is
released.

To examine the basic properties of daytime variations, we decided to apply additional v
tions with a 24 hours cyclic behaviour to the long-term popularity curves of our movie mo
We start with a sinus function that is applied to 50% of the long-term popularity value at
time. Figure 66 shows the parameter section of the simulator configuration file. Within
hours period, the popularity of a title varies between 50% and 150% of the popularity th
defined by the long-term model. For Section 10.5.2, the daily popularity peak of each tit
chosen independently throughout the day.

To save computing time, the popularities are not recomputed for each selection that is
by a user, but only every 10 minutes (simulated minutes).

The results can be seen in Figures 67 through 74. By themselves, these figures are n
but another demonstration of the superiority of conditional a overwrite strategy.
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Figure 65: Uplink requirements increase with number of available movies, uplink
capacity 622 MBit/s
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PARAMETERS
{
        SEED    $RAND
       CONTENT TYPE MOVIE { BAER * { 0.5 + SINUS } } * DEATH(500)
        CONTENT PREPARE 500

        LOG START 503
        LOG GROUP 1 CONN "atms"
        LOG GROUP 2 SERVER "he"
        TERMINATE 515
}

Figure 66: Parameter setting for 10.5.2
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Figure 67: Hit ratio development with increasing number of users, 155 MBit/s uplink,
32 GB cache
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Figure 68: Hit ratio development with increasing number of users, 155 MBit/s uplink,
64 GB cache
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Figure 69: Hit ratio development with increasing number of users, 155 MBit/s uplink,
96 GB cache
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Figure 70: Hit ratio development with increasing number of users, 155 MBit/s uplink,
128 GB cache
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Figure 71: Throughput development with increasing number of users, 155 MBit/s
uplink, 32 GB cache
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Figure 72: Throughput development with increasing number of users, 155 MBit/s
uplink, 64 GB cache
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Figure 73: Throughput development with increasing number of users, 155 MBit/s
uplink, 96 GB cache
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10.5.3 The Hit Rate Effect of Daytime Variations: Two hot spots

It is probably more realistic than total freedom of choice that users prefer certain genres a
tains days of time. This would result in concentrated requests on movies in a cyclic ma
Some titles are reaching peek popularity in the morning, and some in the evening. To ac
for this, we have added simulations that create two daily hot spots. A movie would hav
daily peek popularity either close the one of the other hot spot. The following simula
locates these hot spots at 14:00 and 20:00 hours. Figure 75 shows the simulation param
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Figure 74: Throughput development with increasing number of users, 155 MBit/s
uplink, 128 GB cache
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PARAMETERS
{
        SEED    $RAND
        CONTENT TYPE MOVIE
          { BAER * { 0.5 + { SINUS( . 14.0 ) | SINUS( . 20.0 ) } } } * DEATH(500)
        CONTENT PREPARE 500

        LOG START 503
        LOG GROUP 1 CONN "atms"
        LOG GROUP 2 SERVER "he"
        TERMINATE 515
}

Figure 75: Parameter setting for 10.5.3
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Figure 76: Hit ratio development with increasing number of users, 155 MBit/s uplink,
32 GB cache
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Figure 77: Hit ratio development with increasing number of users, 155 MBit/s uplink,
64 GB cache
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Figure 78: Hit ratio development with increasing number of users, 155 MBit/s uplink,
96 GB cache
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Figure 79: Hit ratio development with increasing number of users, 155 MBit/s uplink,
128 GB cache
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Figure 80: Throughput development with increasing number of users, 155 MBit/s
uplink, 32 GB cache
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Figure 81: Throughput development with increasing number of users, 155 MBit/s
uplink, 64 GB cache

0

25

50

75

100

0 5000 10000 20000 30000 40000 5000

T
hr

ou
gh

pu
t

Users

155 MBit/s uplink usage for single server, 96 GB cache

et/cond/time

✧✧✧✧✧
✧
✧

✧

✧
✧

✧ ✧

✧
✧

✧

✧
✧ ✧

✧

et/time

✛✛✛✛✛
✛
✛

✛

✛

✛

✛
✛

✛

✛

✛

✛ ✛ ✛

✛

fifo

■■■■
■

■

■

■

■

■

■
■ ■ ■ ■ ■ ■ ■

■

lru

✕✕✕✕✕
✕
✕

✕

✕

✕

✕

✕

✕

✕

✕ ✕ ✕ ✕

✕

irg

▲▲▲▲▲
▲
▲

▲

▲

▲

▲
▲

▲

▲

▲ ▲ ▲ ▲

▲

irg/time1
✫✫✫✫✫
✫
✫

✫

✫

✫

✫

✫ ✫

✫

✫ ✫ ✫ ✫

✫

Figure 82: Throughput development with increasing number of users, 155 MBit/s
uplink, 96 GB cache
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Figure 83: Throughput development with increasing number of users, 155 MBit/s
uplink, 128 GB cache
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11. Abbreviations
ACK Acknowledgement

AIX Advanced Interactive Executive

API Application Programming Interface

ASCII American Standard Code for Information Interchange

ASF Advanced Streaming Format

ATM Asynchronous Transfer Mode

AVP RTP Profile for Audio and Video

B-frame Bi-directional coded frame

CD Compact Disk

CLUT Color Lookup Table

CNCL ComNets Class Library

CPU Central Processing Unit

CSRC Contribution Source

DAVIC Digital Audiovisual Council

DCT Discrete Cosine Transformation

DES Data Encryption Standard

DHCP Dynamic Host Configuration Protocol

DiffServ Differentiated Services

DSM-CC Distributed Storage Media Command and Control

DVB Digital Video Broadcasting

ECT eternal history, conditional overwrite and temporal gap

ETSI European Telecommunications Standardization Institute

EU European Union

FCFS First-come-first-serve

FEC Forward Error Correction

FIFO First-on-first-out

FTP File Transfer Protocol

GB Gigabyte

GoP Group of Pictures

HDTV High Definition Television

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines

I-frame Intra-coded frame

I/O Input / Output

IP Internet Protocol

IPv6 Internet Protocol Version 6

IDEA International Data Encryption Algorithm

IDL Interface Definition Language

IntServ Integrated Services
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IRG Inter-Reference Gap

JPEG Joined Photographic Pictures Experts Group

Kb, KB, Kb/s Kilobit, Kilobyte, Kilobit per second

LAN Local Area Network

LFU Least frequently used

LRD Lowest reference density

LRMP Leight-weight Reliable Multicast Protocol

LRU least recently used

Mb, MB, Mb/s Megabit, Megabyte, Megabit per second

MBone Multicast Backbone

MHEG Multimedia/Hypermedia Information Coding Experts Group

MPEG Motion Pictures Experts Group

MMUSIC Multiparty Multimedia Session Control

NTSC National Television System Committee

NVoD Near Video-on-Demand

P-frame Prediction-coded frame

PAL Phase Alternating Line

QoS Quality of Service

RFC Request For Comments

RMTP Reliable Multicast Transport Protocol

RSVP ReSerVation Protocol

RTCP RTP Control Protocol

RTP Real-time Transfer Protocol

RTSP Real-Time Streaming Protocol

RTT Round-trip-time

SAP Service Announcement Protocol, also
Service Access Point

SDP Session Description Protocol

SEC-MPEG Secure MPEG

SL Server Layer

SLP Service Location Protocol

SMIL Synchronized Multimedia Integration Language

SRM Scalable Reliable Multicast

SSRC Synchronization Source

ST-II Stream Protocol Version 2

SUN Stanford University Network

TCP Transmission Control Protocol

TRM Transport Protocol for Reliable Multicast

TV Television

UDP User Datagram Protocol

VBR Variable Bit-rate
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VCR Video Cassette Recorder

VEA Video Encryption Algorithm

VoD Video-on-Demand

WAN Wide Area Network

W3C World Wide Web Consortium

WWW World Wide Web

XML Extensible Markup Language

XOR Exclusive OR

XTP eXpress Transfer Protocol
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12. Trademarks
AIX, IBM, PowerPC, RS/6000 and VideoCharger are trademarks or registered tradema
IBM Corporation

Apple, Macintosh and QuickTime are trademarks or registered trademarks of Apple Com
Inc.

Linux is a trademark of Linus Torvalds

Microsoft, Windows and Windows NT are trademarks or registered trademarks of Micro
Corporation

RealNetworks, RealSystem, RealVideo, Real G2 with Flash, RealPlayer, RealServer,
Proxy, RealProxy Cache, Basic Server Plus, and SureStream are trademarks or reg
trademarks of Real Systems, Inc.

Solaris, Java and Java-related products are trademarks or registered trademarks of Sun
systems, Inc.

ViVo ViVoActive are trademarks or registered trademarks of Vivo Software, Inc.

Possible Trademarks

ActiveMovie may be a trademark or registered trademark of Microsoft Corporation

ClearVideo may be a trademark or registered trademark of Iterated Systems, Inc.

MpegTV may be a trademark or registered trademark of MpegTV LLC.
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