
Knowledge for a Longer Life: Development Impetus
for Energy-efficient Smartphone Applications

Ronny Hans, Daniel Burgstahler, Alexander Mueller, Manuel Zahn, and Dominik Stingl
Multimedia Communications Lab (KOM)

TU Darmstadt, Rundeturmstr. 10, 64283 Darmstadt, Germany
Email: Ronny.Hans@KOM.tu-darmstadt.de

Abstract—In recent years, there has been a rapid growth in the
spread of smartphones and thus in the utilization of mobile ap-
plications. Such applications require a substantial portion of the
available energy. Since a short battery lifetime has a very negative
impact for the user experience, application developers should
have the skills and the knowledge to avoid energy-inefficient
applications. In this paper, we present a comprehensive survey
of approaches and methods to reduce the energy consumption
and thus help software developers to improve their applications.

Index Terms—energy consumption, application, smartphone

I. INTRODUCTION

Smartphones have become a constant companion and indis-
pensable help in our daily lives. Thanks to a plethora of diverse
applications (abbreviated as apps), they store our tickets when
we travel, help to find our way, entertain us with music or
videos, and keep us in touch with our colleagues and friends.
Due to this important role of smartphones, nothing is more
annoying than a shutdown due to an empty battery. Despite
all technical development, energy remains a scarce resource
and the most limiting factor in mobile devices. A recent study
indicates that there is most likely no change of this fact in the
near future [1].

A large share of energy consumption is caused by ap-
plications. Depending on the functionality of an app, they
constantly present information on the display, download data,
or use build-in sensors, such as sensor for the Global Position-
ing System (GPS) to determine their current position. Conse-
quently, each of the used components consumes a substantial
amount of the available energy. Among these components,
the display, the CPU, the network interfaces and the GPS
sensor have been identified as main consumers of energy. As a
result, much effort has been made to investigate and identify
the potential for energy savings of these components on a
hardware level.

The focus of our work is primarily on application devel-
opment. Thus we explicitly exclude a whole bunch of work,
which is definitely interesting for energy improvements, but
which is out of scope for application developers, such as
modification of Hardware, optimization in Medium Access
Control, aggregation of frames and packages, or the develop-
ment of new protocols. Further we only focused on literature
that provides enhancement potentials and proof their proposals
with a quantitative evaluation.

Thus, in this paper, we give an overview of approaches and
current developments to reduce the energy consumption of
mobile applications. Thereby, we focus on useful knowledge,
specifically for applications developers. In Table I we give
an overview of the used operating systems in the respective
related literature.

The remainder of the paper is structured as follows: First,
in Section II we have a closer look on the major input/output
device, the display. Thereby the focus lies on energy-specific
improvement within graphical user interface (GUI). Later on,
in Section III we present selected papers regarding energy
improvements for wireless data transfer. In Section IV we
present concepts to avoid the high energy consumption of the
GPS sensor. Subsequently, in Section V we present concepts
to improve the source code of mobile application. In Section
VI we present offloading approaches and their advantage to
relieve the local CPU of computation tasks. Afterwards, in
Section VII, we give an overview of related work. Finally, we
conclude our work with a summary in Section VIII.

II. GRAPHICAL USER INTERFACE

The central input and output device of a smartphone, where
nearly all the user interactions take place, is the display.
Thereby, the energy consumption of the display is mainly
determined by the brightness [2], [3]. For all current display
types, i. e., Liquid Crystal Display (LCD), Organic Light
Emitting Diode (OLED) and Active-Matrix Organic Light-
Emitting Siode (AMOLED), several scientific studies find a
linear correlation between energy consumption and changes in
brightness [4], [5], [6]. Since a general reduction of brightness
is not feasible, e. g., for outdoor activities during the day,
several more specific approaches are proposed to reduce the
energy consumption.

To begin with, Dong and Zhong analyzed the influence of
the displayed content on the energy consumption for OLED-
based displays. They figure out that the energy consumption
highly depend on display content. For displaying different
colors, a different amount of energy is required. Thus, the
graphical user interface (GUI) designers have a huge influence
on the energy consumption. The authors developed different
energy models to estimate the power consumption of the con-
tent to be displayed. Further, different transformation methods
are proposed, e. g., the usage of a dark background color and
a lighter foreground color. Using the transformation methods

rst
Textfeld
Ronny Hans, Daniel Burgstahler, Alexander Mueller, Manuel Zahn, and Dominik Stingl:
Knowledge for a Longer Life: Development Impetus for Energy-efficient Smartphone Applications. In: Proceedings of the 4th International Conference on Mobile Services (MS 2015), Institute of Electrical and Electronics Engineers (IEEE), June 2015.

rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.




Table I: Overview of Used Operating Systems

Operating System Reference

Android (unspecified) [9] [10] [11] [12] [8] [5] [13]
Android v1.x [14] [4] [15]
Android v2.x [6] [16] [17] [18] [19] [20]
Android v4.x [21] [22] [23] [7]
Symbian [24] [25] [26]
Windows Mobile (unspecified) [10]
Windows Mobile 5.x [27] [2]
Windows Mobile 6.x [16] [28]

the authors evaluate the influence on the user satisfaction.
With only small reduction of the user satisfaction, the energy
consumption can be reduced by about 75% [2].

A similar idea to reduce the energy consumption of OLED-
based displays is pursued by Li et al. Specificity in web
applications, a huge amount of energy is required to display
large light colored backgrounds. In contrast to Dong and
Zhong the authors propose to change the source code of such
applications that is stored at the web server. Therefore, a tool
named Nyx is developed that is able to perform automatic
transformations of color schemes of web applications. With
such modified applications energy savings of up to 40% are
possible, by only a minimal downgrade in user ratings of the
web site . Nevertheless, 97% of the users are willing to accept
the color transformation if they are on critical battery level
[7].

Wee and Balan as well focus on the energy optimization
of OLED displays. Thereby, they analyzed the brightness
reduction of non-interesting regions of the display. The authors
determine the area of interest in the center of the screen and
dim the display towards the edge. The solution was evaluated
with the mobile shooting game Kwaak 3 by measuring the
number of kills. Since there was no statistical significant dif-
ference, the authors consider no impact to the playability of the
game. With this approach up to 11% energy reduction of the
display and up to 4% total reduction of energy consumption
can be achieved [8].

Regarding modern OLED-displays the selected papers show
two main research directions. On the one hand brightness
reduction in less interesting areas of the display and changes
of the displayed color, e. g., to avoid light color areas which
consume a high amount of energy.

III. DATA TRANSFER

Energy efficiency for sending and receiving data is a re-
search area that receives high attention. Nevertheless, a lot of
approaches are useful for example for future protocol design
or related topics, but they do not have a large impact for
current application development. In the work at hand we focus
on the selection of wireless interfaces, on scheduling of data
transmission and on data compression.

Smartphones are equipped with several wireless interfaces.
All with different technical characteristics and energy profiles.
From an energy point of view it is inefficient if multiple
interfaces are powered on while not needed, e. g., the energy

consumption increase by 18.3% when both UTMS and Wi-Fi
are powered on, compared with just UMTS being powered on
[14]. Therefore, the decision for a specific interface plays an
imported role.

Rahmati and Zhong focus on saving energy by choosing
the appropriate wireless interface based on several contextual
factors. The authors figure out that cellular and Wi-Fi networks
have complementary energy profiles. The challenge for an
efficient usage of battery resources is the decision in which
point in time the Wi-Fi should be activated. Therefore, the
authors formulate a statistical decision problem, which based
on different context information such as time, history and
cellular network conditions. With their approach the authors
improve the average battery lifetime up to 39% [27].

In order to reduce the energy consumption of smartphones,
Taleb et al. propose a dynamic switching between 3G and
Wi-Fi. The authors aim to switch efficiently from a primary
cellular network to an alternative Wi-Fi connection. Therefore,
they developed energy models regarding to the size of the
download and regarding to the effective download bit rate.
Using this information an application was developed to switch
dynamically between 3G and Wi-Fi. Compared to Wi-Fi
only and 3G only usage, energy savings of 18% or 30%,
respectively are possible [18].

Since cellular connections require more energy as Wi-
Fi connections, it is beneficial to use Wi-Fi for downloads
containing a large amount of data. In practical cases, where
Wi-Fi is not ubiquitously available, scheduling of data transfer
could be appropriate.

Especially for video streaming, prefetching seems to be
a promising method to save energy. Therefore, Gautam et
al. analyzed the potential energy savings of the Android
prefetching app Incoming. This application enables video
stream prefetching based on past video viewing behavior.
With the proposed approach, a Wi-Fi connection is used to
download videos in advance to avoid streaming via 2G or 3G.
With a chosen overhead of unused content between 37% and
70%, energy savings up to 84% for prefetching over Wi-Fi
compared to 3G are possible. For streaming over 2G up to
98% reduction of energy consumption is possible [20].

Besides the chosen wireless interface, also the signal
strength influences the energy consumption. To save energy in
3G networks, Schulman et al. propose a scheduling algorithm
that makes use of a high signal strength. Therefore, the
authors analyze the energy consumption dependent on the
signal strength. As a result, they find six times higher energy
consumption per transferred bit when the signal strength
is weak. To take advantage of a high signal strength, the
authors developed a scheduling algorithm for two kinds of
applications. On the one hand for sync applications, such mail
or news and on the other hand for streaming applications.
Therefore, the algorithm uses previous signal measurements.
For sync applications flexible synchronization intervals are
used. For streaming applications the algorithm modulates the
traffic stream to match with the radio energy characteristic.
Thereby, the proposed algorithm takes energy for communica-



tion as well as tail energy into account. With their simulation,
the authors show energy savings of up to 10% for email
synchronization and up to 60% for on-demand streaming [29].

Balasubramanian et al. as well use flexible synchronization
intervals and perfecting. However, the authors suggest an ap-
proach to reduce the energy that is wasted in high-power states
after the completion of a data transfer. With a measurement
study the authors figured out that a large fraction of energy
is wasted that way, e. g., 60% for 3G. The authors propose
to save energy in two different ways. On the one hand with
a delayed data transfer for delay-tolerant applications such as
e-mail applications and news feeds. On the other hand the
authors consider applications that benefit from prefetching,
i. e., web search. With their simulations they show an energy
reduction of up to 35% for e-mail applications, of up to 52%
for news feeds and of up to 40% for web search [28].

To reduce unnecessary background traffic that causes a no-
ticeable extra energy consumption, Burgstahler et al. analyze
the energy impact of push and pull client notifications [30].
Depending on the acceptable latency on client notifications
a pull based approach can help to save energy compared to
a push based approach. In [31] the authors show an energy
saving potential of up to 7% by the use of a transition
approach. Depending on the users context the authors suggest
to switch between these two notification paradigms to save
energy and at the same time to ensure low notification delays.

To reduce the time a wireless interface is active, the re-
duction of the amount of transferred data could be a feasible
solution. Therefore, Hans et al. analyze the potential energy
savings by compressed data transmission while invoking web
services. For their investigation they use UMTS. On the one
hand, compression reduces the number of data packages and
those the up-time of the wireless interface. On the other
hand, the decompression requires more computational power
and thus additional energy. The evaluation shows for small
payload and recurring web service invocations higher energy
consumption with compression because of the tail energy. For
single web service invocations with payload sizes larger than
50 KB, energy savings with compressions are substantial. The
authors show possible energy savings up to 21.5% [25].

To summarize, there are several possibilities to reduce
energy consumption during data transmission. First of all,
Wi-Fi should be used for large downloads or uploads. If
possible, areas with high signal strength should be preferred
for wireless cellular communication. Further, for delay-tolerant
synchronization applications and video streaming, appropriate
scheduling algorithms should be used. As well, data com-
pression can be used to save energy. However, for frequent
transmission of small amounts of data, application developers
should be aware of the energy waste because of high-power
states of wireless interfaces.

IV. LOCALIZATION METHODS

Within this section we analyze energy saving techniques
with regard to localization methods. Since localization by the
use of GPS is one of the most battery draining tasks on a

smartphone, we see in these optimizations a big potential for
energy conservation. Basically two approaches are feasible to
reduce the energy consumption on localization tasks. First we
have a closer look into substitution techniques that try to avoid
the use of GPS for localization. The second approach is to
optimize the usage of the GPS sensor.

A. GPS Substitution

Abdesslem et al. have introduced a sensing system named
SenseLess [24]. The concept is based on reducing the use of
sensors that have a high energy consumption and instead to in-
crease the use of energy-efficient sensors. They also highlight
the difference in energy consumption of several smartphone
sensors, e.g., the energy consumption of the acceleration
sensor is only about 15% of the GPS location sensor. They
use the accelerometer to decide if a user is moving and thus
a new location has to be sensed. During sensing the location
they switch between GPS and Wi-Fi based localization. With
their approach the authors were able to double the battery
lifetime within the selected application scenario. Thereby, the
accuracy won’t be negatively affected.

For indoor localization Shafer and Chang follow a sim-
ilar approach [12]. They use as well the accelerometer to
determine whether a user is moving or not. The location
is only determined directly after the user has stopped the
movement. Directly afterwards a Wi-Fi scan is executed and
RSSI (Received Signal Strength Indicator) fingerprints of the
available Wi-Fi networks are taken. The result is sent to
remote server that responds with the respective identifier of
the physical location. With this approach the authors were
able to reduce the power consumption by 80% compared to
other solutions with an decrease of accuracy by only 5 %.

Zhuang et al. present an adaptive location sensing frame-
work that is implemented as middleware for Android to
support location based applications [15]. They also substitute
energy intensive GPS location determination by less energy
consuming techniques, e.g., network based location sensing.
If possible the framework suppresses localization if the user
is not moving. For the detection the accelerometer is used.
Furthermore they synchronize the location request from mul-
tiple applications to reduce the sensing efforts. Additionally
they adjust the sensing parameters when the battery is getting
low. By the use of this framework the authors were able to
improve the battery life of up to 75%.

B. Localization Usage Optimization

Lee et al. focus on the energy optimization for location
based background applications [32]. The used mechanism
varies the localization rate to reduce the energy consumption
of localization efforts. Basically they introduce two algorithms
to optimize the detection of the user context and thus to
determine the localization rate. The first algorithm is named
StandStill Detection (SSD) and decides when to execute the
localization. During localization the accelerometer is switched
off and during sleep phases the localization sensor is switched
off. The accelerometer is used to detect movement within the



two sleep phases that differ in the sampling rate. The second
algorithm is based on the classification between indoor and
outdoor. By determining the average number of GPS satellites
and the maximum number of GPS satellites in parallel received
within a time window the algorithm is able to decide if the
device is indoor or outdoor. They also give recommendations
for configuration thresholds based on evaluation results.

A related application scenario is focused by Bulut and
Demirbas that present an alternative implementation for An-
droids proximity alert service [21]. The middleware uses
the distance to the point of interest and a detection of the
users transportation mode. For the transport mode they decide
between driving, walking and idle. Based on this knowledge
the localization technique (GPS, Wi-FI or GSM) and the
respective sensing interval are determined. An increasing dis-
tance to the point of interest allows an increase of the sampling
rate. Further, a slower movement mode allows an additional
increase of this value. Thus, it is possible to reduce the use of
localization sample drastically, e.g., to reduce the GPS usage
by up to 96%. With their implementation the authors were able
to increase the battery live by more than 75% in the considered
scenario.

Brouwers et al. propose an energy efficient Wi-Fi based
localization approach [13]. A list of all available access points
forms a fingerprint that allows a server to respond with the
users location. Commonly this works very well in urban
areas. In contrast to the traditional approach Brouwers et al.
suggest to scan only a subset of the full Wi-Fi spectrum.
The proposed solution stops scanning for further access points
once a sufficient subset of access points is discovered. As
further improvement a hysteresis margin approach is used to
calculate similarities to a previous scan. This allows to stop
scanning very fast in case of the user has not moved. The
proposed solution shows energy saving potentials of up to
57%, depending of the used device.

V. CODE OPTIMIZATION

This section focuses on the optimization of source code
created by the application developer. We focus our analysis
on approaches that are feasible for developers of mobile
applications using existing operation systems and platforms.
Therefore, modification of the operation system itself is out
of scope.

To identify dissipation of energy, Pathak et al. implement
and evaluate a fine-grained energy profiler called eprof. With
the use of this profiler, an approach to map the energy
consumption back to program entities is presented. The authors
analyze six popular smartphone applications and they figure
out that 65% to 75% of the energy is spent on third-party ad-
vertisement. The results also show high energy consumption in
I/O components such as 3G, Wi-Fi or GPS. Often, applications
force such I/O components to stay in high power states for a
long time. By restructuring the source code, energy savings
between 20% and 65% are possible[16].

Also Zhang et al. aim to detect dissipation of energy within
applications. Therefore, they developed a tool called ADEL

(Automatic Detector of Energy Leaks) to find energy leaks
within mobile applications. They focused on energy leaks
which are caused by unnecessary network communication.
According the authors, the sources for such a behavior are
programming errors and wrong predictions for prefetching.
Energy leaks are found in six out of 15 applications. By
eliminating them a reduction of energy consumption by 52.7%
to 62.1% is possible. The reduction is explained by avoiding
useless downloads, poor download implementation, missing
caching systems and aggressive prefetching [17].

Another source for dissipation of energy may be Wakelocks.
Wakelocks are functions to keep smartphone components in an
active state, e. g., they avoid the standby mode of the display
while watching videos. However, unreleased wakelocks lead to
unnecessary energy consumption since, for example, Wi-Fi or
GPS stay active while they are unused. To save energy, Alam
et al. analyze the optimal placement of wakelock functions
within an application. The authors propose a data flow analysis
to determine appropriate positions for the placement of acquire
and release functions in the source code. Based on their
analysis a reduction of energy consumption by 8% to 32%
is possible [19].

Like already presented in Section III, delay-tolerant appli-
cations provide potentials to save energy. Xu et al. focus on
optimizing of background email synchronization. Based on
network and flash memory measurements, the authors claim
that existing email clients handle synchronization tasks in an
energy inefficient manner. To overcome energy inefficiencies,
the authors recommend, for example, fast dormancy, decou-
pling of data transmission from data processing and reusing
existing connections. Further, small caches for incoming mails
help to process emails fast. By using these recommendations,
it is possible to reduce the energy costs for email synchro-
nization by 49,9% on existent email applications. Since other
communication applications feature similar characteristics, the
found improvements can be seen as general design principles
for energy-efficient event handling [23].

In this Section we gave an overview for improvements
for code optimization. Thereby, the results closely correspond
to the previous sections. Especially the inefficient usage of
network connections and the GPS sensor causes a lot of
unnecessary energy consumption. By improving the source
code of mobile applications, a large portion of energy could
be saved.

VI. CLOUD SERVICES AND COMPUTATION OFFLOADING

Another promising approach for energy savings is the shift
of computational tasks to remote servers. Thereby, different
approaches are used. Currently very popular is to shift the
whole computation into the cloud and just send the desktop
content as a video stream to the user. Prominent examples
are cloud gaming or Desktop-as-a-Service. On the other hand,
specific computational intensive parts of applications are of-
floaded to remote servers which could be offered by cloud
providers.



Properly the most popular frameworks for code offloading
are proposed by Cuervo et al. [33] and Kosta et al. [34]. To
automatically identify and offload certain functions of a mobile
application, Cuervo et al. propose MAUI. Thereby, applica-
tions can be benefit from energy savings and performance
improvements. Kosta et al. propose a framework to offload
computation to the cloud named ThinkAir [34]. Thereby, the
concept is based on smartphone visualization. Nevertheless,
both works do not provide an extensive evaluation of energy
improvements.

Kwon and Tilevich investigate in offloading for Android
apps by shifting energy intensive functionalities to remote
servers without partitioning the apps. Using common tech-
niques for dividing the app in different parts, which are
executed locally or on the remote side, may cause problems in
case of network outages. The authors identify energy intensive
functions and replicate them to the cloud. On runtime it is
possible to switch between local and remote execution. This
approach results in energy savings between 30% and 60%
for four out of five third-party Android apps by keeping the
original performance characteristics [11].

Hans et al. analyze the effects of cloud gaming to the
energy consumptions of smartphones. The battery life time
gains from shifting computational intensive tasks to cloud
servers. Especially, for graphics intensive games the approach
is promising. Nevertheless, the required constant video stream
may have negative effects on battery lifetime. For a full con-
trolled experimental environment, the authors developed their
own server and client applications. They compared different
game complexities and different video quality using local
execution and remote executing. Using Wi-Fi for the remote
connection, the authors find energy savings for cloud gaming
between 12% and 38% [22].

Computation offloading is a promising approach, especially
for computation intensive tasks. However, there are several
challenges to keep in mind: First, the apps may require a per-
manently available network connection. Second, regarding the
energy, there is trade-off between reducing the computational
effort and increasing the network utilization. Finally, using
remote execution, the network latency may affect the Quality
of Service of the application [35].

VII. RELATED WORK

Since smartphones entered the market of mobile devices,
there has been a lot of scientific work to identify energy
influencing factors as well as enhancement potentials for
energy saving. In this section we present an overview of related
surveys in this area.

Vallina-Rodriguez and Crowcroft [36] studied software so-
lutions to reduce the energy consumption in mobile devices,
e.g., energy aware operation systems, energy measurements
and power models. The analyzed work ranges from 1999 to
2011. In contrast to our work the authors do not explicitly
focus on improvement potentials for application developers.
Since a lot of work in this area was published the last three
years, the paper do not reflect current developments.

The technical report of Naik [37] outlines enhancement po-
tentials for energy consumption in mobile devices by reflecting
more than 200 papers. The study is structured from physical
to application layer, enriched with many details. But this work
is not targeted at the current smartphones generation and does
not aggregate the information at the high level we do.

In the most recent survey from 2012 by Kennedy et al.,
firstly the major energy consuming components in mobile
devices are identified by measurements [38]. Subsequently,
they present enhancement potentials according to the iden-
tified components. The authors explicitly focused on energy
savings within smartphone components and do not consider
specific problems of application development. Thus, they do
not take current development such as computation offloading
into account.

The presented surveys cover a wide area of measurements,
approaches and methodology for energy improvements within
mobile devices. Nevertheless, with the best of our knowledge,
there has been no survey which especially focuses on appli-
cation development.

VIII. CONCLUSION

In the work at hand we presented a selection of scientific
work, which address the topic of energy-aware development of
mobile applications. For the graphical user interface, especially
used conjointly with OLED-displays, large light colored areas
should be avoided and replaced by other colors to save
energy. In a variety of papers the energy consumption of
the network interfaces plays an outstanding role for appli-
cation development. In general, Wi-Fi should be used for
large downloads. Further, delay-tolerant applications can profit
by scheduling algorithms and data compression should be
used. Using cellular networks, especially for small frequent
communication, the so called tail energy should be taken into
account. To save energy while using localization, the GPS
sensor should be used wisely. The time when the sensor is
active should be reduced or it should be replaced by other
localization methods such as localization via Wi-Fi. Finally,
current paradigms like cloud computing can help to reduce
the energy consumption by offloading code or transferring
complete services to remote servers. Especially with the spread
of cloudlets, some interesting use cases for low-latency and
computational intensive multimedia applications occur.

To summarize, there is no sole and general way to de-
velop energy-aware mobile applications. All mentioned as-
pects should be analyzed in detail to reduce the energy con-
sumption. The approaches presented in this paper offer great
saving potentials, but require as well a thorough application
development.

ACKNOWLEDGMENT

This work has been sponsored in part by the German Federal
Ministry of Education and Research (BMBF) under grant no.
01IS12054, by E-Finance Lab e.V., Frankfurt a.M., Germany
(www.efinancelab.de), and by the German Research Founda-
tion (DFG) in the Collaborative Research Center (SFB) 1053



– MAKI. The authors are fully responsible for the content of
this paper.

REFERENCES

[1] StrategyAnalytics, “Cellphone Energy Gap is Widening,” https://www.
strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=4656,
March 2015.

[2] M. Dong and L. Zhong, “Power Modeling and Optimization for OLED
Displays,” IEEE Transactions on Mobile Computing, vol. 11, no. 9, pp.
1587–1599, 2012.

[3] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on Energy
Consumption Entities on the Smartphone Platform,” in Proceedings of
the IEEE 73rd Vehicular Technology Conference, 2011.

[4] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a
Smartphone,” in Proceedings of the USENIX Annual Technical Confer-
ence, 2010.

[5] D. Kim, W. Jung, and H. Cha, “Runtime Power Estimation of Mobile
AMOLED Displays,” in Proceedings of the Design, Automation & Test
in Europe Conference & Exhibition, 2013.

[6] R. Murmuria, J. Medsger, A. Stavrou, and J. M. Voas, “Mobile Appli-
cation and Device Power Usage Measurements,” in Proceedings of the
IEEE 6th Int. Conference on Software Security and Reliability, 2012.

[7] D. Li, A. H. Tran, and W. G. Halfond, “Making Web Applications More
Energy Efficient for OLED Smartphones,” in Proceedings of the 36th
International Conference on Software Engineering, 2014.

[8] T. K. Wee and R. K. Balan, “Adaptive Display Power Management for
OLED Displays,” in Proceedings of the 1st ACM International Workshop
on Mobile Gaming, 2012.

[9] M. Altamimi, R. Palit, K. Naik, and A. Nayak, “Energy-as-a-Service
(EaaS): On the Efficacy of Multimedia Cloud Computing to Save
Smartphone Energy,” in Proceedings of the IEEE 5th International
Conference on Cloud Computing, 2012.

[10] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A First Look at Traffic on Smartphones,” in Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement, 2010.

[11] Y.-W. Kwon and E. Tilevich, “Energy-Efficient and Fault-Tolerant
Distributed Mobile Execution,” in Proceedings of the IEEE 32nd In-
ternational Conference on Distributed Computing Systems, 2012.

[12] I. Shafer and M. L. Chang, “Movement Detection for Power-Efficient
Smartphone WLAN Localization,” in Proceedings of the 13th ACM
International Conference on Modeling, Analysis, and Simulation of
Wireless and Mobile Systems, 2010.

[13] N. Brouwers, M. Zuniga, and K. Langendoen, “Incremental Wi-Fi
Scanning for Energy-Efficient Localization,” in 2014 IEEE International
Conference on Pervasive Computing and Communications, 2014.

[14] H. Petander, “Energy-Aware Network Selection Using Traffic Estima-
tion,” in Proceedings of the 1st ACM Workshop on Mobile Internet
through Cellular Networks, 2009.

[15] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving Energy Efficiency
of Location Sensing on Smartphones,” in Proceedings of the 8th In-
ternational Conference on Mobile Systems, Applications, and Services,
2010.

[16] A. Pathak, Y. C. Hu, and M. Zhang, “Fine Grained Energy Accounting
on Smartphones with Eprof,” in Proceedings of the 7th ACM European
Conference on Computer Systems, 2012.

[17] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and L. Yang,
“ADEL: An Automatic Detector of Energy Leaks for Smartphone
Applications,” in Proceedings of the 8th IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis,
2012.

[18] S. Taleb, M. Dia, J. Farhat, Z. Dawy, and H. Hajj, “On the Design
of Energy-Aware 3G/WiFi Heterogeneous Networks Under Realistic
Conditions,” in Proceedings of the 27th International Conference on
Advanced Information Networking and Applications Workshops, 2013.

[19] F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan, “Energy
Optimization in Android Applications through Wakelock Placement,”
in Design, Automation and Test in Europe Conference and Exhibition.
IEEE, 2014.

[20] N. Gautam, H. Petander, and J. Noel, “A Comparison of the Cost and
Energy Efficiency of Prefetching and Streaming of Mobile Video,” in
Proceedings of the 5th Workshop on Mobile Video, 2013.

[21] M. F. Bulut and M. Demirbas, “Energy Efficient Proximity Alert on
Android,” in Proceedings of the IEEE International Conference on
Pervasive Computing and Communications Workshops, 2013.

[22] R. Hans, U. Lampe, D. Burgstahler, M. Hellwig, and R. Steinmetz,
“Where Did My Battery Go? Quantifying the Energy Consumption
of Cloud Gaming,” in IEEE 3rd International Conference on Mobile
Services, 2014.

[23] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang, and Q. Li,
“Optimizing Background Email Sync on Smartphones,” in Proceedings
of the 11th Annual International Conference on Mobile Systems, Appli-
cations, and Services, 2013.

[24] F. B. Abdesslem, A. Phillips, and T. Henderson, “Less is More: Energy-
Efficient Mobile Sensing with SenseLess,” in Proceedings of the 1st
ACM Workshop on Networking, Systems, and Applications for Mobile
Handhelds, 2009.

[25] R. Hans, M. Zahn, U. Lampe, R. Steinmetz, and A. Papageorgiou,
“Energy-efficient Web Service Invocation on Mobile Devices: The
Influence of Compression and Parsing,” in Proceedings of the 2nd
International Conference on Mobile Services, 2013.

[26] J. K. Nurminen, “Parallel Connections and Their Effect on the Battery
Consumption of a Mobile Phone,” in Proceedings of the 7th IEEE
Conference on Consumer Communications and Networking Conference,
2010.

[27] A. Rahmati and L. Zhong, “Context-for-Wireless: Context-Sensitive
Energy-Efficient Wireless Data Transfer,” in Proceedings of the 5th
International Conference on Mobile systems, Applications and Services,
2007.

[28] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “En-
ergy Consumption in Mobile Phones: A Measurement Study and Im-
plications for Network Applications,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement Conference, 2009.

[29] A. Schulman, V. Navda, R. Ramjee, N. Spring, P. Deshpande,
C. Grunewald, K. Jain, and V. N. Padmanabhan, “Bartendr: A Practical
Approach to Energy-aware Cellular Data Scheduling,” in Proceedings
of the 16th Annual International Conference on Mobile Computing and
Networking, 2010.

[30] D. Burgstahler, U. Lampe, N. Richerzhagen, and R. Steinmetz, “Push
vs. Pull: An Energy Perspective,” in Proceedings of the 6th IEEE Inter-
national Conference on Service Oriented Computing And Applications,
2013.

[31] D. Burgstahler, N. Richerzhagen, F. Englert, R. Hans, and R. Steinmetz,
“Switching Push and Pull: An Energy Efficient Notification Approach,”
in Proceedings of the 3rd IEEE International Conference on Mobile
Services, 2014.

[32] C. Lee, G. Yoon, and D. Han, “A Context-based Energy Optimization
Algorithm for Periodic Localization in Smartphones,” in Proceedings
of the 1st ACM SIGSPATIAL International Workshop on Mobile Geo-
graphic Information Systems, 2012.

[33] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making Smartphones Last Longer
with Code Offload,” in Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, 2010.

[34] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of the 31st Annual IEEE
International Conference on Computer Communications, 2012.

[35] U. Lampe, Q. Wu, R. Hans, A. Miede, and R. Steinmetz, “To Frag
Or To Be Fragged - An Empirical Assessment of Latency in Cloud
Gaming,” in Proceedings of the 4th International Conference on Cloud
Computing and Services Science, 2013.

[36] N. Vallina-Rodriguez and J. Crowcroft, “Energy Management Tech-
niques in Modern Mobile Handsets,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 1, pp. 179–198, 2013.

[37] K. Naik, “A Survey of Software Based Energy Saving Methodologies for
Handheld Wireless Communication Devices,” Dept. of ECE, University
of Waterloo, Tech. Rep. No. 2010-13, 2010.

[38] M. Kennedy, A. Ksentini, Y. Hadjadj-Aoul, and G.-M. Muntean, “Adap-
tive Energy Optimization in Multimedia-Centric Wireless Devices: A
Survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp.
768–786, 2013.




