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Abstract—A decisive advantage of Software-defined Network-
ing is its support for flexible network reconfigurations. Consider-
ing that, Software-defined Networks require accurate and timely
data-plane state information. Network monitoring mechanisms
usually require considerable resources on SDN controllers as
well as on the data-plane elements. In this work, we propose an
optimization of the statistic transmission to reduce costs on both
control- and data-plane regardless of the used monitoring appli-
cation and statistic provisioning tool. To this end, we intercept
the statistic message exchange and (i) aggregate multiple requests
coming from different monitoring applications/controllers, (ii) fil-
ter irrelevant statistic messages with respect to their information
gain before delivering them to the control applications, and
(iii) deploy statistic caching. The proposed system, denoted
STATISTIC REQUEST RELAY (SRR), forms a logically centralized
statistic relay between controllers and the managed data-plane
network. Our evaluation shows that the number of statistics
processed on controllers as well as statistic requests on switches is
reduced significantly while the performance penalty is negligible
when using statistic aggregation and filtering as proposed here.

Index Terms—Software-defined Networking, Monitoring, Mid-
dleware, Distributed Control-Planes

I. INTRODUCTION

M
ONITORING the state of forwarding entities and events

occurring in the network is a cornerstone of network

management. Management functions such as load balancing,

resource provisioning, accounting and even routing require ac-

curate monitoring information. Numerous measurement tasks

are required to regularly obtain accurate monitoring data,

which introduces considerable resource overhead [1].

With the advent of Software-defined Networking (SDN)

new techniques for network monitoring arise, i.e. the broadly

accepted OpenFlow protocol includes techniques such as

resource-friendly statistic collection using built-in pack-

et/byte/lifetime counters or per-flow traffic mirroring [2].

Equipped with the aforementioned techniques, a number of

works propose improvements to monitoring efficiency through
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approaches such as adaptive statistic polling [3], [4] and

mechanisms that leverage control messages to access statis-

tics in a resource-neutral manner [5]. A common theme of

such approaches in SDNs is the involvement of the logically

centralized network controllers in the monitoring process.

SDN incorporates centralized controllers in order to perform

management tasks. Monitoring is a prominent application

typically run on the SDN controller and, as such, it consumes

computing and networking resources [1], [6]. Even utilizing

non-SDN specific monitoring techniques, such as sFlow [7] or

IPFIX [8], require a monitoring collector potentially placed in

the controller, to gather and process statistics captured in the

network. Basic monitoring approaches such as periodic queries

often lead to a resource utilization overhead. In general, we

find that in all existing approaches the controller is involved in

collecting, processing, and/or analyzing monitoring statistics,

constituting a potential bottleneck in the network management

process. Hence, for scalability and fail-safety purposes, the

logically centralized control needs to be implemented in a

distributed manner [6], [9], [10]. However, it remains unclear

how to architecture the different controller entities and their

integration to optimize the network management process.

For example, a higher number of coexisting controllers that

share the monitoring workload does not guarantee optimized

monitoring overhead.

Overall we find that existing approaches which aim to

reduce monitoring costs still substantially involve the SDN

controllers [4], [5], [11], [12]. Krishnamurthy et al. [13] as

well as Yeganeh et al. [6] argue that even powerful controllers

can not handle the load when the full network state must be

observed or frequent events must be handled. From the fact

that a smooth controller operation in terms of load and failure-

resilience is of major importance for network performance, we

extract the requirement to lighten the load on the controllers

by removing monitoring associated tasks whenever possible.

In this work, we propose to push monitoring functional-

ity out of the controllers while retaining the benefits SDN

entails. We relieve the controller completely of monitoring

tasks which can potentially be performed elsewhere without

weakening the controller’s capabilities. Nevertheless, we en-

sure that controllers receive all information they require, such

that the network state representation does not downgrade in

completeness or timeliness. The system we propose, denoted

STATISTIC REQUEST RELAY (SRR), is especially designed to

support multi-controller environments, which is a scenario in

which monitoring is rarely researched. Making use of multiple

controllers performing measurement tasks, we furthermore add
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mechanisms not only to reduce controller load but also to

unburden the data-plane entities.

The remainder of the paper is structured as follows: Sec-

tion II describes the principles SRR is based on to reduce

load. In Section III we outline the scenario SRR is designed

for and network architecture. Subsequently, in Section IV we

highlight the architecture of the component itself and show

the interplay of included subcomponents. Section V shows

a quantitative evaluation of monitoring cost reduction using

SRR. In Section VI, we include relevant related works and

Section VII recaps the paper and outlines future extensions.

II. MONITORING COST REDUCTION PRINCIPLES

In this section we describe how the proposed relay tar-

gets to mask the complexity and overhead of monitoring

for controllers with three different principles. In general the

system acts as an intermediator (relay) between controllers

and switches for monitoring tasks, as depicted in Figure 1.

The figure shows the controllers of a distributed SDN control-

plane connected on their southbound interface to the relay that

is itself connected on its southbound interfaces to the network

elements, precisely, the switches. The system does not restrict

the controller capabilities in any way: its use is optional and,

as controllers are connected to switches directly, every task

devolved to SRR can still be executed directly on the controller

if preferred or required. However, if a control application

needs to monitor the network, instead of executing statistic

requests or registering for statistics, it can delegate this task

to SRR. The system performs the measurement on behalf of

the controller and relays the respective measurements back to

the controller. For single request-response message exchanges

between controllers and switches there is no immediate gain

when using a relay, however, the costs for periodic tasks can

be reduced through filtering and aggregation.

A. Statistic Filtering

The relay takes over the responsibility to execute periodic

tasks such as measuring the used bandwidth for switch ports

of interest. Traditionally, the controller would request those

statistics at the end of every period, which continuously allo-

cates resources . In contrast, using SRR, a controller devolves

such a periodic task to the proposed monitoring service and

specifies conditions that must be fulfilled in order to forward

statistics to the controller. SRR uses the defined conditions to

filter the periodic statistic data received from the switches. For

example, a port, whose load does not change in successive

periods does not lead to interruptions of the controller as

SRR disturbs the controller only if a significant change in

the measurement which requires a management applications

reaction is observed. The controller can decide on different

types of filtering: (i) SRR forwards only measurements if it

observes outlier values with respect to historic measurements.

(ii) SRR forwards only measurements exceeding a fixed ab-

solute value (threshold). (iii) A combination of both: after

exceeding a fixed threshold, relay only measurements when

significant changes occur. More complex filtering rules are

surely possible [14] The filtering allows reducing the load on

SRR

Fig. 1: Conceptual SRR deployment as logically centralized

component between the distributed control-plane consisting

of the controllers (here three) and the data-plane consisting

of the switches forming the network.

the controllers’ computational and networking resources, as

their involvement is limited to situations where a reaction of

control applications is required.

B. Statistic Request Aggregation

Consider two control applications measuring the same in-

formation with different frequencies, e.g. the bandwidth of

a shared link or a shared flow. In such cases, they capture

the similar information redundantly. SRR compares incoming

monitoring task registrations with existing tasks and if an

existing task matches a new request, SRR aggregates both

monitoring tasks. During aggregation, the system tries to find

an optimal measurement point to capture this information. In

particular, it decides on one of the measurement points origi-

nally given in the task registrations. Furthermore, it combines

the update frequencies of periodic measurements. For example,

using the highest frequency is of choice, i.e. updates can be

skipped for controllers requesting lower update rates. Note that

this feature potentially leads to distortions, therefore, it has to

be allowed explicitly while registering a task.

Example: Flow F traverses the adjacent network parts

controlled by controller A and controller B. Controller A

registers to measure F’s byte counter at any arbitrary switch SA

on the flow’s path in its network every two seconds ( fA = 1/2s)

and controller B registers for the measurement at any arbitrary

switch SB in his network every four seconds ( fB = 1/4s). If

the byte counter can be assumed to remain stationary over

the path, SRR aggregates both measurements. It selects one

measurement point on F’s path, SA or SB and uses the higher

frequency, in this case fA = 1/2s. It stands to reason that only

measurements of flows that traverse networks of at least two

involved controllers (or applications within a single controller)

can be aggregated. In this example, the system omits the full

execution of one task taking load from the switches, while

both controllers get their measurement results as requested.

C. Statistic Caching

SRR furthermore reduces monitoring costs on the south-

bound interface through caching of statistics. The results of

all conducted measurements are stored in a statistic cache.
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These values can be forwarded if a similar request reaches SRR

without the need for new measurements. The service provides

the possibility to define a staleness limit for the measurement

values turning this cache to a time-to-live controlled cache.

Caching is only conducted for non-periodic measurement tasks

since the aggregation mechanism there replaces time aggrega-

tion, i.e., caching, with spatial aggregation. It is reasonable to

use the cache for metrics that do not vary on short timescales,

e.g., derived metrics such as the average bandwidth utilization.

III. SCENARIO AND DEPLOYMENT MODES

Before outlining different possible manifestations of SRR

instances, we briefly describe the scenario it can be applied

to. As Figure 1 depicts, SRR is an intermediate layer be-

tween the control-plane and the data-plane, comparable to

existing middleware approaches such as FlowVisor [15] and

OpenVirteX [16]. Hence, the scope covers multiple controllers

setting up a distributed control-plane managing a variety of

underlying switches and other data-plane entities. In such

generic scenarios, SRR exploits its full potential including

aggregation of requests monitoring the same flow from dif-

ferent sources (controllers or control applications), filtering

of periodic measurements, and statistic caching. Note, that

the introduction of an additional intermediate entity (causing

CAPEX) has to be evaluated against the operational gain

(saving OPEX) in very small networks.

Although SRR could execute the filtering also in the con-

trollers themselves, we design the system as an additional

component to gain further advantages: (i) The load on the

controllers network interface can be reduced significantly, giv-

ing other control traffic in critical situations more bandwidth.

This load is shifted to the new component that does not handle

other management traffic than that on its southbound interface.

(ii) The aggregation of statistic tasks from multiple controllers

is much easier to handle in a logically centralized manner,

which had to be implemented distributively if the controller

themselves contain this functionality; (iii) Preprocessing of

information or even whole analysis functions can be devolved

relieving the resources on the controllers using SRR on a

dedicated entity with separate processing capabilities.

In the first place, we design SRR as a centralized entity. We

leave the transparent physical distribution of a logically cen-

tralized system for future work as the actual deployment does

not affect the principles investigated in this paper. However,

in this section we take fail-safety and scalability concerns into

account and point out different deployment modes.

Single-Server Deployment: In this deployment mode SRR

is placed in only one physical entity. It reduces complexity

and deployment costs, however, it lacks mechanisms to scale

or fallback possibilities in case of faults.

Cluster Deployment: In order to enable high availability,

SRR can be deployed in multiple different physical entities,

as cluster deployment. Such a mode is comparable to the use

of a distributed control-plane: If the resources of a single

component do not suffice, a physical decentralization is de-

sired. Levin et al. [10] investigate trade-offs between logical

centralized and physical distribution. A first instantiation is

a high-availability solution, i.e. one SRR deployment runs

actively in one of the entities, while the other deployment

is in standby mode. Once a failure occurs and the active

SRR is not operable anymore, a standby entity takes over

the monitoring responsibilities. While providing higher avail-

ability this approach introduces considerable deployment and

operation costs: Despite failure detection capabilities, either

an additional proxy service must enable seamless switching

to the active service or the controllers must update the service

endpoint information. However, state distribution between the

active and passive SRR deployments affects the deployment

costs to an even higher degree as all backup entities require

identical state to transparently take over tasks. While the

former problem of seamless switching can be solved intu-

itively, a number of works, e.g. located in the context of

distributed control-planes [17], tackle the latter problem of

state distribution/migration.

A second instantiation of a cluster deployment is a load-

balanced cluster that enables load balancing between mul-

tiple SRR deployments. A proxy redirects incoming request

to one of the available active service endpoints. The mode

enables higher availability while reducing the load on single

deployments. However, it leads to considerable costs for state

distribution.

IV. SRR ARCHITECTURE DESIGN

This section covers the SRR architecture and component

logic including the interplay of subcomponents and the com-

munication with control and data-plane entities.

A valid abstraction of the potentially distributed deployment

of SRR (as discussed in Section III) is a single server providing

the monitoring services. Figure 2 shows the inner structure

of such an instance. Roughly speaking, three layers assemble

the architecture: (i) The service interface layer communicates

with controllers and provides the northbound API. (ii) The

inner parts compose the components logic. (iii) The lower

layer consists of monitoring agents that communicate through

their southbound interfaces with the network elements. The

remainder of this section covers first the component logic and

then the north- and southbound interfaces.

A. Relay Component Logic

The relay consists of a small number of subcomponents

building the system’s inner logic (cf. Figure 2). We picture the

interplay and responsibilities of the subcomponents in detail

using workflows of executed subtasks. Figure 3 sketches the

principles of the described workflows.

a) Task Registration Workflow: Requests, such as task

registrations, sent from controllers that use the service reach

the system through the Service Interface. This interface main-

tains connection endpoints to all controllers that initially

contact the component. The Task Inventory Manager decides

how to handle incoming requests. Controllers may devolve

different types of tasks to the service resulting in different

request types. A task can either be a single measurement

request, which is performed immediately and only once. The

service answers immediately after obtaining the result, either
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Fig. 2: SRR component inner architecture.

from the Statistic Cache or through conducting a measurement.

In order to find out whether a measurement can be obtained

from the cache, the manager asks the Convolver to look for a

similar measurement stored in the cache. If the cache contains

a matching measurement that is not yet outdated, that is, inside

of the allowed staleness tolerance, the manager forwards the

result directly to the controller. More interesting are periodic

tasks, as they leave more space for optimization. The task

manager asks the Convolver for similar periodic tasks and, if

found, maps them to one common associated aggregated task.

A new task can also be mapped to an existing aggregated task.

The southbound agents execute all measurements included in

a task after the Task Inventory Manager advices them to do so.

Both, the Task Store and the Statistic Cache are small

databases holding information about tasks registered at

the service and conducted measurements, respectively. The

Task Store maintains registered tasks and task aggregations,

including their full specification. Furthermore, it holds

information on whether a task is active or not. A measurement

might be inactive as it is part of a task aggregation. The

data structure to store a task includes the following fields

{taskId, active, referenceTaskId, controller,

additionalControllers, metric, periodic,

period, threshold, thresholdType, entity}. The

taskId is used to identify tasks, e.g. when measurements

are forwarded to a controller, it may use this id. If a task is

not active as it is aggregated with another task, the active

flag is set to false. Once the associated aggregation is stopped

a task might become active again. The associated task from an

aggregation is referenced using the referenceTaskId. The

controller field identifies the controller that registered the

task and is used to forward measurements. Furthermore, the

additionalControllers list is filled with information

on controllers that are aggregated with the current task as they

need to be updated as well. The metric stores the metric

to be measured, e.g. the bandwidth in combination with the

entity field that defines the entity. SRR’s implementation

allows a simple extension of the list of supported metrics. The

set of exemplary metrics include in particular the bandwidth

for links and for flows. If the periodic field is set, the

period defines how often a measurement must be taken.

Lastly, the filter conditions are stored in the threshold and

thresholdType field, respectively. The Statistic Cache

stores contemporary measurement values which point to

their respective task in the Task Store. SRR clears outdated

cached values after a fixed idle timeouts.

b) Task Aggregation Workflow: The Convolver induces

one essential part of the resource-saving capabilities to the

system: aggregating tasks based on their similarity. A task

can be aggregated with another task if the desired metric,

e.g. bandwidth consumptions or loss ratio, and the resource

that is investigated, e.g. the flow or switch port, match. The

control applications can specify in the task registration to

what extend the service is allowed to modify the measure-

ment. Typical modifications are the measurement point and

frequency. Thus, the service might use a different switch

to measure a flow’s byte count than specified or instead of

updating the measurement every three seconds do so every

two seconds. Once the Convolver decides to use a higher

frequency for a measurement (it never uses lower frequencies

to retain timeliness) it tries to use the switch specified in the

task with the selected frequency. This way, a switch is never

loaded more than it would be without aggregation. Note that

SRR can only aggregate tasks that request the same metric

on the same entity, i.e. if the meaning does not alter, e.g., by

modifying the specified measurement point. The Convolver

reads and writes the Task Store and interacts with the Task

Inventory Manager for aggregation.

c) Forwarding of Measurement: Measurements per-

formed by the southbound agents traverse multiple stages

before they eventually trigger a message to the controller. Note

that SRR is designed to take over the measurement process

and is not responsible for the monitoring logic and analysis.

However, despite executing simple measurements, the system

includes a small set of simple precalculation capabilities. To

avoid forcing controllers to receive meaningless measurements

solely to calculate a derived metric, the Statistic Preprocessor

is capable of computing simple derived metrics composed of

multiple sub-measurements. In particular, this includes simple

derived metrics, such as the loss ratio calculated from two

counter values from nodes on a certain path or link and the

consumed bandwidth calculated from two timewise subsequent

counter values. For this, the Statistic Preprocessor identifies

connected tasks for a conducted measurement and checks if

the value is part of a derived metric, so that it can perform

the precalculation or hold back the value until all necessary

values are present. The Statistic Preprocessor saves directly

captured and, if available, derived metrics into the statistic

cache including a timestamp to determine their lifetime.

After potentially passing preprocessing steps, measurements

traverse the Statistic Filter. The Statistic Filter is the sec-

ond essential part to achieve resource savings in SRR. It

filters measurements based on task specifications given from

the controllers (cf. Section II-A), thus, leading to an event-

based communication with the controllers. As described in

Section II-A, controllers can request the monitoring system

to forward measurements only if they differ significantly

from previous measurements, exceed a fixed threshold, or a

combination of both. Hence, the monitoring system compares
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the measurement with the previous value and/or the fixed

threshold and either drops the measurement or forwards it to

the Service Interface towards the control-plane. An example

of a task registration including parameters that define the filter

conditions are described later in Listing 1. The workflow is

also depicted in Figure 3: After a task has been registered,

potentially aggregated with another task, saved, and confirmed,

the periodic statistic provisioning phase starts. Following the

given measurement period, SRR requests the statistics from

the data-plane elements, receives the statistics and performs

the precalculation if required. A precalculation could be, e.g.,

the calculation of the bandwidth based on two consecutive byte

counter values. Subsequently, the final value traverses the filter

stage, which either discards it or forwards it to the controller.

During the task registration, the controller defines what type

of filtering is applied and the threshold parameter used for

the filter. Hence, the notification of the controller is optional

depending on the measurement value and its information gain.

B. Southbound Monitoring Agents

In order to conduct measurements and receive informa-

tion from the forwarding network, SRR uses different agents

connected to data-plane elements (cf. Figure 2). The list of

usable agents is extensible in order to add new measurement

functionality or support alternative mechanisms to perform

measurements. Note that SRR does not require the data-plane

to support customized functionality as it relies only on existing

protocols. However, in order to connect to SRR’s southbound

agents, the data-plane elements have to be configured to

start and enable corresponding end-points. The Task Inventory

Manager selects the agent used to execute the respective tasks.

For some tasks, multiple agents may be usable. In such cases

the manager optimizes the costs using the most efficient agent.

Especially in the context of SDN, it seems obvious to exploit

SDN specific monitoring mechanisms. Hence, in the first place

we propose using an OpenFlow agent to be able to send

statistic requests as defined in OpenFlow. An OpenFlow agent

can be implemented as an OpenFlow slave controller [18],

which is an additional controller connected to switches. Slave

controllers can only read state from switches, like the flow

packet counter, but they cannot modify a the state of a

switch. OpenFlow supports a large number of measurements

especially regarding traffic metrics, but also, for instance, port-

based throughput and loss rate metrics. Please note, that only a

controller can request to change its role so that SRR will never

be considered as master controller in master-failover cases.

Although OpenFlow already supports a large variety of mea-

surement mechanisms, the SRR system allows to add further

agents like SNMP [19], sFlow [7], IPFIX [8] / NetFlow [20]

or custom solutions. In particular, we propose to use an SNMP

manager as additional monitoring agent. SNMP allows the col-

lection of information from network elements that OpenFlow

does not support, such as hardware performance metrics of the

devices like the CPU utilization, memory state, etc.

C. Northbound Service Interfaces

The API of the Service Interface is an integral part of

system, as it defines to what extend the service is supposed

to understand the monitoring tasks.

Notes on the Information Model: The information model,

including the understanding of monitoring tasks, defines which

role the service takes in the control-loop. In order to develop

a viable monitoring service, it is crucial that the service

users, here control applications, and the service itself have

a common understanding of the shared information. Thus, a

primary challenge is a common understanding of the moni-

toring information model. A monitoring service either serves

only measurements to control applications without profound

understanding of the metrics, or understands the measured

information and provides derived state information to man-

agement applications, which do not derive the information

further. Roughly speaking, there are two alternatives: either

the monitoring system serves the management application the

raw data without profound understanding of the metrics, or

it is responsible for understanding the measured information

and provides derived state information, in which case the

management application does not derive the information fur-

ther. In the latter alternative, when the monitoring system is

responsible for analyzing the information on behalf of the

control applications, this becomes an exhausting task, as for

each task a bulletproofed definition is required which leaves

no space for interpretation. In order to avoid such error-prone

complexity, we limit the service in our work to conduct only

simple measurements on behalf of the applications. However,

we include simple preprocessing steps, which require a clear

definition of the performed calculations, nevertheless, with

very limited complexity. Furthermore, we support handing
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over original OpenFlow statistic requests as they stand, without

further interpretation.

As shown in Figure 2, SRR has two northbound inter-

face endpoints to the control-plane: (i) a legacy synchronous

request-response interface that supports task registration and

their confirmation, (ii) a further interface that provides asyn-

chronous event-based statistics for periodic measurements.

Task registration messages contain a full description of the

task, including information such as the type (single or periodic

measurement), the targeted metric, where to measure - the

measurement point, the respective entity (flow specification,

port/link description, . . . ), and the period time if applicable.

As mentioned previously, a controller can also relay OpenFlow

or SNMP requests without interpretation and modification.

Furthermore, there are several flags and tolerances specified

regarding the degree of freedom the Convolver has. At first,

they specify if the measurement point is allowed to be changed

to another. Despite that, it specifies the allowed modification

of the measurement period time. Single measurement tasks

specify a maximal staleness in order to allow cached measure-

ments. We use JSON1 as payload in UDP/IP packets for all

communication between the controllers and SRR. An example

of a task registration is shown in Listing 1:

Listing 1: Task registration message format.

{
" c o n t r o l l e r " : " 1 0 . 1 0 . 1 0 . 1 0 0 " ,
" c o n t r o l l e r _ p o r t " : 7702 ,
" t a s k " : {

" e n t i t y " : {
" dp i d " : 144115188075855874 ,
" p o r t " : 1

} ,
" m e t r i c " : " bandwid th " ,
" p e r i o d " : 1000 ,
" p e r i o d i c " : t r u e ,
" t h r e s h o l d " : 10000 ,
" t h r e s h o l d _ t y p e " : " d e l t a " ,
" a g g r e g a t i o n _ f r e e d o m " : {

" m i n _ p e r i o d " : 500 ,
" max_per iod " : 1500 ,

}
} ,
" t y p e " : " r e g i s t e r _ t a s k "

}

In the listing above we see that every message speci-

fies the sender, the port where its interface can be reached

(controller and controller_port), and the type of the

message (type). In the case above the message registers a

new task. The task field contains task-specific properties

such as the entity that should be measured. Here the entity

field selects a switches port, thus, a link. However, an entity

could also be a flow depending on the metric that is se-

lected in the metric field. The fields periodic and period

specify whether the task must be performed periodically and

the corresponding period. As tasks can be aggregated, the

aggregation_freedom defines to what extend SRR is sup-

posed to change the task (here the degree of freedom defines an

allowed range for the period length). The filtering mechanisms

uses the threshold and threshold_type fields. In this

1http://json.com, accessed October 22, 2018

Control

Plane

Racks

Rack

Switches

Cluster

Switches

Fat-Cat

Switches

Fig. 4: Distributed datacenter topology used for the evalua-

tion oriented at [22]. Each datacenter contains two Fat-Cat

switches, four cluster switches for two clusters and two

racks including two rack switches per cluster.

task only values that differ relatively (delta) more than

10kBps should be forwarded. Task registration confirmations

and measurement result messages are constructed analog.

V. EVALUATION

We developed a prototype of SRR to evaluate the expected

resource saving goals. In the following, we first describe

the prototype and the evaluation environment, then briefly

the evaluated methodology, and, finally, the results of our

investigation on the performance of SRR in different scenarios.

A. Prototype and Evaluation Environment

We conduct the evaluation using a simulative environment

consisting of a virtual Mininet [21] network, two Floodlight2

controllers, and the SRR prototype. The controllers each

manage one part of our network exclusively and provide all

prerequisites such as inter-domain routing. We encapsulate the

developed prototype of SRR in an additional controller, which

is capable of performing OpenFlow requests to the data-plane.

The SRR controller registers as slave OpenFlow controller

(cf. [18]), having only read capabilities.

The topology of choice imitates a distributed datacenter

(DC) as depicted in Figure 4: the two subnetworks follow a

typical, simplified DC topology following [22]. Each DC has

two so-called Fat-Cat switches, which connect two clusters in

each DC. All clusters have two cluster switches, and two racks

where a single host abstracts the servers of a rack. A link be-

tween two Fat-Cat switch connects both datacenter networks.

For traffic generation, we rely on iperf3. In a first prelim-

inary evaluation, we show a proof-of-concept using synthetic

traffic, which increases step-by-step and again decreases step-

by-step. In that scenario, we use the first rack as sender, and

the last rack, placed in the opposite datacenter network, as

receiver and vice versa. Furthermore, all other evaluations use

more realistic datacenter traffic similar to [22], [23]. For this,

we randomly select a sender and a receiver in the network. We

pick a flow duration out of the zeta distribution with a scale

parameter s = 1.6 with a maximum of 10
3 seconds to mimic

2http://www.projectfloodlight.org/, accessed October 22, 2018
3https://iperf.fr, accessed October 22, 2018
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Fig. 5: Comparison of bandwidth measurement using direct measurements of controllers versus measurements performed

with SRR. Figures 5a and 5b show measurements for synthetically traffic following a step-function. In Figures 5c and 5d

measurements with datacenter traffic as described in Section V-A.

roughly the flow duration shown in [23]. We use a normal

distributed bandwidth with a mean of 0.5 Mbps and a standard

deviation of 0.1 Mbps, so that the we observe light traffic mim-

icking application heartbeat or cyber-physical control traffic.

Note that our experiments showed that increasing the absolute

bandwidth does not oddly influence the metrics captured in

this evaluation but rather results in a linear scaling of system

parameters: the filtering threshold. The flow inter-arrival time

is selected from an exponential distribution with factor λ = 0.1

in seconds inspired by [22]. Roughly summarized, we have a

Poisson based flow arrival of randomly placed flows with a

friendly bandwidth consumption around 0.5 Mbps while most

of the flows are mice flows (duration slightly larger than 10ms)

and few elephant flows (resulting from the zeta distribution)

as common in datacenter networks. We use rather light rates

to avoid biased measurements due to overloaded evaluation

environments, however, the qualitative behavior remains the

same. Despite the absolute flow throughput, the number of

flows and the dynamics in the traffic affect the effectiveness

of SRR, i.e. measurements of friendly traffic get filtered much

more than bursty traffic using the same relative threshold.

This effect can also be faced adapting the threshold system

parameter according to the needs of the operator.

B. Measurement Methodology

The evaluation relies mainly on two aspects: (i) Accuracy

of the measurements conducted when using SRR and (ii) the

monitoring costs both at the controller and at the data-plane

elements, respectively. We measure the first aspect using the

absolute difference denoted error between the measurements

performed by the controllers themselves and the measurements

forwarded by SRR. We concatenate all measurements of all

simulations to calculate the error in each measurement point.

For this, during the evaluation the controllers continue mea-

suring in addition to devolving measurement tasks to SRR. For

the second aspect, the costs are measured using the number of

statistic requests, which either the controllers or the data-plane

elements, respectively, have to process in each simulation.

C. Event-based Statistic Provisioning Showcase

In the first evaluation, we compare measurements of the

SRR system with measurements performed directly on the

controllers (which we assume to have negligible inaccuracy).

Figures 5a and 5b show exemplary measurements of the

bandwidth on the inter-datacenter link. Figure 5a indicates

that small thresholds lead to frequent measurement updates,

which closely follow the directly performed measurements.

Accordingly, Figure 5b shows for a comparably large threshold

of 200 KBps that the measurements performed with SRR differ

up the chosen threshold from the measurements performed on

the controllers. However, the number of interruptions of the

controller reduces in this synthetic example from 17 to 6 times.

Next, we consider light DC-like traffic and measurements at

a randomly selected link, Figures 5c and 5d depict a compa-

rable impression. On the one hand, depicted in Figure 5c, for

a small threshold (5 KBps) both test series follow an almost

identical curve. On the other hand, using a threshold of 100

KBps (Figure 5d), the measurements from SRR differ up to

the given threshold from the direct measurements, however,

require a significantly smaller number of updates.

In the following, we investigate this performance of SRR

statistically. All measurements were conducted using DC-like

traffic as described, measuring the bandwidth of a randomly

selected link every second (frequency f = 1/s) for a duration

of 130 seconds in each DC. All simulations were repeated

at least 30 times.

a) Influence of Task Devolvement and Pre-Filtering on

the Measurement Costs: The following analysis investigates

the measurement costs in terms of statistic messages a con-

troller needs to process. Figure 6a shows the number of statis-

tic messages a controller needs to handle. If SRR is not used,

thus, the controller directly measures the bandwidth, a number

of around 130 statistic messages need to be processed. In

addition, the controller needs to request statistics periodically

from the network elements, which is not shown here. This

is not the case when it devolves the monitoring task to SRR

which performs the requests mandatory in OpenFlow. If we

use SRR with a threshold of 5 KBps, we can observe a

significant reduction of processed statistics on the controller
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Fig. 6: Cost reduction analysis when using SRR’s filtering mechanism creating an event-based stream of statistics.
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error as depicted in Figures 6a and 7a (logarithmic
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Fig. 7: Performance analysis when using SRR’s filtering mechanism creating an event-based stream of statistics.

with a median around 25 and an upper quartile at ~70. If we

further increase the threshold, hence, allow a higher difference

between the current measurement value on the controller and

the actual measurement, the number of statistics processed by

controllers further decreases. Note that the median reaches a

value close to 1 statistic message very quickly, because we

select the measured link randomly from all available links in

the DC. In combination with shortest-path routing and the used

traffic model, the link utilization is low. If a link is not used,

none of the measured values differs more than the threshold

from the first measurement. This interesting case especially

shows the strength of the system: If a monitoring task leads

to measurements with no further information gain, SRR does

not interrupt the controller for statistic processing. However,

for all cases where there is traffic on the link, thus, changing

bandwidth, the number of statistic messages decreases with

higher thresholds as depicted in Figure 6a. Values of 100,

or even 200 KBps have statistic numbers close to 0, thus,

showing that bandwidth changes will not be captured by the

monitoring if it specifies too high thresholds.

We note that in general tuning this threshold is a straight-

forward manner as it involves the trade-off of information

accuracy to message costs (overhead). E.g. administrators

could set up a threshold to adhere to some maximum deviation

that is tolerated.

Figure 6b shows that behavior more detailed. For thresholds

(T) above 5 KBps, more than 50% of the values are at one.

Increasing the threshold shifts the distribution of numbers of

statistic messages towards lower values, yielding less con-

troller disturbance.

b) Influence of Pre-Filtering on the Measurement Accu-

racy: Applications using SRR give away accuracy limited

by the allowed threshold. We analyze the accuracy using

the difference between the measurements conducted with and

without SRR, which we denote as error here. Figure 7a depicts

the error in KBps for changing thresholds. It is observable that

most measurements all have a median close to zero indicating

minimal error. Analog to our cost analysis we find that this

behavior is caused by the measurements of links with low uti-

lization. Hence, the third quartile and the box’s upper whisker

become more interesting. We see an increasing manner of

those values (not continuous, but generally observable) with

an increasing threshold. Hence, the lower the threshold the

less often SRR’s measurements diverge highly from the real

measurements. If we take, for instance, a threshold of 5 KBps,

75% of all values have an error below 2 KBps and most

outliers below an error of 60 KBps. In contrast, a threshold

of, e.g., 100 KBps has an upper quartile at 8 KBps and most

outliers below 100 KBps.

In Figure 7b we see the distribution of the error in more
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1/s while
controller B has a varying request frequency fB .

Fig. 8: Cost reduction analysis when using SRR’s aggregation mechanism.

detail. Despite the behavior analyzed already in Figure 7a, it

shows the reasonable thresholds for fixed errors. For example

the mark at 20 KBps (vertical dashed gray) shows that

thresholds below 20 KBps have in ~99.0% smaller errors than

the selected threshold. For a fixed threshold of 50 KBps, we

observe that still ~94.5% of all values are below an error of

20 KBps Thresholds of 100 KBps or 200 KBps lead to errors

below 20 KBps in ~82% of all cases.

Furthermore, for this case marked with a solid gray line,

we see, for instance, that for a threshold of 100 KBps, 99%

of all values are under ~87 KBps. For thresholds of 5, 10,

and 20 KBps, we see that 99% of all values are below 21, 13,

and 11 KBps, respectively. This investigation shows that the

measurement error in rare cases exceeds the given thresholds.

Our analysis shows that this happens due to asynchronous

measurements between the controller and SRR consulted for

the error calculation, hence, it is an artifact of the evaluation

methodology as the selected threshold limits the error.

D. Statistic Request Aggregation

The second part of the evaluation covers the performance of

SRR when using the monitoring task aggregation mechanism.

We investigate the performance in terms of saved statistic

requests on the data-plane elements.

In the following, we examine two scenarios that have dif-

ferent impact on the expected aggregation benefit. In the first

scenario, the two controllers each measure their outbound link,

i.e. the shared link between their Fat-Cat switches. The system

detects redundant measurement tasks and convolves them into

a single task. Both controller advise SRR to measure with a

period of 1s, thus fA = fB = 1/s. Hence, we expect to halve

the number of statistic requests on the data-plane elements.

In Figure 8a the distribution of statistic requests on data-

plane elements accumulated over each run is shown. Thus,

the distribution of the number of requests processed by the

switches shown in the figure shifts to be centered around a

smaller number, approximately half the number of requests

required in the direct measurement case. Note that also the

tails of the distribution are smaller indicating less variance.

In a second analysis we consider a scenario, where both

controllers collect information about all flows traversing their

networks. Whenever a new flow arrives, the controllers register

a flow bandwidth measurement task at the SRR interface.

While doing so, they allow SRR to change the point of

measurement such that the tasks from both controllers can be

conducted at a single switch. It stands to reason that SRR

aggregates measurements only for flows that traverse both

networks. For the simulations the measurement frequency fA is

fixed to 1/s while fB is varied equidistantly between 1/s to 1/5s.

Figure 8b shows the results of the described experiments.

The blue translucent boxes show the number of statistic

requests dispatched to the data-plane elements when SRR

aggregates statistic requests whenever possible, while the

green hatched boxes show the number of requests when SRR

is not used, thus, the controllers measure directly. When

fA = fB = 1/s, namely the leftmost boxes, we observe a sharp

falloff in the median of the statistic requests. Increasing the

measurement period on the second controller, i.e., fB = 1/2s,

decreases on the one hand the number of statistic requests

when measuring directly to ~3⁄4 of its previous value as SRR

dispatches only half the number of requests for controller B

with lower measurement frequency (those that match requests

of controller A). The number of requests when aggregating

requests in SRR decreases accordingly as the number of

requests decreases in total. Recall that the aggregation through

SRR only impacts the flows that traverse both networks.

Increasing the measurement period of controller B further

lets the aggregation gain diminish. Hence, the aggregation

mechanism performs better when the measurements periods

are alike for all controllers as the absolute number of ag-

gregated measurements increases.

E. Influence on Computational Overhead at Controllers

SRR targets to relieve the computational resources of the

controllers as they do not have to process irrelevant infor-

mation. Consider a scenario in which a controller executes a

resource exhausting task whenever a new measurement arrives.

In our evaluation we exemplary consider a network traffic

prediction application based on the bandwidth consumption

using Auto Regressive Integrated Moving Average (ARIMA)

forecasting together with historic measurements. This fore-

casting application is for example helpful for dynamic and
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Fig. 9: Evaluation results for computational resources when

conducting ARIMA-based bandwidth forecasting using statis-

tic updates: CPU utilization sequence using direct measure-

ments of the controller versus prefiltered information provided

from SRR with threshold T=20 KBps.

network assisted over the top applications such as network

assisted streaming solutions [24].

The forecasting application utilizes an ARIMA time series

model based on the measured bandwidth values over a historic

window. The application provides a prediction for the utilized

bandwidth for an upcoming window of size 5 values. The

ARIMA(o, d, n) model contains an autoregressive part of order

o, a differencing, and hence removing trends, part with param-

eter d and a moving average part with n noise terms. For the

sake of simplicity we resort here to a standard ARIMA model

using the R forecast library [25] which automatically decides

on the model parameters using an Information Criterion.

As mentioned, each controller calculates a forecast when-

ever a new measurement arrives. Given this resource exhaust-

ing exemplary processing of measurements, we show how SRR

relieves the computation resources by filtering information.

Figure 9a shows that the processing resources (here: CPU)

of a controller4 are fully utilized when each measurement is

processed using a default frequency of once per second f = 1/s.

In contrast, when we provide only bandwidth measurements

that differ from the previous more than 20 KBps, we can

observe that the controller only sporadically utilizes the CPU.

Most of the time, the CPU remains unused, thus, the resources

are available for other management tasks. In the figure we

see that the inter-peak times, marked with IPT, follow a

random pattern depending on the frequency of measurements

forwarded to the controller. This times get smaller when SRR

forwards more statistics, hence, for instance when setting a

small threshold value between consecutive measurements.

Figure 9b depicts the mean CPU utilization performing

direct measurements and using SRR. We find that SRR reduces

the utilization from above 90% to a median of close to 30%

and an upper quartile of ~45%.

4The controller was running on a virtual machine with Ubuntu Xenial 16.04

with 2 GB memory and two CPU cores running up to 3.4GHz. Floodlight
was running using OpenJDK Runtime Environment 1.8.0_181.

F. Limitations

In this subsection we describe limitations of our approach

as partially mentioned already in previous sections. First,

SRR does not provide a robust mechanism against failures

of the system itself or it adds so far an unknown overhead

to distribute its state if running in high-availability cluster

deployment. Hence, it is not meant to fully replace monitoring

capabilities of controllers, but provides an system that allows

increasing the efficiency and we argue that it can be activated

optionally.

Furthermore, the aggregation mechanism and the caching

mechanism provide an increase of efficiency only under given

assumptions: (i) Aggregation requires a certain degree of free-

dom when measuring. In the previous sections we mentioned

some examples, e.g., aggregating flow bandwidth measure-

ments may require the need to alter the measurement point.

For the example of link bandwidth measurements, there is a

higher chance of successful aggregation if the measurement

period can be modified within an acceptable range. (ii) For

metrics that are time-critical the caching mechanism is not

reasonable. Yet, metrics that are stationary over longer time

spans, in particular derived metrics that take averages, can use

the caching mechanism to reduce monitoring costs.

Regarding the performance, the accuracy of the conducted

measurements will not suffer using SRR as it uses the

same measurement techniques as the controllers themselves.

However, it introduces additional latency to retrieving the

measurements, which we assume to be negligible. For single

measurements this latency increases by the time needed for

the task registration message, its processing at SRR, and the

delivery latency of the measurement values from SRR to the

controllers. Looking at periodic measurements, the latency

only increases by the preprocessing time in SRR and the

delay induced for measurement transmission from SRR to

the controllers.

Last, using SRR requires no additional functionality on the

data-plane, however, it requires the data-plane elements to be

configured according to the agents that SRR uses. If SRR

uses its OpenFlow agent, the switches need to accept SRR

as an additional controller. For future work it is interesting to

investigate to what extent further agents such as SNMP, but

also other SDN protocols such as P4runtime in combination

with P4 can be used to improve the system.

G. Evaluation Summary

Concluding the evaluations, we see first that we are able

to significantly reduce the number of statistics processed by

the controllers by devolving tasks to SRR, which only sends

updates when required. At the same time, we conclude that

the accuracy suffers only very little and in a reasonable range.

The method is particularly strong when the measured values

do not change significantly and SRR serves only outlier values

with respect to historic measurements.

Furthermore, we highlight the proof-of-concept of the ag-

gregation mechanism, which helps avoiding duplicate mea-

surements of the same metric of an entity. We show that, de-
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pending on the number of aggregated tasks, SRR significantly

reduces the number of statistic requests to data-plane elements.

Lastly, we show how SRR reduces the computational re-

source consumption when each measurement must be pro-

cessed with a non-trivial task, i.e. forecasting based on all

given measurements.

VI. RELATED WORK

The majority of approaches to unburden controllers focus

on the distribution of the control-planes [10]. In this context,

many works outline sophisticated approaches on how man-

agement can be given to a network of controllers running

in parallel: [17], [26] highlight approaches where separate

controllers work in collaboration while being responsible

for different networks part. Furthermore, [26]–[28] propose

systems for parallel controllers which can overtake control in

times of failures. To further improve the scalability, Hassas

Yeganeh et al. focus in [6] on hierarchical approaches to avoid

flat control-planes. Such approaches enable scalability of a

previous single point of failure. However, scaling out requires

additional costly resources. Therefore, intelligent mechanisms

to reduce monitoring costs, as proposed in this work, should

be preferred.

Considering monitoring in the context of SDN, most mon-

itoring approaches are built as application on top of the

controllers communicating through the controllers interfaces

with the data-plane devices (cf. [4]). These monitoring appli-

cations can leverage, for example, flow counter information

to characterize data flows and enable fine-grained traffic engi-

neering [29]. MonSamp [30] moves the monitoring endpoint

out of the controller letting it communicate directly with

the data-plane elements. Despite the collection, MonSamp

stores also the analysis into an additional architecture element.

Hence, the system completely moves monitoring capabilities

out of the controller and provides fully processed information

to the applications. SRR in contrast does not target to do

the analysis of statistics, but reduces monitoring related costs

by, e.g., providing only relevant information to monitoring

applications. Rasley et al. propose an approach in [31] to

devolve the collection and analysis of monitoring information

to a dedicated collector. Subsequently, the collector creates

an event-based information stream to the controller relieving

its monitoring resource consumption. This approach takes the

analysis of information out of the controllers, which we, again,

explicitly retain in the control applications.

Cheikhrouhou et al. [32] proposed in 2000 that redundant

measurement tasks (or with comparable characteristics) should

be aggregated into single measurement tasks for legacy net-

works using SNMP. They show that the number of polls

required for monitored reduces significantly. Extending this

idea, we add a task aggregation mechanism for different

types of monitoring tools, including SNMP, to the event-based

reporting of measurements in our system. Furthermore, [14]

proposes to aggregate the results of measurements, but not

the requests. Hence, based on different measurements, an

aggregated report is produced. Besides that, their system can

report objective-based measurements, e.g., SLA violations.

The SUMA [33] approach is the closest to our approach.

SUMA, also published as SUVMF [34], is a middlebox

that overtakes management tasks for controllers acting as a

proxy for various tasks. The system consists of a common

processing module, a transformation and adaptation module,

and a dynamic event monitor module. The modules allow the

mitigation of packets, events, alarms, statistic, and further mes-

sages. While we can compare the statistic filtering mechanism

with the filtering in this work, we note that SUMA takes the

complexity of controllers and moves them into an additional

element. In contrast to our system, SUMA shifts most aspects

of the scalability problem of controllers to the new entity,

as it overtakes a large set of management tasks to its new

component. Additionally to many other tasks, SUMA removes

in particular the monitoring analysis out of the controllers and

places it into the new component. Hence, also in contrast to

our system, SUMA incorporates network control and analysis,

thus, actively influences the network management, which we

retain explicitly on the controllers in this work.

The OpenFlow 1.5 specification provides optional function-

ality for event-based statistic collection. It supports pushing

statistics from the switches to the controller whenever a

certain field reaches a given threshold (either once or on

every multiple). This functionality allows reducing monitoring

costs further as requests can be neglected in future OpenFlow

scenarios. However, this is limited to the fields OpenFlow

supports (e.g. flow entry duration or byte count) and does not

yet support correlating thresholds, i.e. periodically asking if a

byte count reached a threshold in the mean time.

VII. CONCLUSION

In this work, we developed a system to reduce monitoring

overhead on controllers and data-plane elements. The sys-

tem, denoted SRR, optimizes statistic retrieval by optimiz-

ing statistic requests and statistic provisioning. On the one

hand, the optimization of statistic requests achieved through

aggregation of similar monitoring tasks reduces the number

of requests that the data-plane elements have to process,

thus, it reduces the load on elements such as switches. On

the other hand, SRR optimizes the provisioning of statistics

through filtering, i.e., it only forwards relevant information that

require a management applications’ reaction to controllers. We

discuss different deployment modes of the logically centralized

system, the architecture of the component, and its interfaces.

In our evaluation that simulates datacenter behavior, we show

that the filtering mechanisms included in the system allows a

significant reduction of the number of statistics requiring pro-

cessing by a controller. At the same time, we show the trade-

off between system control parameters and the accuracy of the

monitored information. Furthermore, the evaluation shows that

we are able to reduce the number of statistic requests processed

by switches when SRR aggregates monitoring tasks.

We plan to investigate an automatic adaptation of the

monitoring system parameters, e.g., using online machine

learning tools, for future work.
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