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Abstract. The estimation of quality for real-time services over telecom- 
munication networks requires realistic models for impairments and fail- 
ures during transmission. We focus on the classical Gilhert-Elliott model 
whose second order statistics is derived over arbitrary time scales and 
used to fit packet loss processes of traffic traces measured in the IP hack- 
hone of Deutsche Telekom. The results show that simple Markov models 
are appropriate to capture the ohserved loss pattern. 

1 Introduction 

The transfer of real-time data over the Internet and channels in heterogeneous 
packet networks is subject to errors of various types. A packet can be corrupted- 
and therefore is unusable for a voice or video decoder-due to unrecoverable bit 
failures. On wireless and mobile links temporary and long lasting reductions 
in thc availablc capacity freqiicntly occiir and cvcn in fixcd and wired nctwork 
sectors packets may be dropped at routers and switches in phases of overload. 

Most of the Internet traffic is controlled by the TCP protocol, which provides 
mechanisms for retransmission of lost or corrupted data and for controlling the 
load on congested links involving FIFO queues with a Tail-Drop or Random 
Early Detection (RED) [I] policy. On the other hand, the portion of uncontrolled 
traffic via the UDP transport protocol has been increased to a level of 5 - 10% in 
recent time [2], partly since real-time services over IP  including voice, video on 
demand and online gaming are gaining in popularity. The upcoming deployment 
of IP-TV over VDSL broadband access platforms by Deutsche Telekom and other 
Internet service providers will strengthen this trend. 

In this work we fociis on packet loss on Internet links with most traffic eon- 
trolled by TCP superposed with a considerable contribution of real-time traffic 
witliout flow coiitrol. Undcr suficiciitly high lirik load, this ca~iscs sporitaricous 
overload peaks causiiig packet loss. Available traffic traces [2] show, that UDP 
traffic has a higher variability in the relevant time scales than the total traffic, 
which at the present stage is dominated by peer-to-peer data exchange. 

The impact of transmission errors on the user perception of real-time services 
can be investigated startiiig from measurement traces of traffic and loss pattern. 
In addition, a stochastic model can be set up and used to generate a considered 



error process with similar characteristics as observed in the measurement. The 
Gilbert-Elliott model [3,4] is one of the most popular examples, which has been 
preferably applied to bit error processes in transmission channels. Model driven 
studies usually include a set of parameters with a clear interpretation, which 
have to be adapted to a considered scenario. Their main advantage lies in an 
abstraction lrvcl, which makes thcm miirh more flexible than a fixed ineasiirc- 
ment trace. Thus the impact of different error rates, burstiness of error pattern 
etc. can be studied in a common modeling framework. 

Both, using real data loss traces-e.g. captured in backbone links-and model 
generated loss traces has its beriefits. The inain disadvaritage of using rriodel 
generated loss traces is that statistical properties may not fit and thus traces 
can be biased by model limitations. The present paper will propose a parameter 
estimation technique for a 2-state Markov model to adapt the model to the 
second order statistics observed in a given traffic trace on multiple time scales 
by moment matching. 

In Sectioil 2 we characterise the packet loss pattern observed in traffic traces 
based on the second order statistics, i.e. the coefficient of variation, in multiple 
time scales. We consider simple Markov processes to  be fitted to the observed 
second order statistics. 

Section 3 summarises classical fitting schemes for the Gilbert-Elliott model 
[3,4]. They do not Cover the second order statistics, which we found to be non- 
trivial along the derivation shown in Section 4. In Section 5, a comparison of the 
model with adapted parameters to the packet loss pattern derived from traffic 
traces shows that simple Markov processes achieve a fairly close fit to the mean 
and variantes over multiple time scales. Section 6 considers related work. 

2 Packet Loss Process in Data Transfer over Multiple 
Time Scales 

We consider a typical scenario found in backbone links of controlled TCP packet 
flows being superposed with real-time traffic over the UDP protocol, which does 
riot providc crror recovery arid flow control riicclianisrris. Wc rcfcr to measurc- 
ment traces of traffic taken from a 2.5 Gb/s interface of a broadband access 
router of Deutsche Telekom's IP platform, which connects residential ADSL ac- 
cess lines to the backbone. Based on the time stamp and the size of each packet, 
the variability of the traffic rates can be observed in time scale ranging from the 
accuracy level of the time stamps well below 1 ms up to the 30 minutes length of 
the traces. As the packet loss process shows characteristic behaviour on multiple 
time scales, techniques used for describing the variability in trafFic rates will be 
also used for describing the packet loss process in this paper. 

Let A be a time frame in this range. Then corresponding traffic rates Rk(A) 
are determined for successive intervals of length A by dividing the sum of the 
size of all packets arriving in a time interval by its length. From the sequence 
Rk(A) the mean rate p~ and the variance a i ( A )  are computed. In this way, the 
second order sta.tistics is given considering oi(A) over a relevant range of A. 
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Fig. 1. Mcaciircmcnt, topology: TCP hackhonc traffic' is fccd from a t,racc filc along 
with UDP traffic into a router. The traffic is directed over an bottlenecked link to a 
destination. The loss rate can be arbitrarily chosen by adjusting the capacity of the 
outgoing, bottlenecked link. 

This statistics is a standard description method for traffic and is equivalent to  the 
autocorrelation function over the considered time scales. Long range dependent 
traffic patterns arc clwsificd as cxact or sccond ordcr sclf-similar dcpcnding on 
the autocorrelation of the process [5,6]. 

Table 1 shows the second order statistics for A = 1 ms, 10 ms, 100 ms, 1 s 
and 10 s mcasiircd for the UDP and thc total trcafFic. The coefficicnts of variation 
c,(A) = a (A) /p  are observed to be about twice as high for UDP as for the total 
traffic. 

Table 1. Second order statistics for A = 1 ms, 10 ms, 100 ms, 1 s and 10 s for the 
UDP and the tolal LraITic 

UDP traffic 
Total traffic 

In this Paper, we adhere to the second order statistics for describing the 
packet loss process. The traffic traces are at a load level of about 30% and 
originally do not exhibit packet losses in the considered time scales. However, at 
higher load, i.e. for reduced capacity < 2.5 Gb/s, overload phases occur above 
some medium load level and we can easily compute the resulting packet loss 
process correspondiiig to the trace at, any siifficiently high load level. In general, 
the loss pattern is evaluated for a predefiiied capacity C (versus load) including a 
buffcr of limited sizc B, assuming that an arriving packet is lost by tail drop each 
time when it does not fit into the remaiiiing buffer. The loss pattern obtained in 
this way are adequate for uncontrolled UDP traffic, but do not regard the TCP 
retransmission and source rate adaptation. However, the TCP control does not 
respond on the 1 ms, but on essentially larger time scales. We assume that TCP  
will establish a stabilised non-excessive load level without much data loss and 
will fociis on t,he UDP traffic portion with regard to TCP background traffic. 

Mean Rate 
p = 50.8 Mb/s 
p = 753.9 Mb/s 

c,(l s) 
0.0433 
0.0259 

&,(I0 s) 
0.0394 
0.0216 

~ ( l  ms) 
0.3209 
0.1689 

c,,(10 ms) 
0.1220 
0.0635 

c,(100 ms) 
0.0531 
0.0322 



We obtain the packet loss process from the traces a t  a predefined load level 
and calculate its second order statistics. Since the loss rate is monotonously 
increasing with the load, we can adjust the load in order to approach a considered 
packet loss rate. 

Next, we study simple Markov models again with focus on their second order 
statistics. The aim is to provide a generator for packet loss pattern to be used 
in the estimation of the degradation in the Quality of Experience (QoE) for 
Internet services. 

3 Gilbert-Elliott: The Classical 2-State Markov Model 
for Error Processes 

We consider the Zstate Markov approach as introduced by Gilbert [3] and Elliott 
[4], which is widely used for describing error patterns in transmission channels 
[7-151 and for analysing thc cfficicncy of coding for crror dctcction ancl corrcction 
[16]. We follow the usual notation of a good (G) and bad (B) state. Each of them 
may generate errors as independent events at a state dependent error rate 1 - k 
in the good and 1 - h in the bad state, respectively. The model is shown in Figure 
2. For applications in data loss processes, we interpret an event as the arrival of 
a packet and an error as a packet loss. The transition matrix A is given by the 
two transitions 

P = P(qt = Blqt-I = G); r = P(q, = Gigtei = B); 
1 -P  P 

where qt denotes the state at time t .  
(1) 

Fig. 2. The Gilbert-Elliott model generating a 2-state Markov modulated failure pro- 
cess 

The stationary state probabilities .rrc and T B  exist for 0 < p, r < 1 [16] from 
which the error rate p~ is obtained in steady state: 



In 1960, Gilbert [3] proposed a model to characterise a burst-noise channel. 
I t  adds memory to the Binary Symmetrie Channel coded into two states of the 
Markov chain. Gilbert considered the special case of an error-free good state 
(k = 1) and suggested to estimate the model parameters from three measurable 
instances of a binary error process {EtI tEN,  where Et = 1 indicates an error: 

By knowing U ,  b and C, the three model parameters can be computed in the 
following manner 

Gilbert argues that the C measurement may be avoided by choosing h = 0.5 and 
using 1 -r = 2b. Furthermore, he showed that the method introduced above can 
lead to ridiculous parameters (p, r, h < 0, or p, r, h > I) ,  if the observation (the 
trace) is too small. Morgera et al. 1171 also conclude that the method proposed 
by Gilbert is more appropriate for longer traces. In case of shorter observations, 
better results can be obtained when considering the Gilbert model as Hidden 
Markov Model trained by the Baum-Welch algorithm 118-201. 

Parameters of an even simplified Gilbert model with h = 0 can also be 
estimated with the method presented by Yajnik et al. [8] 

A more intuitive parameter estimation technique can be found by considering 
the Average Burst Error Length (ABEL) to determine r = l/ABEL and the 
average number of packet drops to determine PE. Equation (2) leads to p = 

p~ . r / (h  - PE). Gilbert's model was extended by Elliott [4] in 1963 including 
errors in both states as in Figure 2. 

Table 2. Comparison o l  simplified two-state Markov channel models 

4 Variance of the Error Process over Multiple Time 
Scales 

The second order statistics of the 2-state Markov process can be derived via 
generating functions. While it is straightforward to compute the distribution 



function of errors in time frames of length Ar + 1  iteratively from the result 
for length N, a non-iterative direct solution is less obvious already for the 2- 
state Markov model [21]. To the authors knowledge, explicit expressions for the 
variance of the number of errors during a time frame of fixed length, are not 
given in the literature, although there is a large volume of work involving the 
Gilbert-Elliott model, as partly discussed in Section 6 on related work. However, 
most of this work is devoted to  error detecting and correcting codes and the 
residual error probabilities of coding schemes, rather than on traffic or packet 
loss characterisation. Second order statistics in multiple time scales is a standard 
approach in teletraffic modelling [ 5 ,  61. 

Although Markov models do not exhibit self-similar properties, they have 
been successfully adapted to self-similar traffic 1221 and are still popular since 
they often lead to simple analytical results. Following this trend, we next derive 
the variance of the number of packet drops as errors in the 2-state Gilbert-Elliott 
model over a range of relevant time frames. 

4.1 Generating Functions 

Let G N ( z )  ( B N ( z ) )  denote the generating function X ( Z )  gf Ci P { X  = i ) z i  
for the number of packet drops in a sequence of N  packet arrivals, leaving the 
Markov chain in the last step at state G  ( B ) .  Iterative relationships can be set 
up to compute G N + ~ ( Z )  from G N ( z )  taking into account the state transitions 
and factors (k  + (1  - k ) z )  and ( h  + (1 - h)z )  for possible drop of the ( N  + 1)-th 
packet with state dependent probabilities 1 - k and 1  - h, respectively: 

Starting in steady state conditions we initialise 

The corresponding distributions G N ( z ) ,  B N ( z )  remain defective G N ( ~ )  = T/(p+ 
T )  and B N ( l )  = p / ( p  + T )  'dN E W .  Wc finally cvaliiatc complct,~ distributions 
given by G N  ( z )  + B N ( z )  where G N ( l )  + BN (1) = 1 independent of the final 
state. 

The k-th moment can be derived from the generating function by considering 
the k-th derivative [23,24]: E [ x ~ ]  = & ~ ( z ) l , , l .  The mean p~ = E ( X )  and 
the second moment E ( X 2 )  are sufficient to dcrivc tlie sccond ordcr statistics 
involving the first and second derivative of the generating functions. 



4.2 Mean Values 

The mean values are given by /LN = Gh(1) and P; = B;V(l), which leads to the 
following expressions 

Considering the sum of and leads to the expected result of N + 1 
times the failure rate in the steady state: 

To eliminate the reference to the opposite term, P E + ~  can be rewritten as 

Next, we structure the above equation according to their dependence on N 
and P: with abbreviations for the main terms o, ßB and YB: 

Computing a series of the first mean values 



suggests the general result, which is proven by induction over N :  

The case a = 1, which means p = r  = 0 implies a reducible and thus non-ergodic 
Markov chain, which is not relevant for modelling purposes. 

Due to the symmetry of both states G and B, G N ( z )  can be obtained from 
B N ( z )  by swapping the parameters p r  and h k  and vice versa. Thus, 
GN(p , r ,h , k , z )  = Bnr(r,p,k,h,z) and p$(p,r ,h ,k)  = pg(r ,p , k ,h ) .  Consider- 
ing the sum /L; + ,I.$ again leads to Equation (15). 

4.3 Explicit Solution for the Variance 

Using the mean values, the variance of the number of packet losses in a time 
frame of size N can be derived as follows 

The sum of the mean values yields 

Based on the relationship GN(1) + Bg(1)  = + U $  - p ~ ,  the previous 
solution for GN+l( l )  + BN+l( l )  yields the standard deviation U N  = U: + 05 of 
thc niimbcr of lost packets aq well aq thc cocfficicnt of variation c , ( N )  = a N / a N .  
We h a i l y  arrive at the following result for c,(N) expressing the second order 
statistics of the number of errors or packet losses in a sequence of length N 
generated by the Gilbert-Elliott model: 

2 ~ r ( l - p - r ) ( h - k ) ~  l - ( l - ~ - r ) ~  

w2(p + r )  ( I -  N ( p + r )  
(22) 

Thc soliitioil is comprchcnsiblo cnoiigh to intcrprct, the influencc of thc modcl 
Parameters. Note that the evaluation of the term 1 - (1 - p - r ) N  may cause 
numerical instability for small p, r, which can be improved by implementing the 
equivalent form 1 - (1  - p - r ) N  = 1 - e'n(l-p-r).N. 



4.4 Simple Cases 

In case of h = k, both states are indistinguishable and the Markov chain collapses 
tjo a singlc s t a k  l~arling to thc simplified rcsiilt 

This corresponds to a binomial distribution GN(z) + BN(z) = [h + (1 - h ) ~ ]  N 

of independent random packet losses generated by a memoryless process. 
If p + r = 1, the Markov cha.in again generates a memoryless process, since 

the transition probabilities, e.g. to state B, are the Same starting from B or G: 

Again, the coefficient of variation is simplified: 

The precondition p + r « 1/N also leads to a simpler representation of the 
form, since the last fraction in Equation (22) approaches 0 in that case: 

4.5 Parameter Impact on the Second Order Statistics of the 
Gilbert-Elliott Model 

N -Time Scale [Packets] N -Time Scale [Packets] 
(a) h = 0, k = 1 (b) h = 0.99, k = 0.9999 

Fig. 3. Parameter impnct on the second order statistics of the Gilbert-Elliott model 

Based on the analytical result in Equation (22) for c,(N), the main properties 
of the second order statistics of the Gilbert-Elliott model become visible. 



1. The starting point of the curves for cv(N) is given by cv(l)  = J(hp + kr)/w = 

J- and thus only depends on the packet loss rate. 
2. Figure 3(a) shows curves of c,(N) for h = 0 and k = 1 such that the 

bad state generates bursts of subsequent packet losses and p~ = T B  = 

r / (p  + T). In all examples of Figure 3(a) we keep the ratio r /p  = 1/100 
constant such that p~ = 1/101 + cv( l )  = 10. The curves are characterised 
by a horizontal part, which holds the variance on the initial cv(l)  value 
followed by a declining part. The length of the part a t  constant level depends 
on p + T, i.e. on the intensity of transitions between the states, which is 
different but fixed for each curve in Figure 3(a). The sojourn times of the 
good and bad state are geometrically distributed with mean (1 - p)/p and 
(1 - ?-)/T, respectively. For lim,+, , 0 the mean holding times of the states 
are extended on longer times scales. 

3. Then the correlation in the modelling process persists over about the Same 
time scale and the transition point from the constant to the declining part 
of the cv(N) curve is shifted in the range between l / p  and l l r .  
The decreasing part soon approaches the Same slope as is valid for a mem- 
oryless process with independent random losses at a given rate, such that 
c v ( k N ) / ~ ( N )  -, &. 

Figure 3(b) shows results, where p + r is again stepwise reduced by a factor 
10 as in 3(a), but this time with h = 0.99, which means a low loss probability of 
1% in the bad state and by setting r /p = 1/10 the total loss probability is kept 
a t  p~ = 1/1100 + cv(l)  = m. Again thc cocfficicnt of variation stays a t  
a constant level over multiple time scales for small p + T, but essentially below 
the initial cv( l )  value. 

5 Evaluation 

The evaluation of the trained 2-state Markov models using the coefficient of 
variation cv(N) = g ~ / p ~  is shown for two backbone traces with different packet 
loss rates in Figure 4 and 5. The Poisson process provides a linear lower bound 
for cv(N) without any autocorrelation. The parameters of the simple Gilbert 
(h = 0, k = 1) and the Gilbert model have been estimated from the given traces 
using the traditional methods proposed by Yajnik et al. [8] and Gilbert [3] as 
introduced in Section 3. 

Moreover, the siinplified Gilbert, the Gilbert and tlie Gilbert-Elliott model 
have been trained based on the second order statistics over multiple timescales 
N E [l, 105], as shown in Figure 4 and 5. The model parameters were esti- 
mated by fitting the coefficient of variation curve to the one obtained from the 
corresponding trace using the Levenberg-Marquardt algorithm for numeric op- 
timisation of non-linear functions. Initial trial values for the parameters were 
estimated from the study of the impact of different model parameters discussed 
in Section 4.5. 
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Fig. 4. Evaluation of the traiiied 2-state Markov models using the coefficient of varia- 
tion C, = u/p for a backbone trace with a mean packet loss rate of 0.7%. 
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Table 3. Estimated model parameters for both traces using second order statistics. 
Tho mean packet loss rate of thc first trace is 0.7% and 0.1% in ca.5~ of t,hc sccond. 
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-X.. : ..-*.... Simple Gilbert using eq. (5) 
: 0 Gilbert using eq. (3-4) 
. . . . . Simple Gilberi u@ng 2" order statistics 
. . . . . . . . . . . . Gilbert using 2" order statistics 

Gilbqri-E!liott u ~ i n g  2nd order statistics , 

Trace 
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0.1 % 

The distance between different model curves as shown in Figure 4 and 5 and 
the trace curve is measured by the the Mean Square Error (MSE) 

I 

I 

C 

where a smaller MSE indicates a better fit. Table 4 compares the considered 
models. 

Thc modrl paramrtcrs rcsiilting from the adapt,ion to thc cocfficicnt of varia- 
tion found in the trace are given in Table 3. This trend confirms the assignment 
of h = 0.5 by Gilbert [3]. The packet loss rate p~ of the simple Gilbert model 
with h = 0 essentially deviates from the trace. 

Trained Model 
Simple Gilbert 

Gilbert 
Elliott 

Simple Gilbert 
Gilbert 
Elliott 

PE 
0.95% 
0.77% 
0.71% 
0.13% 
0.098% 
0.098% 

P 
0.000401648 
0.000196854 
0.000132253 
2.9365.10-3 
1.3343.10-' 
1.33308.10-' 

r 
0.0414789 
0.0109547 
0.00811837 
0.0229754 
0.00601795 
0.00601795 

h 
0 

0.563513 
0.559691 

0 
0.555044 
0.554949 

k 
1 
1 

0.999372 
1 
1 

0.999999 



Table 4. Mean Square Error (MSE) distance between different trained models and the 
two traces. The Markov models were trained using classical techniques (eq. 5 and 3-4) 
and the second order statistics as described in Section 4. 

- 
2 
0' 

C 0 .- 
W m .- z 
2 - 
5 I r  .- 
0 .- " . 
Z 

However, when we look a t  the distribution of the length of packet losses in a 
scries, tlieri thc classical fitting proccdurcs seeni to be in favour, as cxpcricnccd 
from first evaluations. This is not unexpected, since they are closer relatecl to 
error burst lengths whereas the second order statistics can include long range 
correlation. The extraction of the most relevant information in measurement 
traces to be used for t,he fitting of model pararneters with regard to the Quality 
of Experience aspects (QoE) is still for further study. The relevante of bursts 
surely increases with the observed mean failure burst length in a considered 
traffic flow. 

a> 0 
o 

0.1 

6 Related Work 

Cuperman [21] derives the generating function H,(z) for m errors in a binary 
series of arbitrary length, where P (m,  n) denotes the probability of m errors in 

. - Trace 

. ----M---- Poisson Process X.. 

. . . . . . . . . Simple Gilbert using eq. (5) 
0 Gilbert using eq. (3-4) 

. . . . . . . . . . . Simple Gilbert using 2nd order statistics 
Gilbert-Elliott using 2nd order statisjics 

11 

I 
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N - Time Scale [Packets] 

Fig. 5. Evaluation of the trained 2-state Markov models using the coefficient of varia- 
tion C, = a / p  for a backbone trace with a mean packet loss rate of 0.1%. 

r 

Trace / Model 
0.7% 
0.1% 

Simple Gilbert (eq. 5 )  
4.02 
43.42 

Gilbert (eq. 3-4) 
1.3 

19.04 

Elliott 
0.18 
1.09 

Simple Gilbert 
0.98 
7.96 

Gilbert 
0.2 
1.09 



a series of length n. 

However, the result is not directly transferable to obtain the second order statis- 
tics, since it is summing up over an infinite range of the length n rather than 
foriising on a f ix4  length n. 

Girod et al. [7] found a simple Gilbert model (k = 1, h = 0) useful to describe 
the characteristics of packet losses in Internet connections and to derive an error 
model for Internet video transmissions on top, as lost packets will affect the 
perceived quality of the video transmission. Huitika et al. [25] extended the 
simple Gilbert model by adapting it to the datagram loss process in the scope 
of real-time video transmissions, by adding a third state to describe out-of-order 
packets. Zhang et al. [9] use a simple Gilbert model to describe a cell discard 
model for MPEG video transmissions in ATM networks, where the cell losses 
are caused by excessive load at ATM multiplexers. 

McDougall et al. [26] proposed a 4-state Markov model with a hypergeomet- 
rical distribution of the sojourn time in the good and bad state as approximation 
of an IEEE 802.11 channel. Poikonen et al. [14] [15] compared finite state Markov 
models, such as the McDougall model, in order to simulate the packet error be- 
haviour of a DVB-H system. The McDougall model and the Markov-based Trace 
Analysis (MTA) [27] outperformed the Gilbert model, as the latter was unable to 
reproduce the variance in burst error lengths. Yajnik et al. [8] point out that the 
simple Gilbert model is suitable if the error gap length of the traces is geomet- 
rically distributed, but can be outperformed by considering high-order Markov 
chains. 

Tang et al. [12] used a simple Gilbert model to create a multicast loss model 
in IEEE 802.11 cliaiincls. Hartwcll ct al. [13] conipared fivc firiitestatc Markov 
models to create a frame loss model for IEEE 802.11 indoor networks and found 
out that high order models trained by the Baum-Welch algorithm outperformed 
the Gilbert model. McDougall et al. [ll] were able to reproduce the packet 
error rate and the average burst error length of an IEEE 802.11 channel using 
the simple Gilbert model, but failed to replicate the variance in error burst 
lengths and therefore suggested to use Gamma based state durations, as in [28]. 
McDougall et al. [ll] also suggest that the restriction of geometrically distributed 
state lengths due to the Gilbert-Elliott model can be overcome and, for example, 
the Gamma distribution can be used. 

7 Conclusion 

This work provides a method to adapt the parameter set of a 2-state Markovian 
error pattern generator to match the second order statistics over multiple time 



scales. The generating functions approach provides recursive relationships for 
the distribution of the number of lost packets, which finally leads to an explicit 
and clearly structured solution for the second order statistics. Special cases of 
the model as well as the impact of its parameters are discussed. Naturally, fitting 
procedures based on second order statistics yield a closer match in multiple time 
scales than classical adaptation schemes, which on the other hand are better in 
modelling error bursts. 

Therefore it depends on the purpose of the model and it partly remains 
for further study, which statistical indicators should be involved in the fitting 
procedure. However, the proposecl approach gives more flexibility to include 
information from different time scales enabling a simple and iisefiil fit for long 
traces of traffic and packet loss processes. Several Markov approaches have been 
proposed providing more states and parameters, which improve the accuracy 
of the fit to the observed process characteristics on account of more complex 
adaptation schemes. 
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