
Rhaban Hark, Divyashri Bhat, Michael Zink, Ralf Steinmetz, Amr Rizk. Preprocessing Monitoring Information on the SDN Data-Plane
using P4 In: Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), p: 1–6,

IEEE, November 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial

basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood

that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission

of the copyright holder.

Preprocessing Monitoring Information

on the SDN Data-Plane using P4

Rhaban Hark∗, Divyashri Bhat†, Michael Zink†, Ralf Steinmetz∗, Amr Rizk∗‡

∗ Multimedia Communications Engineering Lab, Technische Universität Darmstadt, Germany
† Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, USA

‡ Institut für Mess-, Regel- und Mikrotechnik, Universität Ulm, Germany

Abstract—Network management applications such as routing,
load-balancing, or traffic forecasting, require up-to-date state
information about the underlying data-plane. However, it is
well known that data-plane measurements contain redundant
information. In this work, we propose an approach that esti-
mates how informative data-plane measurements are for control-
plane applications that operate on such information. Using
programmable data-planes, we present a novel approach on how
the decision on forwarding data-plane measurements can be
taken at network switches, and how this aids in filtering irrelevant
monitoring information to save the controller’s computational
and networking resources.

I. INTRODUCTION

Monitoring the state of a communication network consti-

tutes one of the major tasks of network management. It sets the

basis for continuous adaptations that are inevitable in today’s

dynamic networks. In the context of Software-Defined Net-

working (SDN), a logically centralized controller takes care of

continuously fetching statistics from the data-plane elements.

Accordingly, the controller provides the measured information

in a raw or aggregated form to control-plane (network man-

agement) applications through its northbound interface.

Due to the potentially large number of network elements

and the diversity of useful network state information, the

number of statistics that may be periodically requested is

very large. Processing a large number of statistics can create

massive loads on controllers [7], [8], leading to intuitive

approaches such as scaling out the control-plane [9], [12].

However, adding more resources is costly and it essentially

does not solve the inherent problem. A different approach is

letting network monitors collect statistics using sampling or

aggregation. Sampling allows to take representative snapshots

into account and infer the full state from the available sub-

information [5]. Aggregation may provide the full state of

a network, but loses detailed information [13]. We claim

that even when using sampling-based or aggregated statistic

collection, existing approaches often lack efficiency by intro-

ducing unnecessary measurement overhead. Newly collected

data does not always provide additional knowledge to network

management applications or analysis functions. Therefore, in

this work, we propose to preprocess requested statistics on

the data-plane to ensure its importance/informativeness to

the application (residing north of the SDN controller) before

delivery. In information theory, we find a similar approach

where estimates of the age of information allow avoiding the

transmission of stale information [4].

Recently, the authors proposed a middlebox for SDNs

denoted SRR [6] to filter out redundant network monitoring

statistics. Filtering was conducted based on the relation of

the newly measured statistic to some predefined threshold

or to the previously delivered statistic (measurement point).

However, in contrast to relying on predefined thresholds for

individual applications, we propose a new approach that has

the goal to ensure that the newly measured statistic is only

delivered to the analysis application if it significantly impacts

the quality of the analysis. We do so by using an estimation

technique to learn how much a measurement improves the

quality of the running network management application. Note

that this estimation process is application specific, i.e., the

process gets more involved when the monitoring information is

relayed to different network management applications carrying

out different tasks such as anomaly detection, load balancing,

and traffic prediction. Based on the learned training set, our

preprocessing step executed on the data-plane estimates the

improvement for each requested statistic and transmits only

data which represent a significant improvement.

With respect to efficiency, we aim to preprocess measure-

ments at the earliest stage possible, thus, we tap into switches

before they dispatch requested statistics updates where we

rely on existing state-of-the-art tools. As programmable data-

planes gained popularity in the recent years, programmable P4

switches [2] provide a suitable starting point for our approach.

We implement the preprocessing using only mechanisms pro-

vided in the P4 language that can be applied to any P4 switch.

Several approaches that use preprocessing to optimize the

data-plane to control-plane information stream have been

published in the past. In the field of distributed control planes

KANDOO [7] proposes to implement the control-plane in

hierarchical layers, so that lower layers process information

that is not relevant for higher layer controllers. Such an

architecture can be used to preprocess monitoring information

before delivering it to some top-level controller. The approach

named SUMA in [3], introduces a middlebox between the

data-plane and control-plane to preprocess raw statistical

information to provide filtered, aggregated, classified, and

prioritized information. In contrast to both approaches, we

target to preprocess monitoring information at the earliest

stage possible, thus, within the data-plane. A more related

Rhaban Hark, Divyashri Bhat, Michael Zink, Ralf Steinmetz, Amr Rizk. Preprocessing Monitoring Information on the SDN Data-Plane
using P4 In: Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), p: 1–6,

IEEE, November 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial

basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood

that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission

of the copyright holder.

approach was presented by Popescu et al. [10] to involve

programmable data-plane elements, however, to detect heavy

hitters using P4 to offload the control-plane.

The remainder of the paper is structured as follows: Sec-

tion II describes the architecture of our approach before

showing the detailed design of the filtering mechanism that ex-

plicitly considers the network management application. Limi-

tations of the approach are discussed in the end of that section.

In Section III, we describe and evaluate our prototypical

implementation before concluding the paper in Section IV.

II. ARCHITECTURE AND FILTER DESIGN

In the following, first, we briefly describe how we integrate

our approach in existing networks before illustrating the de-

signed filtering mechanism, and, finally, discussing limitations

the system might face.

A. Architecture Overview

In this work we refrain from using additional network

elements as proposed by the discussed related works. Conse-

quently, we target to preprocess measurement information on

the data-plane elements, so that we can filter out measurements

with limited gain for the application as early as possible.

Figure 1 shows a schematic of the architecture: The upper part

of the figure shows the controller that is connected to the data-

plane elements, namely the switches. On the control-plane,

an Auto Regressive Integrated Moving Average (ARIMA) [11]

bandwidth forecast application serves as exemplary application

consuming bandwidth measurements from the switches via the

controller. The Learner uses the input measurements and the

forecast output to learn how certain measurements influence

the quality of the forecast. This knowledge is transferred

later as a set of parameters to the switch, which does a a-

priori estimation of the quality improvement before a mea-

surement is transferred to the control-plane. Consequently,

it forwards only measurements which presumably improve

the forecast’s quality significantly. As a result, measurement

with a small information gain do not generate transmission

costs and controller disturbance.

B. Filter Design

In the following, we will continue to consider the forecast-

ing application. However, note that the described procedures

are easily mapped to different network management applica-

tions such as anomaly detection or load balancing. We consider

that the quality of the bandwidth forecast application depends

directly on the dynamics of the forecast value. Intuitively, if the

bandwidth is rather stable, the quality of the forecast does not

improve significantly when a new measurement is provided,

however, if the bandwidth is volatile, the forecast will be closer

to the true future bandwidths if the newest measurements are

available. We use linear regression to learn the impact of

measurements on the improvement of the forecast. For this

particular application simply filtering measurements that are

close to previous measurements is a viable alternative, yet,

Parameters

Learner

Forecast

Application
SDN

Controller

P4 Switch

Fig. 1: Architecture of the preprocessing: A linear regression

learns its parameters from historic values of a forecast and

pushes them to the data-plane elements where they are used to

estimate the importance of measurements and filter irrelevant

measurements.

with an eye on generality, the regression is a flexible solution

also applicable in other use cases.

A linear regression is a method to estimate a dependent

variable î (here, improvement of the forecast) from multiple

independent variables f = [f0 . . . fn] (features, here, dynam-

ics of the bandwidth). To do so, it seeks the parameter vector

θ = [θ0 θ1 . . . θn]
T (output of the learner), denoted bias

term (θ0) and features weights (θ1 . . . θn), by minimizing the

mean square error of Equation (1) for a given training set

including sample features and corresponding improvements

(input to the learner).

î = θT · f = θ0 f0
︸︷︷︸

=1

+θ1f1 + · · ·+ θnfn (1)

After the learner generates θ, it can be used to estimate the

improvement î using given features f also using Equation (1).

a) Finding suitable features:

Before showing our feature selection, we have to define

the value we target to influence, namely the improvement

of the forecast:

i = | |bwtrue − bwfcn−1
|

︸ ︷︷ ︸

error filtered

− |bwtrue − bwfcn |
︸ ︷︷ ︸

error normal

| · 1Bps−1 (2)

The latter part ”error normal“ of Equation (2) includes

the difference between the true bandwidth and the latest

forecast (bwfcn). The first part ”error filtered“ shows the

difference between the true bandwidth and the previous fore-

cast (bwfcn−1
), i.e., the forecast without taking the latest

measurement into account. If the error of the forecast given

the newest measurement is much smaller than the error of the

forecast without the newest measurement, the improvement is

significant. Note that there is only little improvement by taking

the new measurement value if both errors are equal. The case

that there is a negative improvement, thus, the old forecast

was better than the current is possible. By always calculating

the absolute improvement we take the conservative approach

that forwards measurements also if their actual improvement

Rhaban Hark, Divyashri Bhat, Michael Zink, Ralf Steinmetz, Amr Rizk. Preprocessing Monitoring Information on the SDN Data-Plane
using P4 In: Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), p: 1–6,

IEEE, November 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial

basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood

that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission

of the copyright holder.

Fig. 2: Selected features to represent the dynamics of the band-

width (x-axis) that linearly influence the application quality

improvement (y-axis). Features describe differences between

the new measurement and the mean of the previous as well

as the sum of differences to the last four, two, and last

measurement, respectively.

is unclear. Dividing the equation by 1Bps removes the unit

as it is not meaningful for the improvement.

Next, we mainly concentrate on the differences between

the latest bandwidth measurements to represent the dynamics

of the bandwidth. Out of a pool of 12 potential features, we

selected the following four features with the highest correlation

factor with the improvement in preliminary tests (cf. Figure 2):

(i) the difference of the latest bandwidth to the mean of the

previous four samples; (ii) the sum of differences between the

latest bandwidth and each of the previous four bandwidths;

(iii) the sum of differences between the latest bandwidth and

each of the previous two bandwidths; and (iv) the difference

between the latest bandwidth and the previous bandwidth.

Although these features partially depend on each other, each

provides additional valuable information for the improvement

estimation. Figure 2 shows the linear dependency between

each of the features and the applications quality improvement.

For each feature on the x-axis it is observable that the higher

the difference to previous values is – what we consider

dynamic – the higher is the absolute improvement.

b) Training phase and parameter injection:

In order to find the feature weights θ, the learner must be

fed with a training set. To collect this set, whenever a new

bandwidth measurement from a switch arrives at a controller,

the controller pushes the value to the forecast application,

which then calculates the next forecast. Furthermore, the

value is used to check the quality of the previous forecast

in terms of improvement i (cf. Equation (2)) against the

forecast prior to that. Furthermore, based on the measured

bandwidth, the controller generates all four features f . The

features f in combination with the improvement i serve as

input to the learner (training set).

After the training phase, the controller calculates the feature

weights as described earlier by minimizing the mean square

error for Equation (1) using the available data. In order

to estimate the forecast improvement for a new measure-

ment, Equation (1) with the newly available feature weights

θ0 . . . θn must be calculated. As we decide to do this in the

data-plane, the controller sends the weights to the switch.

Switches in SDN environments traditionally follow a

match/action paradigm with a fixed set of parameterizable

actions. As we require a custom functionality in the switch,

this traditional match/action approach is not suitable. There-

fore, we decided to take advantage of newly proposed pro-

grammable P4 switches [2] that allow us to program their

behavior and processing pipeline. Note that we are able to

save simple state information in the switches using registers,

which we use to store the feature weights, the bias term, and

a threshold. The controller sends the weights to the switch

using a custom protocol that can be understood by the P4

program installed on the switch. The switch reads the weights

and saves them in allocated registers. In addition to the feature

weights, we store a threshold value that marks the significance

of the calculated improvement estimation. If the improvement

is estimated to be significant, the switch dispatches the mea-

surement otherwise it is dropped. Note also that storing the

threshold as register value allows it to be configurable.

c) Filtering phase:

After the controller injects the feature weights into the switch,

it also activates the preprocessing, e.g., by modifying the

performed action on a bandwidth statistic request. During the

filtering phase, the switch first calculates the required features

whenever a bandwidth statistic request reaches the switch. For

this, it stores the last four historic bandwidth measurements

as they are required to estimate the bandwidth dynamics

represented with the features. Each feature is multiplied with

the corresponding feature weight and added to the bias term

as described in the beginning of Section II-B. The result of the

linear regression is the estimated forecast improvement when

including the latest measurement. The estimated improvement

is compared to the configured threshold to decide whether

to push the bandwidth measurement as a response to the

request from the controller or to skip it and wait for the next

request. If the mechanism decides that the measurement does

not significantly improve the forecast, the controller assumes

that the previous bandwidth forecast is still valid.

d) Linear regression in the data-plane using P4:

Next we describe how we implement the linear regression

as a P4 program. P4 supports a very limited number of

operations excluding basic operations such as multiplica-

tions and division.1

First, as our method requires preprocessing in the data-plane

we cannot fetch statistics through the control channel of the

switch as done traditionally with protocols such as OpenFlow

and P4Runtime. As Figure 3 shows, messages coming through

the control channel of the switch (shown as green arrow) are

handled using the switches vendor-implemented fixed logic.

Changing that behavior would lead to the development of a

new switch with custom control logic, which we explicitly

excluded. Our goal is to provide a method that is usable

with all P4 switches using only out-of-the-box functionality

provided by P4. Using P4, we can program the behavior of

the switch for packets arriving through the data/forwarding

channel. Therefore, we use a dedicated channel that connects

the controller to a reserved data-plane port of the switch

1Note that version p4 16 supports multiplications, however, existing hard-
ware switches running p4 16 only support multiplications with integers being
the power of two, which is not usable in our context - we did not consider
custom functionality of single switches implemented as P4 extern objects.

Rhaban Hark, Divyashri Bhat, Michael Zink, Ralf Steinmetz, Amr Rizk. Preprocessing Monitoring Information on the SDN Data-Plane
using P4 In: Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), p: 1–6,

IEEE, November 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial

basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood

that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission

of the copyright holder.

Vendor-implemented
Fixed Behavior

User
Programmable

Control-Plane

Forwarding

Control

pre.p4

#include <core.p4>

#include <v1model.p4>

preprocess.p4

Fig. 3: Abstract switch architecture divided in control and

forwarding layer. The control layer serves as interface to

the control-plane and maintains that communication. The for-

warding layer behaves according to the installed P4 program

whenever packets arrive.

(shown in red). Packets arriving at that port are handled using

the user programmable processing pipeline injected as a P4

program. Using the programmable logic to request statistics

allows us (i) to directly send the bandwidth data instead of

plain counters or registers and (ii) add preprocessing steps

such as calculating a linear equation and filtering.

The processing pipeline and, thus, the behavior of the switch

is programmed and injected in the switch during its startup.

In the first phase, where no preprocessing is performed, the

switch calls an action for incoming bandwidth requests that

fetches the current counter for the inquired link as well as

the previous. The switch sends the subtraction of the values

plus timestamps for both values representing the bandwidth

measurement. Note that the switch does not calculate the final

bandwidth as it does not support divisions which we discuss

in the limitations in Section II-C.

After the learning phase, the controller injects the feature

weight parameters in the switch using our custom protocol.

The switch stores the parameters in registers that can then

be easily accessed. Now, the controller also configures the

decision threshold to be reached by the estimated application

improvement. The controller also changes the called action for

new bandwidth requests so that preprocessing is activated.

With active preprocessing, the action called on a bandwidth

request includes the following steps:

1) The action begins with reading of the current counter

and historic counter values to calculate the bandwidths.

2) It shifts the historic counter registers so that it removes

the oldest and stores the latest bandwidths.

3) The switch subtracts the counter values to estimate the

latest and historic bandwidths.

4) Additionally, it reads the bias term and all feature

weights from the registers.

5) In step 5, the switch calculates the features representing

the bandwidth dynamics given in Paragraph (a) based

on the previously fetched historic bandwidths.

6) With the bias term, feature weights, and the features, it

calculates the linear regression using Equation (1). We

provide details on this step in the following.

75 80 85 90 95 100
Time [s]

0

1000

2000

Im
pr

ov
em

en
t [

10
E3

]

Improvement
Prediction Shift-Add
Prediction

Fig. 4: The prediction using the target specific P4 (v16)

multiplication is shown in the dashed dot-dashed green line.

Estimates of the improvement are shown as solid blue. The

prediction using only shift-and-add operations, that is shown

as orange line, has comparable accuracy to the P4 (v16) case.

7) The result of the formula calculated in the previous step

is the estimated forecast improvement for the current

measurement. In this step, the action compares this

improvement with the decision threshold configured by

the controller. If the improvement is large enough, it

forwards the measurement to the controller normally by

pushing it to the port where the bandwidth requested

originated from, otherwise, the action is finished.

In Step 6, the switch calculates Equation (1). As the

support for multiplications is strongly target dependent in

P4, we retain generality of the approach by using shift-

and-add operations to map multiplications [1]. As known

from processor implementations, shifting one bit left is a

multiplication with two, shifting by 10 a multiplication with

210 = 1024. We use this method for each multiplication of a

feature with its weight. Note however, that this method is only

usable for integer multiplications. On the one hand, bandwidth

values based on counters are solely integers, however, on the

other hand, the bias term and feature weights are potentially

decimals. A solution to this problem is to multiply the weight

decimals by a factor and cut the tail. As a result, the estimated

improvement is accordingly shifted. By shifting the decision

threshold as well, the condition is still valid. In the following,

we also investigate to what extent the estimation of the

improvement becomes inaccurate. In Figure 4 we see that

the estimated improvement using only integers and shift-and-

add multiplication instead of real multiplications have only

minor influence on the accuracy: The dot-dashed green line

predicts the true improvement shown in solid, blue. The dashed

orange line, showing the improvement estimation using solely

the rough shift-and-add multiplications, follows the normal

prediction closely. Note that this figure does not represent the

overall accuracy of the prediction but only the similarity of

both prediction approaches. Also note that we use a factor of

10 for the results in the figure so that larger factors provide

even more accurate results. In the remainder of this work we

use a multiplication factor of 1000. We did not experience a

significant change in CPU utilization of the used P4 software

switch using the built-in multiplication and the shift-and-

add method: Using shift-and-add reduced the mean and CI95

Rhaban Hark, Divyashri Bhat, Michael Zink, Ralf Steinmetz, Amr Rizk. Preprocessing Monitoring Information on the SDN Data-Plane
using P4 In: Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), p: 1–6,

IEEE, November 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial

basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood

that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission

of the copyright holder.

utilization by 0.5% and 0.49%, respectively.

C. Limitations

The design we introduced in this section, faces some

limitations. First of all, switches are designed to process

packets at line-rate. Therefore, preprocessing on switches must

be used with caution. The complexity of the features di-

rectly influences the processing complexity within the switch.

Furthermore, when requesting a multitude of statistics, the

computational resource usage similarly arises. In auxiliary

investigations we did not find any impact on the switch

performance (in terms of CPU utilization using a software

switch) due to the negligible number of statistic requests

compared to production traffic packets.

In addition, the proposed solution is vulnerable against

slow, but constantly changing bandwidths as the number

of considered previous measurements is limited. Potential

approaches include the reflection of skipped measurements in

the feature set or a fixed minimum update interval.

Note that the direct use of bandwidth data consumes two

(byte-)counters per link. Furthermore, for every historic value

we use in the features, we need one more counter. In addition

to this, for every counter we enable preprocessing for, we

need to store the bias term, feature weights and the decision

threshold. P4 allows simple management of counters and

registers, respectively, however, the memory consumption for

preprocessing increases from two to eleven 64-bit counters

per link (with four features).

As already described in the previous subsection, we do

not calculate the bandwidth, but instead send the difference

of counters plus the time difference. In our configuration we

fetch counters every second, thus, we roughly handle Byte/s

ignoring time differences due to jitter and changing processing

time. Constantly fetching statistics faster or slower does not

affect the solution, however, it is worth noting. Nevertheless,

the design is currently not able to handle changing statistic

fetching frequencies.

III. PROTOTYPE AND EVALUATION

In this section, we first describe the prototypical imple-

mentation of our preprocessing in P4. Furthermore, we de-

scribe the implementation and test environment and some

evaluation results.

A. Prototypical implementation & test environment

The prototypical implementation consists of a P4 switch, the

controller, and the forecast application. The controller in this

case fills the switch with some routing rules for testing. It is

based on Python and uses P4Runtime for the communication

with switches. For the sake of simplicity, we implement the

forecast application as a simple Python application within a

monitoring host. Note that the application could also be placed

within the controller. The monitoring host communicates with

the switches through the data-plane interface as described

in Section II-B using our custom protocol. The monitoring

application calculates an ARIMA-based bandwidth forecast

that uses R’s forecast library2 and rpy2 as adapter between

Python and R. The core of the prototype is the P4 switch

which provides generic L2 routing using routes injected from

the controller. For each routing rule the switch maintains a

cumulative byte counter that we use for our purposes. Despite

that generic functionality, we add actions that are called when-

ever the ingress pipeline finds a valid packet with our custom

protocol. Depending on a type-field in our protocol it either

(i) simply forwards the bandwidth measurement value, (ii) sets

the regression parameters and enables the filter, or (iii) it

preprocesses the bandwidth measurement before answering

the request. The test environment contains a single switch

connecting two communicating hosts and the monitoring host

within a mininet virtual network. The controller is a Python

process on the physical hosting machine. We repeatedly gener-

ate traffic using iperf following a simple randomized pattern:

UDP input flows have lengths that are uniformly distributed

between 0 and 40 seconds and an input rate chosen uniformly

at random between 0 and 40 MBps.

B. Evaluation results

Figure 5 shows the accuracy of the forecast with and without

our preprocessing as well as the cost reduction achieved

with early preprocessing. The two upper plots, Figures 5a

and 5b, show the comparison between ground truth, i.e., the

bandwidth measured at the monitor, its forecast, which was

generated in the previous time step, and the forecast with

active preprocessing - thus, filtering out measurements with

small impact on the accuracy. The left figure (5a) shows that

the forecast and the filtered forecast follow almost the same

pattern that closely follows the ground truth. In this figure,

we use a threshold for the forecast accuracy improvement to

control the measurement filtering, which is set to a comparably

small value of 25k. In contrast to this, we see in Figure 5b,

that there is a difference between the forecast and the forecast

using filtered information when this threshold is set to 500k.

Now measurements with small improvements are not delivered

and, thus, the accuracy slightly suffers.

Figure 5c shows boxplots for the observed forecast error.

The figure shows the gradual impact of the forecast threshold

on the accuracy. In contrast, in Figure 5d we observe that the

measurement costs in terms of the number of forecast update

messages drop significantly using the filtering. In this case one

may conjecture a linear scaling of the improvement on the

long term, however, on smaller time scales - as the depicted

ones - the improvement closely resembles the variations in

the input traffic bandwidth. Together, Figure 5c and Figure 5d

show that a significant reduction of the monitoring overhead

can be obtained through a small sacrifice in accuracy when

preprocessing measurements on the data plane. We observe

that preprocessing statistic requests lets us successfully predict

to which extent a measurement is of importance for the

forecast application already at the switch level.

2https://cran.r-project.org/web/packages/forecast, accessed 01 Feb 2019.

Rhaban Hark, Divyashri Bhat, Michael Zink, Ralf Steinmetz, Amr Rizk. Preprocessing Monitoring Information on the SDN Data-Plane
using P4 In: Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), p: 1–6,

IEEE, November 2019.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial

basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood

that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission

of the copyright holder.

20 40 60 80 100 120 140 160
Time [s]

0.0

2.0

4.0

6.0
Ba

nd
wi

dt
h

[M
Bp

s]

Bandwidth
Forecast
Filtered Forecast

(a) Forecast with and without filtering compared to the measured
bandwidth when filtering measurements with an estimated improve-
ment below 25k.

20 40 60 80 100 120 140 160
Time [s]

0.0

2.0

4.0

6.0

Ba
nd

wi
dt

h
[M

Bp
s] Bandwidth

Forecast
Filtered Forecast

(b) Forecast with and without filtering compared to the measured
bandwidth when measurements are filtering with an estimated im-
provement below 500k.

Unfiltered 25 50 100 200 400 800
Filter Threshold [10^3]

0.0

2.0

4.0

6.0

Er
ro

r [
M

Bp
s]

(c) Number of transmitted measurements and, thus, number of fore-
cast recalculations with and without filtering.

0 50 100 150 200 250 300 350
Time [s]

0

100

200

300

Fo
re

ca
st

 U
pd

at
es

Unfiltered
25k
50k
100k
200k
400k
800k

(d) Number of transmitted measurements and, thus, number of
forecast recalculations with and without filtering.

Fig. 5: Performance evaluation: Subfigures 5a (Threshold 25k) and 5b (Threshold 500k) compare the accuracy of the forecast

with and without filtering (preprocessing). Figure 5c shows the error with different threshold values, while Figure 5d show the

corresponding costs. It is observable that the costs can be decreased much earlier than the accuracy suffers.

IV. CONCLUSION

In this work, we show how the information stream between

the data- and control-plane can be tailored to the applications’

requirements. We consider the example of a network manage-

ment application that computes a bandwidth forecast for cer-

tain links and estimate the importance of a measurement with

respect to the quality of the forecast. We use this measurement

importance metric to only forward the informative measure-

ments that will significantly impact the forecast outcome. To

filter information as early as possible, we show how to use

recently proposed programmable data-planes based on P4 to

implement a regression on switches that essentially decides on

the importance of a measurement. Finally, we show how we

can preprocess information efficiently on the data-plane such

that we retain sufficient accuracy while significantly reducing

the monitoring costs given in terms of forecast updates.

In future work, we will investigate if and how more

sophisticated learning algorithms that map the filtering of

measurement information to network management application

accuracy can also be implemented in the data-plane using P4.

ACKNOWLEDGMENT

This work has been funded by the German Research Foun-

dation (DFG) within the Collaborative Research Center (CRC)

1053 - MAKI as part of subprojects B1, B4 and supported

in parts by the project SPINE.

REFERENCES

[1] Z. F. Baruch, Structure of Computer Systems. U.T. Pres, 2002.
[2] P. Bosshart, D. Daly, G. Gibb et al., “P4: Programming Protocol-

independent Packet Processors,” SIGCOMM CCR, vol. 44, no. 3, pp.
87–95, 2014.

[3] T. Choi, S. Song, H. Park et al., “SUMA: Software-defined Unified
Monitoring Agent for SDN,” in Proc. of IEEE NOMS, 2014, pp. 1–5.

[4] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” Transactions on

Information Theory, vol. 62, no. 4, pp. 1897–1910, 2016.
[5] N. Duffield, C. Lund, and M. Thorup, “Estimating Flow Distributions

from Sampled Flow Statistics,” IEEE/ACM Transactions on Networking,
vol. 13, no. 5, pp. 933–946, 2005.

[6] R. Hark, N. Aerts, D. Hock et al., “Reducing the Monitoring Footprint
on Controllers in Software-Defined Networks,” IEEE TNSM, vol. 15,
no. 4, pp. 1264–1276, 2018.

[7] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in Proc. of ACM

SIGCOMM Workshop HotSDN, 2012, pp. 19–24.
[8] A. Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson,

“Pratyaastha: An Efficient Elastic Distributed SDN Control Plane,” in
Proc. of ACM SIGCOMM Workshop HotSDN, 2014, pp. 133–138.

[9] D. Levin, A. Wundsam, B. Heller et al., “Logically Centralized?: State
Distribution Trade-offs in Software Defined Networks,” in Proc. of ACM

SIGCOMM Workshop HotSDN, 2012, pp. 1–6.
[10] D. A. Popescu, G. Antichi, and A. W. Moore, “Enabling Fast Hierarchi-

cal Heavy Hitter Detection Using Programmable Data Planes,” in Proc.

of SOSR, 2017, pp. 191–192.
[11] J. L. M. Saboia, “Autoregressive Integrated Moving Average (ARIMA)

Models for Birth Forecasting,” Journal of the American Statistical

Association, vol. 72, no. 358, pp. 264–270, 1977.
[12] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control

Plane for OpenFlow,” in Proc. of USENIX INM/WREN, 2010, pp. 1–6.
[13] Y. Zhang, “An Adaptive Flow Counting Method for Anomaly Detection

in SDN,” in Proc. of ACM CoNEXT, 2013, pp. 25–30.

	Introduction
	Architecture and Filter Design
	Architecture Overview
	Filter Design
	Limitations

	Prototype and evaluation
	Prototypical implementation & test environment
	Evaluation results

	Conclusion
	References

