
Rhaban Hark, Mohamed Ganmi, Ralf Kundel, Patrick Lieser, Ralf Steinmetz. Monitoring Flows with Per-Application Granularity using
Programmable Data Planes Accepted for publication in the proceedings of 2021 IEEE International Symposium on Local and Metropolitan

Area Networks (LANMAN), 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Monitoring Flows with Per-Application Granularity
using Programmable Data Planes

Rhaban Hark, Mohamed Ghanmi, Ralf Kundel, Patrick Lieser, and Ralf Steinmetz
Multimedia Communications Lab, Technische Universität Darmstadt, {first.last}@kom.tu-darmstadt.de

Abstract—The accurate and timely knowledge of a network’s
internal state is essential for various network management opera-
tions like routing, resource allocation, or even intrusion detection.
This especially holds true for highly flexible, programmable
networks that quickly react to dynamic conditions. However,
current approaches of state monitoring in such networks rely
on per-rule counter information. Due to limited rule space,
their granularity is strongly limited. This generally yields an
aggregated and therefore altered representation of the network
state. Utilizing the programmability of today’s data planes, we
tackle this problem and present a novel approach to increase
the measurement granularity up to per-application statistics. For
demonstration purposes, we show how our approach greatly
improves the estimation of the Flow Size Distribution.

I. INTRODUCTION AND MOTIVATION

Currently existing monitoring techniques in SDN systems
such as OpenFlow [1] or P4 [2] can provide the controller
with statistics for every forwarding/monitoring rule in their
scope. These statistics can be actively fetched by the controller
whenever management applications desire an update. Rules
that hold traffic statistics can be installed either proactively
or reactively on newly arriving flows. In the first case, the
granularity of the rules is limited by the fact that any poten-
tially traversing flow must be known in advance and handled
adequately. In the latter case, the granularity can be set more
flexibly. In both cases, however, the number of available
forwarding/monitoring rules is severely limited by the size
of the expensive TCAM memory. As a result, a single rule
often directs multiple independent streams with overlapping
properties such as the source and destination.

Given the likelihood of multiple streams of different appli-
cations getting merged into a single rule, management applica-
tions can only see an aggregated traffic view. Nevertheless, a
wide variety of network management applications, e.g., Heavy
Hitter Detection or DDoS attack detection, require a detailed
view of the traffic with maximal statistics granularity. Sticking
to the DDoS attack detection example, a popular DDoS attack
option is to flood the victim with a tremendous number of
TCP SYN packets. This would result in numerous streams
that can easily be detected with a per-application statistics
granularity. However, in nowadays networking switches where
a huge number of DDoS and non-DDoS flows are aggregated

This work has been performed in the framework of the CELTIC-NEXT
project AI-NET-PROTECT (16KIS1295) and it is partly funded by the
German Research Foundation (DFG) as part of subproject B1 and B4 within
the Collaborative Research Center (CRC) 1053 MAKI.

into a single rule, their distinction is not easily possible as the
monitoring information becomes aggregated as well.

To this end, we target a practical solution to monitor flows
with application-level granularity in the data plane. While
allowing management applications to aggregate traffic into
a limited set of rules, we provide the control plane with
information on the existence of contained subflows, as well as
their statistics. We achieve this by taking advantage of recent
programmable data plane technologies to leverage omnipresent
meta information of TCP packets. By avoiding deep inspection
of packets, the approach can cope with any TCP traffic,
particularly including encrypted traffic.

We provide an expressive evaluation of the approach show-
ing the proof-of-concept and the improvement in measurement
accuracy for monitoring applications when, e.g., measuring
the Flow Size Distribution, which is relevant for numerous
applications as for instance DDoS attack detection.

The paper is structured as follows: The next section, Sec-
tion II, describes the developed design of our proposed mea-
surement approach. This includes the overarching architecture
as well as a system model. Thereafter, Section III presents
the evaluation of our prototypical implementation, including
results. We note known limitations in Section IV and show
related approaches in Section V. Finally, Section VI gives a
conclusion of the paper and an outlook.

II. FINE-GRAINED STATISTICS COLLECTION DESIGN

In the following, we present the system architecture, explain
how the approach can be integrated in SDN networks, and
detail the data plane measurement approach.

A. Architecture Overview

This work proposes an entirely software-based solution to
enhance the measurement quality in an SDN environment.
Consequently, we ensure that no additional network elements
need to be integrated for the system to function correctly. Two
main components build the system architecture: (i) On the one
hand, a P4 application is deployed on a set of switches in the
data plane to conduct the desired measurements. The set of
switches or measurement points should be placed strategically
to minimize the measurement redundancy and along with
that the monitoring overhead [3]. The selected points running
our proposed P4 data collecting application reflect a real-
time representation of the network state and provide raw
information to the control plane. (ii) On the other hand, an
application consuming the raw measurements should be hosted



Rhaban Hark, Mohamed Ganmi, Ralf Kundel, Patrick Lieser, Ralf Steinmetz. Monitoring Flows with Per-Application Granularity using
Programmable Data Planes Accepted for publication in the proceedings of 2021 IEEE International Symposium on Local and Metropolitan

Area Networks (LANMAN), 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

SRAM/DRAMTCAM

Flow A

Flow B

...

Flow N

Flow A ISNA,1 ISNA,2 ...

Flow B

...

Flow N

ISNB1,1 ISNB,2 ...

… ... ...

ISNN,1

Subflow1

Flow A CounterA,1 CounterA,2 ...

Flow B

...

Flow N

CounterB,1 CounterN,2 ...

… ... ...

CounterN,1

Subflow2

Size configurable

Fig. 1: Registers set up tables to (i) store the ISNs of SYN
packets to identify subflows and (ii) to count packets for the
corresponding subflows.

in the control plane. It has the role of collecting statistics and
combining them to gain higher level insights about the state
of the underlying network and yet offering these preprocessed
information to other management applications.

B. Flow Model

Before the function principles are explained, we give the
definition of the term flow we use in the scope of this work
as there is no common definition in literature. We consider a
flow to be a stream of packets adhering to the same rule. Thus,
one rule processes exactly one flow in an SDN environment.
However, when logically independent streams from different
applications (denoted subflows) match the same rule, they are
seen as a single “aggregated” flow by the network and its
monitoring application. This alters the measured network-wide
state as described in Section I. We refer to this phenomenon as
the aggregated flow problem. In the context of TCP/IP packets,
the most present traffic in today’s Internet [4], header fields
can be used to identify the flow a certain TCP packet belongs
to. Within the presented approach, any of the available fields
can be used to match one flow. A typical example could be
the combination of the source and destination address.

C. Subflow Measurement

In order to solve the aggregated flow problem and, thus,
provide per-application or subflow counter, we introduce a set
of registers used to store the required information. Addressing
the registers in the presented approach does not require, in
contrast to existing approaches, additional TCAM memory
such that space restrictions are more relaxed [5]. Using the
registers we model two tables. Figure 1 shows both tables
right of the existing TCAM table that identifies flows. Since
the proposed mechanism is solely part of the performed action
while processing a packet, the TCAM table entries are not
modified and, thus, no additional space is requirement within
the TCAM. The first table holds information on the existence
of subflows within each flow. For each such flow, the first
table contains an ordered list of TCP Initial Sequence Numbers
(ISNs) to identify each subflows as explained later. The second
table holds the counter of each identified subflow. Therefore, it
follows the structure of the first table and contains the number
of packets, thus, the subflow counter instead of their ISN.
Entries in both tables are aligned, meaning that the index of
a subflow identifier in the first table is equal to the index of

Flow A ISNA,1 ISNA,2

Flow B ISNB1,1 ... ...

Flow A CounterA,1 CounterA,2=1

Flow B CounterB,1 ... ...

Insert new subflow

* *SYN

ISNA,2

(a) On arrival of a SYN packet, it is stored to identify this new stream.
Furthermore, the second table initializes a packet counter.

Flow A ISNA,1 ISNA,2

Flow B ISNB1,1 ... ...

Flow A CounterA,1 CounterA,2++

Flow B CounterB,1 ... ...

Lookup(max y | SNx > ISNA,y)
Increment counter 
at index of(ISNA,y)

data

SNX

(b) On arrival of data packets, their SN is used to identify the subflow.
This information helps to identify the counter that is increased.

Flow A ISNA,1 ISNA,2 ...

Flow B ISNB1,1 ... ...

Flow A CounterA,1 CounterA,2 ...

Flow B CounterB,1 ... ...

Lookup(max y | SNx > ISNA,y)
Delete Subflow entry

Delete Subflow entry

Shift subsequent fields

FIN

SNX

...

...

...

...

(c) On arrival of a FIN packet, the subflow ended. The SN identifies
the subflow and allows the removable of the identifier and its counter.

Fig. 2: Usage of the subflow identification and counting tables.

its corresponding counter in the second table. Figure 1 shows
the tables’ correspondence, how flows are identified, and the
identifier aligned with the counter.

The width of the two tables must be set prior to runtime,
but is easily adjustable in our implementation. As also visible
in the last row within the tables, it is of course usually the
case that not all subflow fields are in use and are therefore
left blank. In the figure, the last flow, Flow N has for exam-
ple only one subflow (identified by ISNN,1 and CounterN,1,
respectively).

a) Subflow Counter Identification: As already touched
upon, we leverage omnipresent TCP information to obtain
separate subflow measurements. The ISN is a 32-bit number
assigned to the first packet in each TCP flow. The sequence
number of all subsequent packets is an increment of the
Initial Sequence Number. Traditionally, the ISN is chosen by a
clock that is incremented every 4 microseconds. Modern TCP
implementations can, however, involve a random setting of the
ISN. To identify different subflows within an aggregated flow,
we store the ISN whenever a new TCP subflow passes through
the measuring point. As shown in Figure 2a, on the arrival of
a SYN packet, the first table inserts an entry with the ISN
for the corresponding flow. On top of that, the second table
initializes a counter for that subflow.

b) Subflow Packet Counting: Subsequently, we use the
data packet’s sequence numbers (SN) to map them to the
correct counters. Figure 2b shows that behavior in detail: The
SN included in arriving data packets is used to look up the
corresponding subflow ISN which is, intuitively spoken, the
largest ISN which is smaller than the SN. Using the index
of the just identified subflow, the counter in the second table
increases.

c) Table Organization and Subflow Lifetime: Currently,
we only consider growing ISNs as specified in the original



Rhaban Hark, Mohamed Ganmi, Ralf Kundel, Patrick Lieser, Ralf Steinmetz. Monitoring Flows with Per-Application Granularity using
Programmable Data Planes Accepted for publication in the proceedings of 2021 IEEE International Symposium on Local and Metropolitan

Area Networks (LANMAN), 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

TCP standard [6]. However, the concept can be extended
to support random ISNs by shifting values as needed (cf.
section IV). To solve the counter mapping problem while
lacking sorting capabilities, we organize all captured ISNs as
well as the subflow counters in stacks. A newly captured ISN
is always placed at the end of the stack, as ISNs grow with
time, assuring an ascending order in the stack. The beginning
of a subflow can be detected by the presence of the SYN
flag in TCP. Therefore, whenever a SYN flag is detected, a
new ISN is registered. Similarly, the FIN flag announces its
end. The detection of a FIN packet triggers the deletion of the
corresponding subflow ISN and packet counter, making place
for new measurements as depicted in Figure 2c. To preserve
the stack nature, the ISNs and subflow counters are shifted
accordingly when a subflow expires. Thus, our system always
provides a live overview of passing flows. To avoid missing
valuable information, it is therefore necessary to actively poll
flow statistics periodically in the control plane.

Using only P4 features, we did not have access to complex
data types as dynamic lists, stacks, and matrices. As counter
tables are primordial for our task, we opted for building them
as a series of arrays. P4 requires knowledge of the counter
table dimensions beforehand. The table length is given by the
number of flows in the switch’s flow rule set, its configurable
width is the maximal number of detectable subflows that can
be present in an aggregated flow at the same time. To facilitate
the adaptation of the table width, we also provide a code
generator that adapts the data plane P4 program to the number
of supported subflows of choice.

III. EVALUATION

In this section, we evaluate the proposed approach with
respect to accuracy and recall with different settings. To this
end, the next subsection describes our evaluation environment
and the prototype implementation followed by the results and
their analysis.

A. Environment
The prototypical implementation of the presented approach

uses the behavioral model BMV2 as P4 switches, which talk
to a Python-based controller via P4RUNTIME in an emulated
MININET network.

The network is kept minimalistic to avoid unwanted side-
effects, so that there is a single sender and a single receiver
for all flows. Flows are dynamically generated based on a
configuration file with exponentially distributed inter arrival
times for packets as well as for flows (λ = 1). If not stated
differently, a test runs comprises 33 flows, each with one to
four subflows and a total of 100 subflows.The results rely on
30 runs each which each lastet between eight to ten minutes.

B. Results
We first demonstrate how the approach is able to distinguish

between subflows in a synthetical setup with a single flow con-
sisting of multiple subflows. On top of this, we highlight the
accuracy of the proposed method when targeting application-
level flow statistics within different configurations.

0 5 10 15 20 25 30 35
t [s]

0

20

40

60

80

Co
nf

ig
ur

ed
 n

o.
 o

f p
ac

ke
ts

FA

FA, 0
FA, 1
FA, 2

Fig. 3: Accumulated packets dispatched from the sender over
time: Flow FA consists of three subflows FA,0, FA,1, and
FA,2.

0 5 10 15 20 25 30 35
t [s]

0

20

40

60

80

M
ea

su
re

d 
no

. o
f p

ac
ke

ts

FA

FA, 1(ISeqNr=4063...)
FA, 2(ISeqNr=4316...)
FA, 3(ISeqNr=4721...)

Fig. 4: Accumulated packets visible in the switch over time
compared to Figure 3. The switch correctly detects three flows
and distinguishes their traffic.

a) Demonstration of the Subflow Detection: Figure 3
shows the generated traffic at the sender: One flow, denoted
FA (solid blue), consists of three smaller flows, namely FA,0

(dashed orange), FA,1 (dash-dotted green), and FA,2 (dotted
red). At every point in time t, FA(t) sums up all packets
contained in all three subflows: FA(t) =

∑
i FA,i(t).

Now picking up these rates, in Figure 4, we observe the
flows the switch measures. Although one only suspects the
connection between the total traffic (solid blue, FA) of both
figures, the connection of the subflows is clearly visible. The
first subflow FA,0 starts and rises similar with the same total
number of packets of 50 at the very same timestamp of
approximately 27 seconds. This holds also true for FA,1 and
FA,2. The switch identifies the subflows based on the ISNs as
indicated and assigns subsequent packets based on their SN
as described in Section II. All ISNs are successfully identified
and the packets are correctly mapped to their corresponding
subflows.

b) Fine-Grained Measurement Accuracy: Next, we
showcase the accuracy with respect to total flow sizes in
terms of measured packets per flow. We compare the mea-
sured flow sizes using our mechanism and aggregated naive
measurements with the flow sizes of actually dispatched flows.
Figure 5a shows an exemplary CDF of flow sizes for one



Rhaban Hark, Mohamed Ganmi, Ralf Kundel, Patrick Lieser, Ralf Steinmetz. Monitoring Flows with Per-Application Granularity using
Programmable Data Planes Accepted for publication in the proceedings of 2021 IEEE International Symposium on Local and Metropolitan

Area Networks (LANMAN), 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

0 100 200 300 400 500 600
Flow Sizes [packets]

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Ground truth
Fine-grained Measurement (dBhattacharyya = 0.0015)
Aggregated Measurement (dBhattacharyya = 0.3636)

(a) Flow size distribution of an exemplary evaluation run.

Fine-grained Aggregated
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Bh
at

ta
ch

ar
yy

a 
Di

st
an

ce

(b) Statistical results.

Fig. 5: Accuracy comparison using the measured flow size distribution of the proposed fine-grained measurement approach
with aggregated measurements. The actually dispatched application-level flows are used as ground truth.

simulation run.
The solid blue curve represents the actually dispatched

subflows from the sender (“Ground truth”). A typical pattern
of a large number of small mice flows is observable with a
long tail, thus, a small fraction of larger elephant flows. The
dotted green curve shows the naive measurement approach
(“Aggregated Measurement”), where the installed rules define
the granularity. It is clearly visible that a smaller flow sizes
occur less often and the curve is generally shifted to the
right, so towards longer flow sizes. The obvious reason for
this is the aggregation of multiple subflows into a flow (rule).
Nevertheless, taking the dashed orange line that shows the fine-
grained measurements based on our measurement approach
into consideration (“Fine-grained Measurement”), we see that
flow size CDF is almost identical to the ground truth. Thus,
the approach correctly detects all subflows, is able to match
packets to subflows and therefore also the flows’ total sizes.
Taking a closer look on the curves reveals that the measured
flow sizes differ by a tiny gap. By the fact that it is necessary
to periodically ask for currently existing subflows, the last few
packets traversing the switch after the last statistic request just
before the subflow ended (indicated with a TCP FIN flag)
can be missed. Potential workarounds and improvements are
left for future work and the trade-off between slightly higher
fidelity and required overhead must be considered.

Figure 5b shows the comparison between the ground truth
and the measurements, both, fine-grained and aggregated. As
metric to measure the distance between the ground truth
CDF and the measurement CDF we use the Bhattacharyya
distance [7] which is a qualified measure for the similarity
of distributions. The smaller the Bhattacharyya distance, the
closer the distributions. The statistical results shown in the
figure confirm the observations of the exemplary run in Fig-
ure 5a. Fine-grained measurements provide flow sizes close to
the actually sent sizes whereas the aggregated measurements
differ significantly due to non-distinctive statistics.

c) Influence of the Measurement Rate: In this paragraph,
we further discuss the accuracy of the approach while chang-
ing the statistic request rate, which has an important influence.

1
s

1
2s

1
4s

1
8s

1
16s

Measurement rate

0.0

0.2

0.4

0.6

Bh
at

ta
ch

ar
yy

a 
Di

st
an

ce

Fine-grained Aggregated

Fig. 6: Accuracy in terms of Bhattacharyya distance between
ground truth and measurements for the FSD applying the
proposed fine-grained measurement approach and aggregated
measurements with different measurement rates.

As already pointed out in the previous paragraph, the controller
cannot capture packets of a subflow arriving between a statistic
request and the subflow’s FIN packet. This is not the case
for the aggregated measurements where subflows are included
entirely as part of the superordinated flow. Figure 6 depicts the
accuracy for both cases when increasing the rate of statistic
requests, thus, the time in which packets of small flows
can potentially be missed. We observe that the aggregated
measurements are independent of the measurement rate as
the flow sizes are always fully covered – of course with
the disadvantage of being aggregated in a single statistic.
Therefore, their accuracy in terms of Bhattacharyya distance
is comparably poor. In contrast, the fine-grained measurement
method we propose shows very high fidelity with moderate
measurement rates of once per second (distance is close to
0). Higher rates would deliver even better accuracy and are
therefore not depicted. Only when decreasing the measurement
rate, e.g., to a statistic request just every 8 or 16 seconds,
we observe that the accuracy suffers from missing packets
of ending subflows between the measurements. Note that the
numbers strongly depend on the fluctuation of flow in the
respective context. However, even with very low rates the



Rhaban Hark, Mohamed Ganmi, Ralf Kundel, Patrick Lieser, Ralf Steinmetz. Monitoring Flows with Per-Application Granularity using
Programmable Data Planes Accepted for publication in the proceedings of 2021 IEEE International Symposium on Local and Metropolitan

Area Networks (LANMAN), 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

1
s

1
2s

1
4s

1
8s

1
16s

Measuring rate

0

10

20

30

40

Nu
m

be
r o

f m
iss

ed
 fl

ow
s

Fig. 7: The number of undetected/missed subflows with dif-
ferent measurement interval lengths (measurement rate).

accuracy is considerably better such that we find the accuracy
loss negligible when targeting application-level statistics.

Figure 7 supports this observation further: The figure shows
the number of missed subflows (y-axis) for different measure-
ment rates. For the rate of f = 1

s , so once per second, about
two subflows are missed in median (see Section III-A for
flow generation details). As each box represents the number of
missed subflows for a total of 100 subflows, the total number
equals the percentage. Halving the measurement rates does
not increase the number of undetected subflows significantly.
Further decreasing the measurement rate also increases the
number of missed flows. For small measurement rates of
f = 1

16s , 34 subflows are not being detected in median,
meaning that the lifetime of 34 subflows were smaller than
the measurement of 16 seconds. Note again that the actual
number strongly depends on the fluctuation of flows.

C. Evaluation Take-Aways

Our evaluations have shown that the proposed method is
able to detect TCP subflows as part of one flow rule and collect
their statistics appropriately. We underpin expected theoretic
measurement results with experiments using a prototypical
implementation. Furthermore, using the exemplary Flow Size
Distribution use case, which immediately reflects the subflow
statistics, the experiments show a huge accuracy gain. On top
of this, we highlight that (and to what extend) very short
subflows might be missed in the approach depending on the
measurement rate.

IV. LIMITATIONS

The developed approach faces some limitations that must
be considered prior to its use:

Ascending ISNs: The mapping algorithm presented in Sec-
tion II requires sorted ISNs to be efficiently solvable in the
data plane. With the growing ISN assumption, this condition is
fulfilled. However, when random ISNs are used, the controller
should intervene to sort a specific flow’s stored ISNs in the
P4 measuring point. The remainder of the concept remains
unchanged. Also, overlapping SN ranges must be considered
as they are likely to occur in a real world setting. However,

this issue can be solved easily by storing the latest sequence
number of each flow instead of the ISN.

Flow trail/Mice flow detection: In its current design, the
approach immediately de-allocates memory used for expired
subflows. This means that a subflow is not anymore included
in any statistic report after its expiration and, therefore, a
flows last packets, i.e. every packet arriving between the last
statistic request and the FIN packet, are not factored in in
any counter and not detected by the applications. Very short
flows, so-called mice flows, could even occur between two
subsequent statistic requests, meaning they are not detected by
the application at all. A number of workarounds are thinkable
and left for future work.

TCP flag dependency: The data plane identifies subflows
and their packets based on TCP header information. As a
logical consequence, any other protocol is not supported and
must, if possible, be included manually or monitored on
the default per-flow level. However, TCP predominates the
Internet’s traffic.

TCP FIN flag dependency: In our design, we require the
detection of FIN flags to expire flows and free up memory. In
the case of a SYN attack, where the network is flooded with
flows containing only one SYN packet, the counter matrix will
quickly be overwhelmed by non persistent counters holding a
value of 1. On the one hand, this hinders the measurement
of traffic of interest. On the other, the counter matrix filled
with ones, is a good indication of SYN attacks. Using this
information, the detection of such attacks can take place on
the data plane.

Memory consumption: As already mentioned in Section II,
the approach allocates a static number of registers to store
counter (two 64-bit registers for each possible subflow one
might measure). However, the system allows to configure the
allowed maximal number of measurable subflows per flow and
space restrictions are rather relaxed as register are not stored
in TCAM but SRAM or DRAM. With 10.000 rules and 5
subflows per rule, space of 800KByte is required, which is
acceptable for nowadays SRAM/DRAM switch capacity [5].

V. RELATED WORK

So far, existing works in this context cover the aggre-
gation granularity problem of monitoring through counter-
based statistics predominantly by splitting and merging the
spatial flow room space, in other words by zooming into rules.
Popular approaches for this include the adaptive measurement
framework DREAM, follwed up by SCREAM, presented by
Moshref et al. [8], [9] or a related approach by Jose et al.
[10]. Both allow to select prefixes of choice and increase
the granularity within these flows by splitting flow rules.
Furthermore, Zhang [11] presents an OPENWATCH, a flow
counting method that is adaptive in the spatial dimension
but also the temporal dimension by adjusting the statistic
sampling rate. Those approaches all require decoupling of
monitoring from routing, hence, to modify the flow tables.
With an eye on the very limited TCAM memory due to
its excessive costs and power consumption that is used to



Rhaban Hark, Mohamed Ganmi, Ralf Kundel, Patrick Lieser, Ralf Steinmetz. Monitoring Flows with Per-Application Granularity using
Programmable Data Planes Accepted for publication in the proceedings of 2021 IEEE International Symposium on Local and Metropolitan

Area Networks (LANMAN), 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

maintain flow rules, there is a twofold problem: Freely splitting
rules occupies valuable resources and therefore reduces the
amount of available space for routing or other applications.
Also, introducing rules solely used for monitoring appears to
be inefficient such that we target an alternative solution in
this paper. Orthogonal approaches, e.g. from Afek et al. [12],
flexibly sample packets within the streams. Theoretically, this
allows to infer approximate flow statistics on application-level
granularity. However, such approaches have a high chance
of missing mice flows as given in the introducing example
of DDoS attacks via TCP SYN floods and anyway lack of
certainty of measurement accuracy.

While various approaches to enhance monitoring in
Software-defined Networks under the use of programmability
of the data plane exist [13]–[16], none of them particularly
targets the aggregation problem tackled in this work. The
closest approaches we identified are ELASTIC SKETCH by
Yang et al. [17] and UMON by Wang et al [18]. The former
uses additional memory to store sketches of network statistics
which can be dynamically adapted with respect to their size.
The authors implement the approach, among other platforms,
on a P4 switch. The latter, UMON uses additional sub flow
tables within an OpenFlow-based environment to monitor
with higher granularity than rules allow. The approach is
implemented for Open vSwitches, limiting its applicability,
and it consumes expensive TCAM memory.

VI. CONCLUSION AND OUTLOOK

In this work, we tackled the problem that flow rules usually
aggregate multiple application flows and, as a consequence,
limit today’s counter-based statistic granularity. To this end,
we propose a mechanism for P4 switches to identify subflows
handled by a single flow rule and collect their individual statis-
tics. We do so by parsing the packets TCP header fields: SYN
packets declare a new subflow, the sequence number reveals
the subflow a packets belongs to, and lastly the FIN packets
signals the end of the packet stream. We organize a set of
registers to hold multiple subflow identifiers per rule, i.e., the
initial sequence number and counter. The approach implements
an effective fragmentation of the allocated memory and allows
to configure the number of allowed subflows per flow rule to
respect potential memory restrictions. Our evaluation reveals
that the mechanism works as desired and is able to increase
the accuracy of flow-size-consuming statistics tremendously.

Based on the identified limitations in Section IV, we intend
to further enhance the design: Because of the instant de-
allocation of memory on flow expiration, packets at the end
of a flow might not be included in the statistics, which can
be avoided using different methods. An obvious yet effective
solution is to introduce subflow counter timeouts as they exist
for regular flow rules. Due to the lack of P4 support, a potential
alternative is to hold subflow counter until the next statistic
report is dispatched. Another option to improve the usability of
the mechanism is to provide more profound information on the
subflows such as for instance used protocols, byte counter in
addition to packets counter etc. However, memory restrictions

might apply. Since memory usage might be a restricting factor
in some situations, the use of sketches has been proven very
handy [8], [9], [17]. For example, count-min sketches can be
easily implemented in P4 and relieve the memory constraints.
Eventually, an implementation on a real device is left for future
work to identify potential threads wrt. to its implementability.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[3] R. Hark, M. Ghanmi, S. Kar, N. Richerzhagen, A. Rizk, and R. Stein-
metz, “Representative measurement point selection to monitor software-
defined networks,” in IEEE Conference on Local Computer Networks
(LCN). IEEE, 2018, pp. 511–518.

[4] R. Kundel, J. Wallerich, W. Maas, L. Nobach, B. Koldehofe, and
R. Steinmetz, “Queueing at the telco service edge: Requirements,
challenges and opportunities,” in Workshop on Buffer Sizing, 2019, pp.
1–6.

[5] D. Perino and M. Varvello, “A reality check for content centric network-
ing,” in Proceedings of the ACM SIGCOMM Workshop on Information-
centric networking, 2011, pp. 44–49.

[6] IETF RFC 793, “Transmission control protocol procotol specification,”
1981. [Online]. Available: https://tools.ietf.org/html/rfc793

[7] A. Bhattacharyya, “On a measure of divergence between two multino-
mial populations,” Sankhyā: The Indian Journal of Statistics, pp. 401–
406, 1946.

[8] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Dream: dynamic
resource allocation for software-defined measurement,” in ACM confer-
ence on SIGCOMM, 2014, pp. 419–430.

[9] ——, “Scream: Sketch resource allocation for software-defined mea-
surement,” in ACM Conference on Emerging Networking Experiments
and Technologies, 2015, pp. 1–13.

[10] L. Jose, M. Yu, and J. Rexford, “Online measurement of large traffic
aggregates on commodity switches.” in USENIX Workshop on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE), 2011.

[11] Y. Zhang, “An adaptive flow counting method for anomaly detection
in sdn,” in ACM conference on Emerging networking experiments and
technologies, 2013, pp. 25–30.

[12] Y. Afek, A. Bremler-Barr, S. Landau Feibish, and L. Schiff, “Sampling
and large flow detection in sdn,” in ACM Conference on Special Interest
Group on Data Communication, 2015, pp. 345–346.

[13] J. Geng, J. Yan, Y. Ren, and Y. Zhang, “Design and implementation of
network monitoring and scheduling architecture based on p4,” in Inter-
national Conference on Computer Science and Application Engineering,
2018, pp. 1–6.

[14] L. Castanheira, R. Parizotto, and A. E. Schaeffer-Filho, “Flowstalker:
Comprehensive traffic flow monitoring on the data plane using p4,” in
ICC IEEE International Conference on Communications (ICC). IEEE,
2019, pp. 1–6.

[15] B. Guan and S.-H. Shen, “Flowspy: An efficient network monitoring
framework using p4 in software-defined networks,” in IEEE Vehicular
Technology Conference (VTC2019-Fall). IEEE, 2019, pp. 1–5.

[16] R. Hark, D. Bhat, M. Zink, R. Steinmetz, and A. Rizk, “Preprocessing
monitoring information on the sdn data-plane using p4,” in IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). IEEE, 2019, pp. 1–6.

[17] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: Adaptive and fast network-wide
measurements,” in Conference of the ACM Special Interest Group on
Data Communication, 2018, pp. 561–575.

[18] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Umon: Flexible
and fine grained traffic monitoring in open vswitch,” in ACM Conference
on Emerging Networking Experiments and Technologies, 2015, pp. 1–7.


