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Abstract—Network state monitoring is a fundamental task for
network management. However, determining the full network
state in Software defined Networks requires disproportionately
too many resources. This stems from the discrepancy between the
established methods used for state monitoring compared to the
varying contribution in terms of information obtained from every
additionally monitored network node. This relationship may
even become more complicated depending on the network state
information of interest. One solution to overcome bottlenecks
by reducing the overall monitoring footprint is the use of spatial
sampling, which allows the estimation of the network state based
a fraction of the overall state.

In this work, we propose schemes to place a small number
of measurement points in the SDN network to maximize the
obtained network state information. Considering different condi-
tions, we utilize routing information and graph theoretic central-
ity metrics, respectively, to estimate the amount of information
a node provides. Based on this knowledge, we, furthermore,
develop a mechanism to place multiple measurement points while
avoiding redundant measurements. For demonstration purpose,
we use the developed mechanisms to estimate the Flow Size
Distribution in SDN environments. An emulative evaluation
taking several known topologies shows the effectiveness of spatial
sampling using the proposed scheme.

I. INTRODUCTION

In the last decade the Software-defined Networking (SDN)
paradigm became very popular in industry as well was in
academia. This is, among others, justified by its major advan-
tage of broad support for highly flexible and dynamic network
management resulting from logical control centralization [19].
The basis for flexible network configuration is the continuous
observation of the underlying forwarding network. To observe
the network status SDN eases monitoring providing new
techniques, such as practical flow-level packet/byte/lifetime
counter [17]. However, as most management applications
heavily rely on monitoring information, they require a tremen-
dous number of various measurements. Depending on the
required accuracy, timeliness, and completeness, monitoring
constitutes one of the major resource consumption aspects on
the control-, but also the data-plane of SDNs [5].

Several works propose sophisticated approaches to opti-
mize the statistic collection process in order to overcome
this scalability issue using, e.g., adaptive granularity in
time and space [4], [28], eliminating redundant measure-
ments [11], adaptively selecting the best-suitable measurement
technique [10], and further. In contrast, in this work, we
propose to reduce monitoring costs using only a small set

of measurement points instead of optimizing the collection
process. Through spatial sampling, we measure the desired
information only at a subset of data-plane elements to infer
the entire network state. The superficial notion to achieve good
estimations is our assumption that many paths go through
central nodes, thus, that central nodes carry information with
the most entropy and are representative of the overall traffic.

We investigate the selection of the most central node under
different assumptions: (i) Either the operator knows which
flows traverse the network and their paths, which means that
the most central node is the one seeing most flows, or (ii) the
operator has no information on the flows in the network and
presumes the importance only based on the physical topology.
The former case dynamically adapts to the current node load
and calculates the centrality based on active flows. For the
latter case, we rely on metrics from the graph theory to
estimate different types of centrality only based on the rather
rigid structure of the network.

Furthermore, despite using a single measurement point,
we propose methods to allow multiple measurement points
if more resources are available. For this, we require more
elaborated centrality metrics supporting an intelligent selection
of multiple nodes. Additionally, considering multiple nodes,
we must convolve the monitoring information of all nodes
into a single estimation.

In this work, we investigate the aforementioned approach
in particular for the estimation of the Flow Size Distribution
(FSD), which is an important monitoring metric [15] providing
a good use case.

The remainder of the paper is structured as follows: The next
section describes flows and the FSD, as multiple definitions
exist in the literature. In Section III, we introduce our selection
strategies for (A) the case with knowledge on flow informa-
tion and (B) assuming absence of flow information. Subse-
quently, Section IV describes how we propose to perform
the FSD measurement once monitoring locations are selected.
In Section V, we provide an excessive evaluation where we
investigate the achieved accuracy versus cost reduction. Before
Section VII concludes the paper, Section VI outlines relevant
related works.

II. FLOWS AND THE FLOW SIZE DISTRIBUTION

In this section, we clarify assumptions on our understanding
of the flow term. Furthermore, the section describes rele-
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vant background on the Flow Size Distribution metric and
exemplary uses.

A. Flow Model

As there is no broadly uniformed clear definition of flows,
we give the definition we use in the scope of this work. Here,
a flow is defined as a stream of packets that are processed
by the same forwarding rules while traversing the network,
thus, share equal header fields. In the context of SDN and
in particular OpenFlow-enabled networking this results in
having one flow rule processing exactly one flow. Hence,
if a switch handles multiple logically independent flows of
different applications or of different endpoints with the same
rule, we define such flows to belong to the same aggregate
flow of interest. Furthermore, the rule lifetime defines a flows
end, so that a reinstalled flow rule is defined as a new and
independent flow of the predecessor. In addition, subsequent
sub-flows, managed with the same rule, which has not yet been
removed in the meantime, are part of the same flow.

B. Flow Size Distributions

The flow size is the number of packets contained in a flow1.
Hence, the Flow Size Distribution (FSD) of a network is the
distribution of all flow sizes in the network. The FSD gives
valuable knowledge about the traffic traversing the network.
We highlight exemplary usages afterwards.

Following [25], we assume Nf as the number of flows with
mi being the size of the i’th flow. W ∈ N∗ is the finite
maximum flow size: W = maxi {mi}. Thus, 1 ≤ mi ≤ W .
Furthermore, we denote Mj as the number of flows having
size j. The total number of flows Nf can be written as
Nf =

∑W
i=0Mi. Hence, the distribution of flow sizes, de-

noted FSD, is the set θ = {θ1, . . . , θW } containing the flow
occurrence ratios of all possible sizes:

θj =
Mj

Nf
=

Mj∑W
i=0Mi

. (1)

The FSD allows to infer the type of traffic traversing a
network [15]. Applications, such as voice, music and video
streaming show deterministic packet size and flow length
characteristics, allowing a reconstruction of their bandwidth
portion. Knowledge about the active traffic type allows opti-
mization regarding the utilization of network resources and
meeting performance requirements.

Using the FSD, a network operator can detect abnormal
traffic and faults in a network [13]. As an example, he can
detect DDoS attacks by examining the number of small flows.
DDoS attacks flood a target with service requests using, e.g.
Pings or TCP SYNs. Such attacks produce large numbers of
minimal size flows which can be detected easily using the FSD
compared to resource-consuming intrusion detection systems.

Another example is the detection of simple worms in a
network, which result in a large number of flows having
the same size [13].

1Note, that other definitions take the number of bytes or the like into
account. In this work we focus on the number of packets per flow.
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(a) With routing knowledge: the
node with most traversing flows is
considered as most informative.
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(b) Without flow knowledge: cen-
trality metrics based on the phys-
ical topology give an estimate on
the most informative node.

Fig. 1: Switch selection strategies based on (a) the assumption
that full knowledge on flows/routing is available and (b) the
assumptions that there is no knowledge on flows.

III. MEASUREMENT POINT SELECTION

In this section, we first describe the measurement point
selection based on the assumption that routing information
is accessible. Afterwards, we describe the second method
assuming that there is no information given on flows.

A. Measurement Point Selection Considering Flow Informa-
tion

Given knowledge on flows from, e.g., the routing appli-
cation, we can count the number of flows that traverse a
single switch. Considering such information, we base the
centrality on active flows. Subsequently, we consider the most
informative measurement point (switch) to be the switch with
the highest number of flows traversing the switch.

Formally spoken, the network is a collection G(V,E, F ) of
nodes/vertices V = {1, 2, . . . , N} (here: switches), edges E =
{(vi, vj) | i, j ∈ V, i 6= j} as a set of node pairs (here: links),
and flows F = {f1, . . . , fNf

} (while Nf is the total number of
flows). A single flow can be expressed as fl = {i1, i2, . . . , ik}
with {i1, i2, . . . , ik} ⊆ V . The number of flows traversing
through a node i is then C(i, F ) =

∑
fl∈F 1(i ∈ fl) for

i ∈ V . The first selected node s1 is

s1 = argmax
i∈V

C(i, F ). (2)

Consider the network shown in Figure 1a. The figure shows
active flows as dashed lines with shades of orange. As
the switch marked with s1 sees three flows, while all other
switches see fewer flows, it will be selected first.

For the selection of further measurement points, we do
not any further consider the flows that are already taken into
account. Hence, the same method is used to select the next
measurement point s2 ignoring all flows traversing s1. Given
the set of flows traversing si with Fsi = {fl ∈ F : si ∈ fl},
we select si+1 with

si+1 = argmax
j∈V

C(j, F \ ∪ik=1 Fk). (3)

Thus, we select all further points si+1 analogously ignor-
ing all flows which are already captured at {s1, s2, . . . , si}
assuming we are able to identify flows uniquely.
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B. Measurement Point Placement without Knowledge on
Flows

As monitoring applications might not have access to flow
information in some scenarios due to privacy concerns or
technical limitations, we investigate a second approach to
select the most informative measurement point in this section.
Without knowledge on traffic information we rely only on
the physical topology of the network G(V,E). Predominantly,
the social network research community considers different
metrics to measure the importance of nodes in a graph using
primarily centrality measures [2], [8]. In the following we
briefly introduce a subset of graph centrality metrics we
consider to select measurement points.

Betweenness Centrality [9]: The betweenness centrality
rates the relative number of shortest paths in the network
that traverse through the investigated node. This metric is
particularly interesting as shortest paths are often preferred
for routing between end-points in communication networks
and, thus, are potentially good candidates for measurement
points with major relevance. If ρi,j is the number of shortest
path between node i ∈ V and node j ∈ V and if ρi,j(k)
is the number of shortest path between both nodes traversing
through k ∈ V , we compute the betweenness centrality BCk

of node k with

BC(k) =
1

(N − 1)(N − 2)

∑
i,j∈V
i 6=j 6=k

ρi,j(k)

ρi,j
. (4)

For the network shown in the example of Figure 1b, BC

indicates the highest value.
Closeness Centrality [9]: The closeness centrality mea-

sures the inverse distance between an investigated node and
all other nodes in the graph. Hence, it spreads information
efficiently in the network. It can directly be captured using the
inverse average path length to all other nodes: Consider d(i, j)
as the distance between node i and j. Then the closeness
centrality of node k is given with

CC(k) =
n− 1∑

i∈V,i 6=k d(i, k)
. (5)

In the example of Figure 1b, two nodes have the highest
closeness centrality score. They are marked with CC and we
randomly pick one candidate.

Degree Measure: The degree of a node represents the
number of edges connecting it to other nodes. Its use as node
with high representativeness strongly depends on the graph
structure. Assume a(i, j) equals 1 if a connection between
node i and j exists, otherwise it equals 0 (adjacency matrix).
For a node k, the degree is given in Equation (6). It is
marked with DC in Figure 1b.

DC(k) =
∑
i∈V

a(i, k). (6)
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Fig. 2: Illustration of problems connected to periodic polling
(red, dashed) versus leveraging OpenFlow FlowRemoved con-
trol messages (blue, solid).

Multiple Measurement Points: Extended Centrality: Intel-
ligently selecting additional measurement points is a chal-
lenging task as the intuitive approach of selecting the second
most central node is not reasonable in most cases. In most
centrality metrics the score of two neighboring nodes can be
assumed alike, hence, one would select a neighboring node
si+1 of the previously selected node si with higher probability.
Subsequently, again with higher probability, the measurements
at si+1 include a huge subset of the flows already captured
at si. To avoid this problem, we propose to take shortest
paths into account: Say Pj,k(si) is the set of shortest paths
between j and k that pass si. Then si captures the set of
shortest path P (si) =

⋃
j,k∈V Pj,k(si). In order to decide if

we take snext = si+1, with the second highest centrality as
next measurement point, we check if Inequality (7) is fulfilled.
Otherwise we iteratively check snext = si+2, si+3, . . .

|P (snext)\P (si))|
|P (si)|

≥ δmin. (7)

Intuitively, this makes sure that the portion of shortest
paths traversing through the next measurement point exceeds a
certain threshold. By default we require the next measurement
point to have at least 50% different shortest paths, thus
δmin = 1/2. If none can be found the node with the highest
ratio of Eq. (7) is preferred.

IV. ESTIMATING THE FLOW SIZE DISTRIBUTION

Given a measurement point we use SDN mechanisms, e.g.
available in the popular SDN protocol OpenFlow [17], to
estimate the FSD. To do so, an intuitive possibility is to fetch
statistics of all flows periodically (statistic polling) and count
the number of packets (and bytes, respectively) for each flow.
However, this concept has two major problems: Using the
information on the number of packets of incomplete flows
falsify the distribution as the real length is not yet known
and smaller flows become overrepresented. Furthermore, as
soon as a flow expires, the monitoring application cannot fetch
statistics of this particular flow anymore so that the true length
is almost never included in the FSD. The application might
miss flows with a smaller lifetime than the polling period
completely. Figure 2 sketches both problems.

To avoid this, in analogy to [27], we make use of optionally
activatable control messages that are dispatched whenever a
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flow times out (cf. Figure 2). Such messages, in the case of
OpenFlow denoted FlowRemoved (cf. [20]), contain statistical
information on the expired flow including the number of
packets and bytes. Based on the packet number delivered
whenever a flow ends, we can update the FSD and add the
size of the expired flow. Despite the ability to capture all flow
length correctly, this process makes active requests of statistics
obsolete decreasing the costs for statistic retrieval.

Note that we defined a flow’s lifetime equal to the lifetime
of its corresponding rule in Section II. Hence, two logically
different subsequent flows processed by the same flow rule
are assumed to be the same flow, e.g. if the flow rule idle
timeout is not reached in between.

Aggregation of Multiple Measurement Points
In analogy to the measurement point selection (cf. Sec-

tions III-A and III-B), we use two different methods to
convolve the measurements of multiple measurement points
into a single distribution based on the assumptions.

On the one hand, assuming there is knowledge on flow
information, we can easily identify the flows within the appli-
cation using, e.g., flow cookies (known from OpenFlow). With
the knowledge on the flow identifiers, the FSD measurement
application calculates the union of both flow size distributions
while it removes duplicates from their intersection.

On the other hand, considering a situation without knowl-
edge on flows, the statistic messages return information on
the flows such as the match. In this case, we identify the
flows based on the exact matches and calculate the union
while removing duplicates.

Both methods are limited to scenarios without rule optimiza-
tion. If the routing application aggregates multiple rules into a
single rule, the identification and picking out of duplicates is
not possible anymore in many cases: Consider measurement
points A and B. Flow F1 is mapped to exactly one rule in
A, but convolved with another flow F2, that does not traverse
A to a common rule in B. As the routing application knows
about this situation, the first methods allows to identify F1,
receive its packet count and calculate the packet count for F2
as well. However, without knowledge on the rule installation
in the network the application cannot infer the packet counter
for F1 and F2 precisely. This problem becomes even worse
if the routing adds a third flow to the aggregated rule in B or
in, e.g., scenarios where A aggregates F1 with another flow
F3 in while B aggregates F1 with F2. In such cases, also
the first method fails and a mathematical convolution of both
distribution is of choice, which is left for future work.

V. EVALUATION METHODOLOGY AND RESULTS

This section covers an emulative evaluation we conduct to
show the performance of the selection methods.

A. Evaluation Environment
We use mininet [16] to set up virtual networks with different

topologies that is managed by a RYU2 OpenFlow controller.

2https://osrg.github.io/ryu/, accessed 15 Dec. 2017

The controller performs the measurement point selection lo-
cally and collects FSD information. It serves the network
with shortest-path routing.

We generate traffic using RUDE/CRUDE3. If not stated dif-
ferently, we trigger 100 flows per emulation from a randomly
chosen source host to a randomly chosen destination. Hosts
are connected to each switch by default (with exception of
the data-center topology, which has only hosts at the leaf/rack
switches). The flows are sent with exponentially distributed
inter arrival times, hence, as Poisson process. Furthermore,
we use constant bit rate flows and model the flow sizes using
Zipf’s distribution with parameter 1.6. Thus, we mainly have
very short flows (mice flows), while a small number of large
flows occur (elephant flows) (cf. Figure 5c).

We perform the measurements on various topologies from
the Internet Topology Zoo [14] and a classical data-center
topology with a tree-like structure (cf. [22]).

B. Evaluation Metrics: Accuracy and Costs

We evaluate the system regarding its performance in terms
of accuracy and cost reduction. In this work, the Bhattacharyya
distance [1] is of choice to evaluate the accuracy. It provides
a measure for the similarity of distributions. It is defined as

B(f, g) = − ln(ρ(f, g)) (8)

where f and g are two probability mass functions and
ρ(f, g) is the Bhattacharyya coefficient given with

ρ(f, g) =
∑
x∈X

√
(f(x) · g(x)) (9)

while 0 ≤ ρ ≤ 1, thus 0 ≤ B ≤ ∞. The closer B
is to 0, the lower is the relative distance of the two taken
distribution samples.

To measure the costs required to determine the FSD, we
use the number of bytes required for statistic collection. As
we designed the system in a way, that it does not require
statistic requests, this metric includes only the bytes for
FLOWREMOVED messages. Such optional messages are only
triggered if the operator tells the switches to do so.

C. Selected Results

In the following, we show results with regard to (i) the
accuracy and costs using only a single measurement point
that is selected using the proposed methods compared to naive
selections and the baseline of using all measurement points;
(ii) the influence on the accuracy and costs when changing the
number of available measurement points; (iii) the performance
of selection methods within different topologies; and (iv) the
trade-off between accuracy and costs.

3http://rude.sourceforge.net, accessed 16 April 2017
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Fig. 3: Accuracy and cost of estimating the flow size distribution using representative measurement points with different
placement methods for the Surfnet topology given from the Internet Topology Zoo and a data-center topology. The accuracy is
given in terms of relative distance between the estimation and the ground truth distribution. Costs are given with bytes needed
for statistic exchange for the additionally required and optionally activated FlowRemoved messages.
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Fig. 4: Accuracy and cost of estimating the flow size distribution with changing number of measurement points. The information
contribution of additional points clearly depends on the topology. Topologies and metrics are equivalent to Figure 3.

1) Qualify of Estimation Using a Minimal Number of
Representative Measurement Points: In this investigation, we
first show how using a minimal number of measurement points
to estimate the FSD of a network influences the measurement
quality. For this, we consider two exemplary topologies to
indicate the quality using the presented placement strategies.

Figures 3a and 3b show the accuracy using the Bhat-
tacharyya distance on a logarithmic axis for only a single
measurement point that is selected randomly (RND), using
all available measurement points (all), using the switch that
sees the highest number of flows, thus, assuming knowledge
on flows (w/ K), and using a single measurement point placed
using the presented centrality score functions (DC, CC, BC).

In both figure, it is observable, that using one of the
proposed strategies provides better estimations of the FSD
compared to a random placement among all possible points.
Using all measurement points leads, of course, to the best
estimation result. It is notable that we could not find large
differences between placement strategies based on graph cen-
trality metrics. This holds true for almost all topologies we
investigated. We have observed, that commonly all placement
strategies pick the same point in most topologies. However,
in Figure 3b, we see that using closeness centrality does not
deliver any results at all. As we use shortest-path routing
within our evaluation and the structure of the topology allows
routing without using the root switches, we conclude that

in some rare situations a flow-agnostic measurement point
selection leads to a poor representation of the network state.
During our evaluation this was the only case of such behavior.

Despite that rare case, comparing centrality-based place-
ment strategies with a random placement and the placement
based on knowledge on flow paths, shows that centrality
measures give good estimations of the representativeness of
measurement points. There is no improvement compared to
the placement strategy with knowledge on flows, while it is
much better than a random placement.

If we, furthermore, consider the costs (cf. Figures 3c and 3d)
the number of bytes required for the measurement is the
highest if we activate the statistics for all flows on all switches.
Using only a single measurement point lowers these costs
significantly. A random selection shows the lowest number
of bytes required for the, optionally activated, FlowRemoved
messages containing the processed statistics as they cover
the least number of flows. In addition, the flow-aware place-
ment takes slightly more resources than the all centrality-
based placement strategies. Taking this slightly higher resource
consumption and the unvaried accuracy into account, we
argue to use centrality-based placement although knowledge
on flows is available.

2) Influence of the Number of Measurement Points On the
Estimation Performance: Figure 4 depicts again the Bhat-
tacharyya distance and costs in terms of bytes for statistics
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Fig. 5: The two leftmost plots show the trade-off between the accuracy and cost of estimating the flow size distribution using
representative measurement points with different numbers of measurement points. Topologies and depicted metrics equivalent
to Figure 3. The rightmost plot shows an exemplary FSD estimation. It shows the ground truth, a single randomly selected
measurement point (RND), a single measurement point selected with maximum betweenness centrality score (BC), and a
selection based on the number of flows a switch sees, thus, with flow knowledge (w/ K).
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Fig. 6: Accuracy measured using the Bhattacharyya distance
between the ground truth FSD and the estimated FSD with
representative measurement point selection within different
topologies taken from the Internet Topology Zoo.

delivery within FlowRemoved messages for both, the Surfnet
Topology and a data-center topology with changing numbers
of available measurement points. The two leftmost figures
show the distance to the true distribution. In case of the Surfnet
topology we observe a performance enhancement with more
measurement points until all points are used as the structure of
the topology is rather meshed, thus, the importance of single
nodes is rather uniformly distributed compared to, e.g., a tree-
like data-center topology. Figure 4b shows the latter case. It
can be observed that there is no improvement after exceeding
the number of four measurement points. Hence, the majority of
flows are already captured quickly using the centrality metric
(in this case betweenness centrality). However, the costs still
increase, as depicted in Figure 4d, as additional measurement
points redundantly report statistics that are already captured
with previously selected measurement points.

This observation particularly shows the strength of perform-
ing smart spatial sampling and not gathering the full state
from all possible switches.

3) Influence of Network Topologies Structure on the Esti-
mation Performance: Figure 6 represents how the network
topology structure influences the centrality metric score. We
investigated different types of network structures: (i) a data-
center topology, marked with blue; (ii) three tree-like or star-

like structured topologies from the Internet Topology Zoo [14],
marked with green; and (iii) three rather meshed topologies
form the Topology Zoo, marked in orange.

Although we expect the centrality scores to select different
measurement points and, thus, provide different estimation
qualities, we found that the scores rate similar points as highest
in most cases for the investigated topologies. Subsequently,
as the figure shows, no significant change in the quality is
observable. This was neither the case for the betweenness
centrality (cf. Figure 6), nor the closeness centrality or degree
centrality. However, as shown in the previous evaluation parts,
in exceptional situations (such as using the degree centrality,
shortest-path routing and a data-center like topology) some
centralities must be preferred or avoided.

4) Discussion of the Trade-Off Between Measurement Ac-
curacy and Costs: In Figures 5a and 5b, we show the direct
dependency of both accuracy and costs. Both figures indicate
that the relation between accuracy and costs is non linear. First,
by increasing the number of measurement points, the number
of bytes required for statistic transmission increases quickly
before slowing down when taking more measurement points
into account. This is due to the lower number of flows covered
by additionally selected measurement points. We observe
slight differences between the different topology structures:
The observed effect is stronger on data-center topologies
compared to a meshed topology (Surfnet), where the number
of seen flows distributes nearly uniformly among the switches.

Furthermore, the Bhattacharyya distance between the esti-
mation and the true distribution reduces faster in the beginning,
i.e. taking a second and forth measurement point into account.
For both cases the mean and median distance, respectively,
decreases slower considering higher numbers of measurement
points. Here again, the effect is stronger for the data-center
topology, where the information obtained from a central node
is higher than in the meshed Surfnet topology.

Given Figures 5a and 5b, the preferred number of mea-
surement points can be either directly selected based on
the allowed distance (accuracy) or optimally chosen to have
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minimal costs with almost negligible accuracy, e.g., using four
measurement points in the exemplary data-center topology.

5) Evaluation Results Summary: In the presented evalua-
tion we have shown that an intelligent selection of measure-
ment points allows good estimates of the network state (here:
of the Flow Size Distribution). In detail, we observed that the
usage of flow-agnostic centrality measures for measurement
point placement provides as good results as using methods
with knowledge on the number of flows passing switches. We
found that, in most cases, the difference between placement
strategies based on different centrality measures is negligi-
ble. Furthermore, the three investigated centrality measures
perform equally good in real-world topologies given from
the Internet Topology Zoo. Finally, our evaluation indicates
that the number of efficient measurement points for meshed
networks flattens in terms of efficiency.

VI. RELATED WORK

The field of monitoring in SDNs in general offers a
variety of works regarding different approaches to reduce
statistic collection costs through adaptive granularity and time-
liness [4], [10], [28], optimized statistic storing [18], and many
more [23]. In the following we focus in particular on the
selection of measurement points as investigated in this paper
and the measurement of the FSD.

A. Measurement Point Placement

In the context of SDN Tootoonchian et al. [24] included a
discussion of different measurement point placements already
in 2010. In their work, they estimate a traffic matrix using
SDN techniques. In order to fetch statistics of each flow,
they propose different strategies to place the measurement
point: To optimize the accuracy the last switch on the path
can be used as all losses are included in the measurement.
A uniform random selection of a switch on the path and a
round-robin approach allow equally distributed load among
the switches. Furthermore, non-uniformly selections allow
selecting a switch that is rather at the end of the path, thus, has
better accuracy. At last, they propose to use the least-loaded
switch in the network. The authors assume that the correct
value is the value seen at the egress switch, which is arguable.

Yoon et al. [26] propose a comparable approach to ours.
They use centrality metrics from graph theory to determine the
relative importance of nodes. In addition, with packet sampling
based on a probabilistic rate, they improve the efficiency for
an intrusion detection system measuring statistics at more
important switches. They argue that the traffic at the edges
of the network might have different characteristics than in the
networks core, which the centrality metrics that reflect only the
physical topology rather than the actual traffic do not cover.

Other network management fields also consider the central-
ity of switches to improve the performance: In [3], Challa et
al. propose a routing algorithm that weights nodes and edges
based on their temporal betweenness centrality to balance load
better in the network and optimize the utilization. The field of

wireless sensor networks provides another example for load
balancing based on centrality metrics. Cuzzocrea et al. [6]
propose an algorithm to enrich the QoS throughput using the
edge betweenness centrality.

B. Flow Size Distribution Measurement Approaches

The exact determination of the Flow Size Distribution (FSD)
is straightforward using traffic mirroring. However, covering
the whole traffic requires excessive resources, thus, is not
reasonable. Consequently, a number of works propose FSD
estimation methods based on packet/flow sampling.

Based on sampled packets flows length are roughly re-
constructed, thus, the FSD is estimated. However, Duffield
et al. [7] show how that utilizing packet sampling leads to
inaccuracies, in particular as sampling does not cover small
flows in many cases. They propose to consider also packet
information, such as TCP Flags (e.g. SYN), which leads
to better results. Hohn et al. [12] further investigated flow
sampling, thus, sampling whole flows instead of independent
packets, which leads to further improvements regarding the
FSD estimation. Nevertheless, the feasibility of such solutions
is strictly limited due to resource exhaustive lookups required
in the forwarding devices. Taking also the sequence number
into account to guess the flow length, Ribeiro et al. [21]
also show improvements in contrast to pure packet sampling,
however, did not compare their solution to flow sampling. Tune
et al. [25] show how these concepts can be combined and
which different sampling methods exist with their advantages
and disadvantages with regard to the estimation of the FSD.

With the advent of SDN, new techniques with reasonable
costs to collect flow length information occurred making
packet or flow sampling obsolete. SDN-based flow counter
techniques allow a trivial calculation of the FSD assuming a
direct correlation between rules and flows (cf. Section II).

VII. CONCLUSION

This work targets to overcome disproportional resource con-
sumption in order to monitor the full network state in SDNs.
We propose mechanisms for spatial sampling, in particular
placing a small number of measurement points in the network
instead of measuring on every network switch. Doing so,
we argue that the estimation of the full network state is
significantly simplified if the selection is based on the nodes
importance and informativeness, respectively. Depending on
different network knowledge, we propose two schemes for
this: (i) taking, if available, flow knowledge into account to
maximize the number of covered flows with the available
number of measurement points; or (ii) use centrality metrics
known from graph theory to estimate the relevance of the
nodes and, thus, estimate the information contribution the
different nodes can provide. We demonstrate the effectiveness
of such a selection with a handy mechanism to estimate the
Flow Size Distribution (FSD) within a network leveraging
OpenFlow’s FlowRemoved messages.



Rhaban Hark, Mohamed Ghanmi, Sounak Kar, Nils Richerzhagen, Amr Rizk, and Ralf Steinmetz. Representative Measurement Point
Selection to Monitor Software-defined Networks (accepted for publication) In: Proceedings of the 43nd IEEE Conference on Local Computer

Networks (LCN), p: 1–8, IEEE, October 2018.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Using network emulations, we demonstrate how to gather
the network state effectively using spatial sampling. We
measure the estimation accuracy using the relative distance
between the estimated and the true FSD using the Bhat-
tacharyya distance [1]. We find that the centrality metrics
provide good estimates, especially compared to the assumption
of available routing information, thus, when we can directly
maximize the number of covered flows. Furthermore, we find
only small differences between the selection methods within
different topologies that correspond to real-world topologies
taken from the Internet Topology Zoo [14]. Nevertheless, it
is observable that the accuracy does not linearly relate to
the measurement costs when increasing the number of placed
measurement points.

The current OpenFlow 1.5 protocol, as well as the promising
P4 language provide further technologies, to sample signal
packages such as TCP SYN and ACK. Relying on such
mechanisms, we will investigate the detection of sub-flows
within aggregating flow rules in follow-up works.
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