
Darmstadt University of Technology

Department of Electrical Engineering & Information Technology
& Department of Computer Science
Merckstraße 25 • D-64283 Darmstadt • Germany

Phone: +49 6151 166150
Fax: +49 6151 166152
Email: info@KOM.tu-darmstadt.de
URL: http://www.kom.e-technik.tu-darmstadt.de/

Multimedia Communications (KOM)

The eDonkey 2000 Protocol

Oliver Heckmann, Axel Bock

KOM Technical Report 08/2002
Version 0.8

December 2002

Last major update 22.05.03
Last minor update 27.06.03

E-Mail: {heckmann, bock}@kom.tu-darmstadt.de

Seite 2

1. Introduction
The Edonkey2000 Protocol is one of the most successful file sharing protocols and used by the original
Edonkey2000 client and the open source clients mldonkey and EMule. The Edonkey2000 Protocol can
be classified as decentral file sharing protocol with distributed servers. Contrary to the original Gnutella
Protocol it is not completely decentral as it uses servers; contrary to the original Napster protocol it does
not use a single server (farm) which is a single point of failure, instead it uses servers that are run by
power users and offers mechanisms for inter-server communication. Unlinke Peer-to-Peer (P2P) proto-
cols like KaZaa, Morpheus, or Gnutella the eDonkey network has a client/server based structure. The
servers are slightly similar to the KaZaa supernodes, but they do not share any files, only manage the
information distribution and work as several central dictionaries which hold the information about the
shared files and their respective client locations.
In the Edonkey network the clients are the nodes sharing data. Their files are indexed by the servers. If
they want to have a piece of data (a file), they have to connect using TCP to a server or send a short search
request via UDP to one or more servers to get the necessary information about other clients sharing that
file.
This documents presents our findings about the eDonkey protocol based on TCPDump, Ethereal and
TCPFlow analysis.
The document in its current version it is work in progress!! We have used the information contained
in this document for P2P traffic measurements. The measurement results will be published in a separate
document and in the student thesis of Axel Bock. For a high-level description of the protocol and a com-
parison with other P2P protocols see our report TR-KOM-2002-06 at http://www.kom.e-technik.tu-
darmstadt.de/publications/abstracts/HSS02-3.html (which is written in german).

After this introduction we present a general overview of the protocol in section 2, present the general
message format in section 3 and conclude with a detailed description of the messages in section 4.

Seite 3

2. Protocol Description
Typically a client connects to one server:
• A client connects a server via TCP and stays connected
• The client sends information about itself, containing username, IP address and connection port
• The client sends a list of the files it offers to the server. This information is added to the server’s files

database.
• A list of other known servers is transferred from the server to the client.

After this the client is “connected” it can use the eDonkey network to search and download files, while
itself shares his files by making them available for download by other users. Between the clients them-
selves there is no communication except the communication needed to initiate and run file transfers.

The servers do loosely communicate over UDP to keep their internal server list up-to-date. This is done
by ping/pong mechanisms and server list exchanges.

Now follows a descriptions of several network communication mechanisms. The numbers in brackets
are eDonkey message markers. To get detailed information about these see section 3.

2.1. Server - Server Communication
The servers communicate with other servers only via UDP messages. Upon connection to the network a
server begins to send UDP “Announce” messages (0xa0) to other servers to make itself known.

The communication between servers is simple and straightforward: They can can exchange serverlists
(request 0xa4 and reply 0xa1), ping each other (0x96) and announce the very own presence (0xa0). The
pongs (0x97, the answers to ping queries) contain also the current users/files count. There is another
UDP packet which delivers a description of the server, but this is of minor importance for the network.

Unfortunately do the clients also send ping messages to verify the correctness of their respecive internal
server list, which is the reason the ping/pong messages make a very high percentage of the overall traffic
volume.

2.2. Client - Server Communication
Login. The following login procedure happens when a client connects to one eDonkey server. The ori-
ginal client and the Emule client try to stay connected with a single server while the mldonkey client can
connect to more than one server at a time.
• The client opens a TCP connection to the server it wants to connect to.
• Then the client sends a “hello” packet to the server (0x01), which contains his username, his user

hash, the IP and port on which he can be reached and his protocol version.
• Now the server checks whether the client is a so-called “low-id” client by checking whether the cli-

ent is firewalled or not (wether a TCP connection can be opened to his eDonkey port or not).
A firewalled client is called “low-id” because the client’s id is normally very high (in the millions,
cause this is just the integer representation of the client’s IP), and when it is firewalled, the server
gives it an IP starting from 1.

• After this the server answers with a 5 bytes message (0x40) containing the clients ID (the marker &
the ID).

• Then the server send the server greetings by sending a bunch of “write string” commands (0x38),

Seite 4

which are printed out by the client for the user to read.
• As the last step of the connecting procedure the server usually sends some additional information

about itself: A message (0x41) containing the official server name and description (this is not the
server greeting) and/or the number of users logged in hosting just so many files (0x34).

User interactions. Next follows a brief description of what happens when a user does certain things
within the network, namely file searches and file downloads.

Text search based on filename. The most used user interaction in the eDonekey network is a file se-
arch, for file downloads happen quite automatically. File searches are always text searches; the entered
text is split up into single words and all known filenames are searched for occurances of all these words.
If a file has all sent words in its name, it matches. The server can be configured to do complete substring
searches or just compare whole words.
On the protocol level the realization is quite simple:
• The client sends a message (0x16) containing a search string and some search parameters. The para-

meters can be min and/or max size, the type of the file (audio, video, image, ...), some type specific
parameters (bitrate, resolution, length, ...), or just some additional search terms.
The search string is cut down to the maximum size of four words in all lowercase on the client side.

• The server answers with a message containing the descriptions of all matching files (0x33), whose
consist exactly of a (filename, hash, size) tuple and - if present server-sided - some additional infor-
mation about some special file types (e.g. audio length / bitrate, video compression algorithm, image
author, program format).

Download initiation. Should the user decide to download a certain file, he tells his client to retrieve
this file from the net. After this point the user can lean back and wait for the file to be completed.

The client/server communication which happens after this looks like this:
• Immediately after telling the client to download the file, it sends a “query sources” message (0x19)

to the server, which only contains the hash value of the desired file (the MD4 hash of a file is used
instead of filenames to identify files independantly from their filename).

• The server answers with a message containing the possible download sources (0x42), which is in
fact just a list of ID/port pairs of clients claiming they hold this file. Due to transmission of the ID
and not the IP the receiving client can see at once whether the other part is firewalled or not and can
- if neccessary - request a server-sided push command to be sent to the other one.

Download. Now the client which requested the sources connects each of the named sources and asks
for the file to be transmitted to itself. Here it is possible that the connected client has only parts of the
file the first client already has, for the clients already share when they have not yet finished downloading.
This increases the availability of often wanted files faster, but also leads to some annoying problems
when receiving such an often requested file. But more on this later.

The client/client communication mechanisms are not yet covered by this document.

2.3. Network behaviour
On our test machine (Linux, Kernel 2.4.18+) we have observed some major network performance pro-
blems. One time we tried to shut down the official eDonkey server, which caused undefinitely more traf-
fic than keeping the server running. More detailed forensics came up with the following indications:
• When the server was already down, there werr still some 150+ open TCP connections, all waiting to

be closed. This may be due to some very crude network programming.
• The network itself doesn’t realize the server going down, especially not the clients. The remaining

incoming UDP traffic after server shutdown adressed to the eDonkey port was about 50+K/s, which

Seite 5

strangely increased after the server shutdown (probably because the machine was no longer sending
replys the UDP messages were sent a second and third time...).

• Finally the outgoing traffic increased massively after server shutdown. The incoming UDP packets
on port 4665 caused the kernel to send "ICMP port unreachable" packets back to the senders, which
blocked the upload line (ADSL) almost completely. A new dialin was the only thing that helped.
The server simply ignores the UDP packet it cannot process any more, which explains the outgoing
traffic increase.

Admittingly this does not always happen if a server is shut down, but at least the open TCP connections
can be observed every time the server goes down.

Seite 6

3. Message Format

TCP Message format. The TCP part of the protocol (the TCP streams between client and server) is
divided into logical „messages“ at the application layer. These are called messages from now on to mark
the difference to packet based protocols.

Every sent TCP message is wrapped in the following header:

e3 xx xx xx xx

e3 is the edonkey marker and xx xx xx xx is the amount of bytes following this little header (unsigned
int). The first byte after this header determines the blocks content (e.g. download request, text search,
publish files, etc.), so every packet’s first six bytes are:

e3 ss ss ss ss mm

Where ss stands for a part of the message size, and mm is the message type marker.

The included packet content consists mostly of two parts.
First comes a fixed part of data which always has the same layout, so that there can be no problems par-
sing this part.
The second part consists of a variable number of so-called “tags”, which can hold almost any type of
data, mostly depending on the type of the packet they are in. Separated are these two parts by a tag mar-
ker, which indicates how many of these tags follow.

So this will in general look like this:

e3 ss ss ss ss mm <fixed part> <tag count> <following tags>
message header as said ... how many tags follow? the following tags ...

Tag format. The understanding of the tag structure is essential for the understanding of the network
protocol, cause it also explains why it is possible that different clients still work together although one
of them may have an extended protocol set (eMule for example).

As said a tag is just a structural representation for a certain kind of data. There are far more tag types than
covered in this document, but for the core eDonkey2000 protocol there are only two of them of interest:
string and integer. Both can be very easy decoded when you know how to read them.

A tag is always of the following format:

<data type> <data description> <data>

Where data description is some kind of tag itself. Some examples:

Tag: client port: 03 01 00 0F 36 12 00 00
Tag: filename: 02 01 00 01 05 00 .h .e .l .l .o
Tag: file size: 03 01 00 02 3D 0F 00 00
Tag: bitrate: 03 07 00 .b .i .t .r .a .t .e 80 00 00 00

You can see that the tags start with different numbers - 02 and 03. 02 stands for text data type, whereas
03 stands for integer data type. There are still more defined but they are to no importance within the pro-
tocol.

Seite 7

After the leading type there comes the description. This has always the form

<size> <description>

The size is always two bytes unsigned short. As you can see, in the examples of client port, filename and
file size the size of the description is one, and the description itself some kind of special marker used for
very common tag types. In the bitrate example is is different as you can see: an integer data with the de-
scription “bitrate” and the value 128.

The data itself differs from string to integer - a string is just length (two bytes unsigned short) and then
the string following, while integer data is always fixed size four bytes integer.
So you have to read this as follows:

02 01 00 01 HELLO WORLD
data type: size of description special tag: name (user or file) the data - a string in this case
string

03 07 00 “BITRATE” 80 00 00 00
data type: description length the description: the string “bitrate” the data: int 128 for the bitrate
integer

This is exactly how the protocol tags work.

Now you can also guess how proprietary extensions of the protocol are easily possible: the clients just
ignore all tags they don’t immediately recognize and go over to the next one. This is only possbile cause
the tag sizes are exactly known in advance! The only thing you cannot do is to inject new data types into
the protocol. But you could simply create a new “special tag” (a tag which length is one byte) of the string
type. In the string you pack your information, and all clients which do not know this tag simply go on to
the next one.

Tag list. This is a list of all relevent protocol tags. The cDonkey server is built upon these. I have not
included sample data, so this is ONLY the data type and data description part, divided by string and in-
teger types.

(User-/File-)Name: 02 01 00 01
File type: 02 01 00 03
File format: 02 01 00 04
Server description: 02 01 00 0b

Filesize: 03 01 00 02
Client version: 03 01 00 0f
User port: 03 01 00 11
Availability (files): 03 01 00 15

Now follows a rather useable analysis of the eDonkey’s network messsages, divided into client / server
communication (first TCP, then UDP), and then server / server communication (again first TCP, then
UDP).

Search messages. The only exception to this format are search messages. They do also contain these
advanced tags, in case you search for a certain file type or a certain file size, but due to the treelike nature
of these (something like (type == PRO) AND (size > 100>) AND (size < 10.000) for example) they are
transmitted in another format.

Seite 8

UDP packet format. The UDP packets have just the same format as the TCP messages, but with no
size included. There are minor differences in some packets, but we’ll point these out later.

Seite 9

4. Detailed communication analysis

What follows now is a rather useful analysis of the eDonkey 2000 messages. This includes the message
markers, the fixed part of the packets, and the mostly sent tags. For the tags we will always give type and
description when needed. So for the bitrate we will say “... an integer with the ‘bitrate’”, and for the file
name only “file name tag”.

The messages will be split up into TCP and UDP messages, for there are some little differences (besides
the missing size field in UDP packets). Some messages are absolutely similar, these we will not list
twice.

And we will include a short description of the message and some additional information about its con-
texts when appropriate. Also we filled in some values in fields which are normally variable, the tag count
field for example. In this case this just means “in most cases this field takes the value given here”.

To simplify matters we didn’t include the edonkey marker 0xe3 at the head of each message in TCP and
UDP, as well as the size information in the TCP messages.

All values are hexadecimal.

4.1. TCP communication: client to server

A description of all traffic the clients can send to the server.

4.1.1.TCP 0x01: hello
Sent by a client directly after connecting. After evaluating whether the client gets a low-id or not the of-
ficial server sends the clients’ ID back.

Usually included tags: user name, client version, client port.

4.1.2.TCP 0x14: request serverlist
This one byte packets asks the server to send a serverlist to the client.

bytes content meaning

1 01 packet type

16 user hash

4 client ip

2 client port

4 03 00 00 00 tag count

the tag part ...

4 00 00 trailing zeroes

Seite 10

4.1.3.TCP 0x15: offer files
This block has exactly the same format as the „search result“ block sent by the servers upon a search
request. Please stick to this for detailed information.

The format of the UDP „extend search“ response packets is also the same, but without the number of
results. Every UDP answer contains exactly one result, if more were found by the server, more packets
are sent.

The UDP search result message marker is 0x99, see below.

4.1.4.block type 0x16: do text search

The search mechanism is the only exception of the so-called meta-tag packet model. Because a search
query is nothing more than a combination of AND’ed or OR’ed search queries, it can be seen as a kind
of binary tree, which is exactly what is transmitted. An example is given below:

((substrings “unreal cd1”) and ((file size > 500M) or (file size < 10k)))

This search could be used to find - for example - the CD image of the first CD of the game “Unreal” as
well as the corresponding *.CUE-file. (The cue files are text files which contain the neccessary informa-
tion to burn a given CD image - the image is large, the .cue-file very small).
As you can see you can write this search query as a binary tree, which is exactly the format of the
eDonkey text search messages: a preorder binary tree. In practice though the search flexibility is limited
to some extend, because the full flexibility definitely not needed within the eDonkey network.

In the treelike search query the nodes are the operators and have the form “00 <OP>”, so every node not
beginning with a leading zero is a leaf and contains an expression. There are - but this is only a guess -
three operators: AND (0x00), OR (0x01) and AND NOT (0x02), whereby AND and OR are verified and
AND NOT was not seen by ourselves but recorded in various public available protocol analyses.
The leafes have three possible formats, for the three possible searches. The first search is a substring se-
arch within the filename, and has the prefix 0x01. The second one is a tag search, with which you can
search for file attributes, and has the prefix 0x02. The third and last one is a minimum/maximum search
and is used mostly for file sizes. It has the prefix 0x03.
The format of all three is a little bit different.

Substring: 01 <len string> <string>
Unsigned short byte array

TAG: 02 <len string> <string> <len tag> <tag>
ushort string to match ushort tag to be searched

Minimax: 03 <int> OPERATOR <len tag> <tag>
uint 1 byte, see below ushort tag to be searched

The minimax search seems to differ slightly between the versions. What we title as “operator” is one

bytes content meaning

1 0x14 packet type

Seite 11

byte which determines the match behaviour - greater or equal vs. smaller or equal. What we found is that
01/03 (odd numbers) means “up-to” and 02/04 “not-more-than”. A detailed search query out of practice
will be analyzed later.
As you notice with these three search methods you can search for every string in every combination of
file attributes.

4.1.5.TCP 0x19: search download sources
Files in the eDonkey 2000 network are only found by their respective hash values. With this message the
client asks the server to send possible download locations for a file with a certain hash value.

4.1.6.TCP 0x1c: push request
When a clients desires a file from another, firewalled client, it tells the server to initiate a push request.
Then the server sends a push command over the existing TCP connection to the other client, which tells
the other one to connect the first.
The connection information is supplied in the message.

4.1.7.TCP 0x21: more results
There seems to be a message called “get more results”, used when the server finds more than the possible
255 ones (the field containing the number of found results is exactly one byte). Clients getting a file list
with 255 results would be able to request the missing ones with this.
But this message was never encountered, so maybe it’s gone in current versions of eDonkey clients and
servers.

4.2. Server - Client Communication, TCP

A description of all traffic the server can send to the client.

bytes content meaning

1 0x19 packet type

16 file hash

bytes content meaning

1 0x1c packet type

4 ID of client to push

Seite 12

4.2.1.TCP 0x32: serverlist

4.2.2.TCP 0x33: return search results
This is a relatively large block where the knowledge of the tag format is essential for parsing the data.
This is the only message type where the “fixed part / tag count / tag part” is broken up.

Now comes for every returned file an information block looking like this:

Note that after all files there comes a last trailing zero. Thus the format is: header with number of results,
file information block for every found file, and afterwards a trailing zero. In detail:

bytes content meaning

1 0x32 tag: server list block

1 number of following servers

number of servers *

4 IP of a server

2 according server port

bytes content meaning

1 0x33 tag: return search results

4 number of results (unsigned
int)

...

16 the edonkey MD4 file hash

4 a clients IP (?) or zero*

2 the clients port - or zero*

4 tag count: num. of tags follo-
wing

the tags come here ...

bytes content meaning

1 0x33 tag: return search results

4 number of results (unsigned
int)

Seite 13

The ususally included tags are: file name, file size, file type and file availability, mostly also file format
and file type
.
Included tags can also be - depending on the file type:

Strings: “artist”, “album”, “title”, “length”, “codec”
Integers: “bitrate”

The search query can contain exact specifications for all of them, and more, if neccessary. Theoretically
you could search just for the meta tags - you didn’t even have to supply a search string. But this depends
on the implementation of the searching code, and all tested clients refused with “no search string” or si-
milar messages. But searches for all mp3 files are easily possible: the file extension is included in the
search word database in also every known server, so an “s mp3” in the linux client does the trick. A se-
arch for all videos would so be made of three search queries: “s avi”, “s mpg”, “s divx” (in the text mode
client), to cover the most common file extensions for video files.

4.2.3.TCP 0x34: users / files online
This message is sent on a regular basis.

4.2.4.block type 0x38: write string
The string sent with this command is written on the screen of the client. The welcome message is gene-
ratet with a bunch of “write string” commands, for example.

... for all files

16 file hash

6 IP / Port pair or 0x0

4 tag count: # of tags following

the file’s tags (size, name, etc.)

1 0x00 trailing zero

bytes content meaning

1 0x34 tag: users/files online block

4 users online (unsigned int)

4 files online (unsigned int)

bytes content meaning

Seite 14

4.2.5.block type 0x40: send client ip
The server sends the client its given ID. Mostly identical to the IP address of it. Should the client be fi-
rewalled the server generates unique ID’s starting from 1 counting up.

4.2.6.TCP 0x41: server name and description
Notice that the “server name” tag is simply the “name” tag. This tag is often used and changes meaning
with its context.

4.2.7.TCP 0x42: return download sources
The answer to a TCP 0x19 query. A list of possible download sources holding a certain file. Notice that
the source does not have to have the file completely - the server just has the information sent from the
client, and this information only says “have file A with hash B size C and name D (and types/formats
...)”. So it may happen that the server has the file listed from 100 clients, 99 of them could have only the
first 9 megs of it.

1 0x38 tag: write string block

2 length of string

x „...“ the string to write

bytes content meaning

1 0x40 tag: client ip

4 the clients IP address

bytes content meaning

1 0x41 tag: server description

16 probably server hash

4 server IP

2 server port

4 02 00 00 00 tag count: mostly 2

server name & server description tag come here

bytes content meaning

1 0x42 tag: download sources block

Seite 15

4.3. UDP communication

4.3.1.UDP 0x96: PING
This packet is used by clients as well as by servers to verify their respective serverlist.

4.3.2.UDP 0x97: PONG
Also called “PING response”. It includes the challenge sent in the PING, and the information about how
many users and files a server holds.

4.3.3.UDP 0x98: extend text search
When a client does a text search and finds nothing on its server, it can extend the search to others. To be
able to do a quick search on other servers this UDP message is used. The format is basically the same as
the one of the TCP text search messages, but without the message size and with another type marker
(0x98 instead of 0x16).

4.3.4.UDP 0x99: text search answer
The answer on 0x98 requests. As well as with the search the packet format is similar to the TCP equiva-
lent without the size marker and a changed type marker.

16 hash of the file whose sources
follow

1 number of sources

for each source:

4 IP address of client

2 port of client

bytes content meaning

1 0x96 tag: ping

5 challenge

bytes content meaning

1 0x97 tag: pong (ping answer)

4 the received marker

4 users currently online

4 files currently online

Seite 16

4.3.5.UDP 0x9a: query sources
When searching for download sources the search is done within the whole network. To search on servers
to which it is not connected the client sends this UDP message to other servers, which (may) respond
with available download sources for the searched hash value.

4.3.6.UDP 0x9b: query sources answer
The answer to 0x9a messages. If the server has download sources and spare bandwidth it sends this list
of sources as an answer to the clients search request. As always the IP of the given sources is the ID the
other client got from the other server. So if this ID is a low-ID (an ID far below one million, 5 for ex-
ample) it indicates the other one is firewalled and cannot be contacted. So a “UDP callback request”
(0x9c, see below) would be neccessary to set up the connection.

4.3.7.UDP 0x9c: callback request
If the client A gets a 0x9b answer with a low-ID source of a file, it is not able to initiate the connection
to. So it sends this message to the other server on which the other client - B - is logged in. This message
now tells the server holding client B to send a TCP “callback request” to this client B, with the addresss
of client A. Now client B initiates the connection to client A, and A is able to download the desired file
from B. If client B logged out in the meantime this will not work - the TCP connection between the other
server and client B is lost.

bytes content meaning

1 0x9a tag: query sources

16 the hash value to be searched

bytes content meaning

1 0x9b tag: download sources answer

16 searched hash

1 number of results

number of results *

4 ID of download source

2 port of download source

Seite 17

4.3.8.UDP 0x9e: callback failed
If the requested UDP callback failed (i.e. the desired client with the requested low-ID dropped), the ser-
ver sends back a failure notification.

4.3.9.UDP 0xa0: server announce
When a server comes online it announces itself with this message to other servers. These send in return
serverlists and varying other information.

4.3.10.UDP 0xa1: server list
This packet has exactly the same format like the TCP server list message. Besides the other packet type

bytes content meaning

1 0x9c tag: callback request

4 IP to connect

2 port to connect to

4
the client ID on the remote
server which should initiate
the connection

bytes content meaning

1 0x9e tag: server list packet

4 the ID which couldn’t be rea-
ched

bytes content meaning

1 0xa0 tag: server announce

4 server IP

2 server port

Seite 18

marker, of course.

4.3.11.UDP 0xa2: get server description
A two-byte UDP packet which requests the server description - which is server name and the server de-
scription string. The UDP data is simply the 0xe3 marker plus 0xa2.

4.3.12.UDP 0xa3: server description
The answer on 0xa2 requests. It justs holds the two stings - server name and server description. Do not
confuse the server description with the welcome message delivered to the clients logging in via TCP -
this is completely independant! And the welcome message can contain several strings as well.

4.3.13.UDP 0xa4: get serverlist
Another one-byte UDP packet, which requests a serverlist of the addressed server. The serverlist is also
sent as an answer to 0xa0 “server-announce” messages, but servers receiving 0xa0 messages seem to
enter the sender into their serverlist, which they don’t seem to do when receiving a 0xa4 request. But this
is unproven and may vary between different server implementations.

bytes content meaning

1 0xa1 tag: server list packet

1 number of following servers

number of following *

4 IP of a server

2 port of the server

bytes content meaning

1 0xa3 tag: server description

2 ushort: length name (x)

(x) string: name of the server

2 ushort: length description (y)

(y) string: description of the ser-
ver

