
, L L a l l r > T 1 , 1 U ~ e l i ~ i u i llehr~irrriri, RuljGuido Herrlwich, Werrier Schulz, 7honia.r Scliüll, RalJ'Slein-
metz; HeiTS - Architecture and Implenienhtion Strategy of tlie Heidelberg High-

H ~ S ~ Y /1 Speed lkansport Systeni; 2nd International Workshop oii Network and Operating
Systein Support for Digital Audio and Video, Heidelberg, 18.-19. November 1991,
Taguiigsband erscliienen als "Lecture Notes in Computer Scieiice", Springer Verlag,
1992.

Iniplementing HeiTS:
Architecture and Implementation Strategg

of the Heidelberg High-Speed Transport System

Dietnlar Helmaiul
Ra[f Guido Herrtwicll

14'eriler Schulz
Thomas Schütt
Rolf Steinmetz

IBM European Netaorking Center
Tiergartenstr. 8

D-6900 Heidelberg I

1.0 Introduction

The Heidelberg Higli-Speed Transport System (HeiTS) is a new-generation end-to-er:
cornmunication system currentlyunder development a t the 1BAl Europ.eaq Yetyo5:-
i ng . Center. (ENC): in. Heiddberg. H e F S iS -aimed af a hetercigeneous e n ~ i i o n m c :
comprising sevetal Computers with different operating systems and a ~-2;iety .:F
underlying local, metropolitan, and xride-area network. It incorporates hth er:-
system and gateway cornmunication functions. . .

1n new high-speed kt\s.orks, an integration ofdiffercnt traftic types c i n be obser\.?i:
Whereas, e.g., Ethernet was designed for data traffic only. F D D I S U ~ ~ O ~ ~ S d a t a - t ~ c
t raf ic (asynchronous) as well as voice. and video traffic (synchronous), eltreit i: z
rudimentary form. Such an integration in the physical network should le id to I-

integrated cornmunication systern as ü whole. HeiTS is designed to suppon fast a t
traffic and multimedia communication, in panicular the transfer of digital zudio zrt
video. ?he HeiTS pototype is conceivedto be' ageneric basis for h i g h - s ~ - d dzz . . ~.

tfanSport appiications such as CAD file transfer, and multimedia com~ilnicatir.:
appIications such as video distribution.

For many years, networks were the bottleneck of data transmission. Prmessi;
equiprnent in the end-systems and gateways rras faster than the transmission lines 5:

that bandwidth usage had to be optimized @ver processing. With the u p c o m k . .
high-speed networks, this paradigm is changinf: Shortage of resources is r , c ~ in :-:
nodes. To achieve high performance, both architecture and irnplementation oi Hei7S
are oriented to optimize processing over band~vidth use.

HeiTS is primarily directed to two platforrns xvithin 1BhZ's Srnall Systems Line: .L::
PSI2 under OS12 and the RISC System/6000 under AIX. This imposes t h e b u r k
to interfacc HeiTS with two disjoint opcrating systems, but the common bl ic rochz-
nel bus architccture of both machines ofrcrs the opportunity to use idcntical comrr--
nication network adapters on both systcins. Thc primary netaorks to be operatr.:
by I-leiTS are Token Ring, FDDI, and Broadsand-1SDN. For B-ISDN, 2 First X,?--

sion will attach to a n STM network, latcr versions will interfaut with an A T M n-:-
xvork.

Thi% paper discusses our irnpkrnentaticin decisions fcjr HeiTS. ~ e c t i o h 2 intridubei . ' .
the overall rnultimedis systern architecture into which HeiTS will be integrated.
Section 3 elaborates on the support functions that serve as building blocks for the
construction of HeiTS. Section 4, finally, discusses the actual communication func-
tions that HeiTS provides. For thc objectives of the system please refer to an earlier
Paper [SI.

2.0 Overall Multimedia System Architectwe

HeiTS is just one module within a general platforrn for multimedia applications. It,
therefore, has to fit into the overall architecture of such a platform. This section
discusses the external constraints on the implernentation of HeiTS which result frorn
the need for integrating HeiTS with a surrounding system.

2.1 Stream Handlers

Multimedia data usually enters the computer through an input device and leaves i t
through an output device (where storagc can serve as an 110 device in both cases).
11 is less common that the data is generated by the Computer itself, i.e., calculated or
interpreted by the CPU. Nevertheless, this case occurs in simulation and conrrol
applications; a multimedia architecture needs to take it into account, too.

. . .

~n entity generatlng o r corisurning a iaw stream of co&tinuous'multimedia di ta ii
commonly called a stream handler. The term "raw" shall indicate that no stream-
handler-spccific data is contained in the stream. For exarnple, i n a transport system
(which .would be a typical. strearn handler),. the data must not contain -any protocol
headeio or traüers; they have no meani'ng' to other- stream hand1ers;e.g.. those re-
spon~ible for video output. We make.no .restriction o n t h e encoding of a raw stream.
In particular, a stream c a n b e compresscd or uncornpiessed. Any stream should be
typed to prevent it from being directed to the wrong stream handler.

Strearn handler functions are often distributed arnong the main CPU and on-board
processors. In case of video decornpression adapters most of the strearn handler

, software executes on the on-board DSP of the adapter. Additional software corn-
pletes the stream handler to access the board from an application. Whenever the
adapter does not deliver raw data, but some additional information, the stream han-
dler software that executes on the main CPU becomes more complex. Multimedia file
or transport Systems are examples of sucli stream handlers. In applications where
multimedia data is generated or consumed by the computer, a stream handler may
run on the CPU only.

In a modern system which follows the microkernel approach, one will a m v e at the
following three-level code structure for a stream handler implernentation:

Hardware portions of stream handlers are executed on an adapter board. In
many cases. one will not be ablc to change thesc strcam handler portions.
Ijowever, some modern hardware strcam handlers are rnicroprogrammable.
Device drivers constitute the stream handler portion executed inside the operating
system kernel to interface to the hardware adapter.
Software portions of strearn handlers execute in User space, on top of the oper-
ating system kernel. From a software engineering viewpoint, the majority of the
stream handler codc should belong to this porlion. Slream handlers which do

not reqliire special hardware Support (e.g., simple -filter functions) c.an k imple
mented in software only.

This layered stream handler structure is continued within each stream handler por-
tion. In particular, the stream handler implementation of a transport w e m will
contain the traditional communication layers.

2.2 Threads

Stream handlers need to obey the inherent real-time requirements of auaiovisual
data: They have to deliver their output before a certain deadline to make it available
in time for its presentation or consumption. In addition, they may have tc' reduce
jitter between the delivery of adjacent output items or synchronize the pre~entation
of their data items with those of other stream handlers.

The following implementation structure makes it easy to take these timing criteria
into account: All stream handler software portions are encoded as functions of e
single task. .This task assumes the role of an audiolvideo server ahich - wmewha!
similar to the X server - provides a common input/output environment for time-
critical multimedia data. The functions of the AV server are executed by f l~rea&
which escort a single piece of multimedia data from input to output. They mait te
obtain the data from the device driver, then execute the layered functions of t be inpür

. . . stream . handler in a n upcall fashion [2] , execute the functions of ' theoutpur strearr,
handler in a downcall fashion and finally subrnit the da ta to the outpu: devic:
through the corresponding device driver functions.

Threads, much better than messages themselves, can take the timing requirenents of
multimedia data into account. Each thread can be scheduledaccording t o the ur-
gency o f the data i temit handles using real-time scheduling techniques. It also car
be synchronized with the execution of other threads through well-know-n process
syrichronization functions. An appropriate synchronization point is the s a i t c h -fror
the upcall to the downcall Segment. A thread can also be paced at this p0ir.i by de-
laying its execution for some time.

A multimedia application runs on top of the AV server outside of the real-time envi-
ronment. Multimedia data usually does not pass through the application; t he appli-
cation merely manages the flow of data in the AV server. To manage the dz ra flow.
we distinguish between device control operations that determine the content of 2
multimedia stream and srrearn conrrol operations that determine its direction-

Device control operations depend on the individual 110 device. Devices may k
grouped into classes and their device control operations rnay be derived pezerically
as suggested in [IO]. For Storage devices, typical control operations includr
fasrforward, reverse and seek. Other opcrations are Zoom for cameras and ~~o lu in r
for speakers.

Stream control operations arc thc sarnc for alt stream handlcrs. Tlicy includc

open/close (applicd to individual strcarn Iiandlcrs, yiclding s/r.r<un handi~ .c) ,
conr~ecr/disconnecr (applicd to pairs of streani Iiandles. yiclding srream ~dent (f i -
caiions), and

, . *. .. stdrt/stup (applied to strearn identificatioms).

The Open function is a hybrid between a device control and a strearn control opera-
tion. It usually requires inforrnation specific to the stream handler that also deter-
mines stream content. Except for stream handlers that cannot be multiplexed (such
as those for microph~~ies and speakers), opening the stream handler is not enough:
In a file System, the file to be accessed needs to be known. In a transport system, the
address of the cornmunication Partner is required. In a video display, the area where
to display the data on the screen is needed. This information is provided by
handler-specific Parameters of the Open call.

The connecl function generates a thread to escort data from the input to the output
strearn handler. When the connection is established, system resources a re allocated
to ensure that the thread can perform its function according to the application's re-
quirements (On time, with a certain reliability, etc.). In distributed applicauons, such
resource reservation has to be made from end to end, including the network.

In addition to the above functions, an application can also specify that a connection
(= tliread) shall be synchronized. In this case, Ihe above-rnentioned synchronization
mechanism is enabled and threads are potentialiy delayed.

The following picture shows the overall architecture of HeiTS:
~ ~

Appllcatlon
I Uaar

Figurc I. HeiTS: Architccture

Tlic dcvices drivcrs (DD), tlic transport systcm (1's) and thc audio/video handler
(AV) are exarnplcs of strcam haiidlcrs. Data flows frorn a network adaprer through
tlic corresponcling <Icvicc <Irivci- t« tlie transport systerii, wherc ilic cornrnunication

functions are provided (sec 4.0), passed over t a the audio/\/ideo handler anu written
to the adapter using the AV-device driver. The buffer management system (BMSi
enables the handling of the data between the different stream handlers withnut copied
them (see 3.1). The resource management system (RMS) allocates and manages the
resources (see 3.2). The stream management system (SMS) provides the interface
the application.

3.0 Support Functions

In protocol implementations, the protocol machine wntributes only a srnall fractior
to the overall processing time. Most computation power goes into Support function'
such as data administration, communication between modules (e.g., processes), etc.

T h i s is even more true for light-weight protocols with their streamlined protocol ma-
chines.

In HeiTS our goal is to handle data in real-time. First of all, this rneans t h a t sorne
delay bounds for the data handling can be guaranteed. As delay bounds for audi-
ovisual data are tight, this autornatically translates into fast data handling. T o han-
dle data efficiently, a sophisticated buffer management is needed. To schedule the
resources for real-time data handling, we need a resource managemenr which reserve'
the resources in HeiTS and guarantees the cornmitments made.

Conceptually, data always flows frorn one stream handler into another. Hox~ever' ii
a significant portion of the streanl handler is realized in software and rnal ic~ use
the CPU, this flow o f the data should not implycostly da ta copying, in pcrticular .'

copying from kerne1 to User space and back.

The buffer management System (BMS) enables the transfer of the data "heln\v" the
stream handlers to achieve higher performance. In this case, special device czpabili-
tics such as direct adapter-to-adapter transfer can be utilized and the BSIS hide.
differences between buffers on different adapters and in main memory.

The BMSnot ~ n l y avoids copying while data i i flowingbetwegtstream handlers;ii ..'

also provides features needed.for efficient'protocol irnplementations such a chaining
of buffer fragments (headers from different layers, data, possibly trailers) and lockin:
(e.g., to keep buffers for retransmissions).

A BMS buffer consists of one or more blocks of memory (called fragments) whicli are
linked together. The information describing the buffer is contained in a buffer de-
scriptor, so no buffer management information has to be stored in the fragrnents.

Buf fer
Deccrlptor

Figure 2. BMS: Burrers and Fragments

A fragment- cotisists of three Parts:.
~.

The dala are'a is filled with information.

, .
. The empty area is,free and can be used to store information (e.g., to zdd a p:cs

tocol header).
The dirty area cannot be used (it can contain adaptcr specific informaiion).

Thepointers to t h e , different areas are stared in.-the buffei -descriptor. . Space iL z . .

fr&rneni isallbcated from the back to the front, so each layercan add irs heai-r.
If there is no ernpty space left- in the fragment, a new fragment is allocared a n t 5
linked to the current buffer. So it is not necessary to copy the bulfer.

A side effect of this scheme is, that segrnenting and recornbining of data units is pix-
sible without copying the data. T o Segment a data unit into, e.g., two pieces, 15:
BMS allocates a second buffer descriptor which points t o the same fragment(s) irt
onIy changes the pointers to the different areas accordingly.

Normally the last stream handler handling the buffer gives the buffer back io 2.:
BMS afier Lhe data is copied to the external device and the buffer is fresd. Un2:r
some circumstances a stream handler may Want to keep ~ h e data for later use, e.5..
ihe transport layer may keep a buffer for reiransmissions if it has to providc z reliatl;.
service to its User. In this case the respective stream handler can tell the B M S to 1i.i;.
Llie buffer. When a locked buffer is returned io tlie BMS, it is not actually frced U;:.:

tlie lock is removed.

3.2 Resource Management

Thc resource management System (RMS) aiiocates resources for connections ro
guarantee a certain throughput, delay and rellability [6]. The workload model used in
HeiTS is the Linear Bounded Arrival Process (LBAP) , which was introduced hy C m
[4] and employed, for example, in SRP [I]. Whenever a new connection i; establislci.
the RMS makes Sure that this connection does not violate performance guarantees
already promised to other connections. There are two typs of connections: best ef-
fort and guaranteed.

The RMS consists of submodules for each resource (e.p., local resources like CPU
processing capacity and network resources like bandwidth) to perform schedulabili-
testing, reservation, and resource scheduling. The RMS also reserves buffer space.
The buffers needed for a connection are allocated statically from a buffer p l . The
amount of buffer space to be reserved is based on the throughput and the b u n t size.

Let us discuss the reservation and scheduling of the C P U as an example for the re-
source management techniques cmployed. For any new annection, a schedulabi1ir.-
test is performed: Based on the masirnum message rate of a connection and tke
processing time needed per message it is calculated whether the acceptancr of thii
new connection could violate guarantees for other connections. If this is the case tiie
new connection is .rejected. The values calculated for accepted ~ n n e c t i o n s are stored

. i n a local database.. This informatioti is used by the R M S for further schedulabi l i~
, .

. .

tests and by the schedulerfor scheduling the thread proc=ing the message.~

For CPU scheduling we are currcntly using three priority classer;:
.

' 1 . . critical threads, . .
2. critical threads that have u&d u p their processini time, a5 specified ' b y their

workload specific'ation, but require further processing (this ic based on Gur opti-
mistic assurnption, that this message can makc up for the lost time in later re-

- . sources and is especially useful for best effort connections). and
3. threads that are nO stream handlers (the normal System threads).

Currently we investigate to use a fourth class for workahead mesages, but it. is.nc?: :

clear $fhe potentiaily.better CPU. utilization'is- worth the schedulingeff6rt (whict
consumes CPU capacity itself).

The scheduling within the different classes is currently bascd on a modified rare-
monotonic scheme, where the priority of a thread is based on the message rate for t t -
respective connection. For incoming messages the urgency is calculated and depen6-
ing on the outcome the message is passed to the thread handling the connection di-
rectly or it is hold back by the scheduler.

In the future we plan to also use deadline scheduling where the priority of a threzC
is calculated based on the urgency of an arriving message.

4.0 Cornmuiiication Functions

Using the Support environment introduced in ihe previous chaprers, HeiTS r e a l h
the runction of the lower 4 layers of the OS1 rererence nodel 25 n slrcam kandlrr
pimviding ciidsystcrn-10-cndsysccrn lransrcr oT rnuliirncdia dala iiens.

4.1 Design Deckions

Basedon the application requireme~its either a reliable or an unreliable cornmuni-
cation path between a sender and a single or multiple recipients can be established
by HeiTS. QOS Parameters are used to specify such requirements. Formally, the
services provided are based on the. ISO transport service standard document (7);
however suitable enhancements had to be defined to Cover typical multimedia re-
quirements. Additionally, the use of certain ISO defined optional facilities had to be
restricted to ensure isochronity requirements could be met.

Specific design decisions have been made in the following areas:

Calling conventions: Downcalls are used for outbound comrnunication (i.e., re-
quests and responses in the OS1 terminology), upcalls for incoming indications
and confirmations.

This architectural decision ensures in particular that incoming data can not only
be offered for processing to the application - as is standard practice in today's
data-oriented communication Systems -, but that any required procasing can
directly be initiated by HeiTS at the correct time. Side effects of this design de-
cision include reduced elasticity buffer requirements and that immediate
connection-specific processing can b e done in the . user-provided . . indication . and

. :
. ,confirmation routines.

Entry points into these User provided functions are passed to ttie transporr sub-
system at the latest possible occasion.

Multicast: Multicast is supported-by the network layer where the topoiogy bfthe '
network is kn'own. T w o forms of multicast are disiinguislied: Inrraditional
"sender-initiated" multicast, the sender enumerates its communication Partners.
In "receiver-initiated" multicast, a receiver may join an existing communicatiön
(probably without even informing the sender about its presence).

Mulfiplexing: Multiplexing is not supported for time-critical traffic above rhe
data link layer,i.e., . . . a datalink .. copnection.wil1 always -be mapped .Onto a singt& :

- trahsport' connection. It is necessary to support multiplexing in the data link
layer since some networks Support only one physical connection. I t s exclusion
for network and transport layer allows for easier identification of the receiving
process for incoming data.

Spliffing: Splitting is not supported, i.e., a single upper-layer connection does
not use more than one lower-Iayer connection. In particular, one transport con-
nection never scnds data over two or more network adaptors. Splitting was once
used to let a fast processor output data to several slow networks, increasing the
overall througbput of a connection. In an environment, where networks become
faster than processors, splitting becomes obsolete.

Segmenlal io~~: Segmentation should be avoided, but is supported by HeiTS.
Segmentation to and reassembly of very srnall data units (such as ATh4 celk),
however, shall be accornplished in Iiardware - HeiTS is not oprimized for this
function.

Florv cot~rrol: 1710w conti.01 consists o i end-to-end flow control to prevent the
reccivcr irom bcing flooded with data and accsss control to pi-event t h s network

-from- being overloaded; For t ime critical unriliable traffic, ~ e i ~ i appli-es a:
rate-based control scheme for connections and enforcg the rate of connections
through leaky bucket algorithms. For conventional reliable data communication
the standard techniques are used.

4.2 Implementation Structure

Internally the communication subsystem is structured into 3 layers:

Transport Sublayer: The transport subsystem provides reliable and unreliable
end-to-end communication services enhanced by provisions for multimedia data
transfer. The use of these provisions results in an isochronous data delivery
whenever a respective quality of service was negotiated. As a starting point, an
extended ISO transport service is considered. A modified ISO transport protocol
class 1 [8] has been implemented. Other protocols (e.g.. XTP) are under wnsid-
eration.

Network Sublayer: The focus of the network layer work is in the areas of
multicast Support and LANIWAN internetworking. Tu70 different protocols are
currently being implemented for experimentation: As a result of previous ISO
:werk, a modified-X.25 versipn is used fpr un.icast ex~erinients in gatc.W.ay sce-

. .
narios: The lnteinet protocol ST:II 11.21 is used to kxperiment with multi&ist
communicatioii over guaranteed-perforrnance channel';.

. Connectivity ~ u b @ s t e m : The connectivity subsystem' provides a.data link =rui&
interface to HeiTS. On most of the already available adapters for .high-speed-
networks a da ta l ink protocol is implemented: The connectivi.tysubsystern hides
the different interfaces of the drivers for the various netmork adapters. - Network
adaptors currently under consideration are 4 a n d 16 Mbit Token Ring: FDDI!
and B-ISDN.

A stream handler interface is built on top of the HeiTS stack.
.

4.3 Sample Session

Let us discuss a "typical" example scenario from the transport System interface per-
spective. Assume the head of a small company wants to give his Monday rnorning
speech (a monologue, of course) to his employees sitting in their offices with their
multimedia workstations switched on and ready to listen to their boss. When the chief
is ready to begin, we will See the following events at the transport service interface:

. ,

, .

Ctiief Employees -
ts-open-sap (HHSAP, ..., Pts-conn-ind, Ots-disc-int. ...)

t s-opensap (MMSAP, . . .)
t s c o n n r e q (HMSAP, Employeel i s t ,

(error- indication, 1.4 Hbps, 25 SDUs per second, 258 msec constant d e l a y) ,
@ts-connconf, . . .)

>ts-conn-lnd (. . .)
tsconn-rsp (..., @ts-data-ind, ...)

>ts-connconf (. . .)
ts-datoreq (. . . , @fi rs t -p ic tureda ta)

>ts-data-ind (. . .)

tsdisc-req (. . .)
>ts-disc-ind (. ..)

ts-close-sap (MMSAP)

Figure 3. Unidirectional Live Distribution of Cornpressed TV

. In this . . examplexhe . .. symbol" " is used:toidentify upcal15.: ?@" stands for "address
ar'.

The example illustrates some of the key choices made for the HeiTS design: First, the
concept of specialized service access. points is uscd to disringuish niultirnedi8. and
:regular data iraffic. Second, a se tof QOS. parameters is used to-specify t he applica-
tion requirements. In tliis casetypical values for the distribution of compressed video
are given. In particu1ar;error indication 'but no ccirrection is specified. Th i j enables
the output stream handler to- substitute, e.g<,.a corrupted video frame b y either a
previous full frame or a Zero delta frame which will prevenr the error from being vis-
ible. However, strong isochro'nity for the individual pictures and voice sampie is re-
quired. Third, only addresses are passed a t . the . .. procedure : interfaces whenel-er dara . .

. . n e e d t o be.handed over an interface. . ~

5.0 Summary

HeiTS is designed to handle high-speed da ta applications as well as multimeciia data
applications within IBM's Small System line (PSI2 under OS12 and t he RISC
System/6000 under AIX). The main ernphasis in this paper was pur on the multi-
media aspect. In order to meet the real-time requirements of audiovisuzl data
streams HeiTS uses threads to handle this streams. These threads can be scheduled
dependent on their real-time requirements. In order to allow this kind of scheduling
the Resource Management System has been implemented in HeiTS. It a l l o ~ % ~ s best
effort and guaranteed connections, and it supplies the scheduler wirb the nr¿essanr
information for real-time scheduling

Another aspect within IHeiTS is to minimize the overlicad of data handling. For this
rcason, a Buffcr Management System was defined iliat allows efficienr data tikndling.
Tliis includcs scgmcnling and recoinbining of data units, chaining and losk~ing of
buffers, and otlier fea~urcs . Witli this buffcr nianagement all unneccssary data
movcments can bc avoidcd.

With aii these supporting functions defined HeiTS is an implementation of the lower
four layers of the OS1 Reference Madel. It allows multicast on the nett&-ork layer.
multiplexing up to the data link layer, segmentation, and ent-to-end flow control.

Currently a modified ISO transport class 1 has been implemented. But other proto-
cols like XTP are under consideration for future implementations. Ther- is also s:?
some Open issues in the resource management, e.g., the different threads a re sched-
uled based on a rate-monotonic scheme, where the thread's priority is based on the
message rate for the connection. This will be replaced by a deadline scheduling,
where the priority of a thread is adjusted to the urgency of an arriving rnesssge, and
is not based on a QOS input Parameter.

References

111 D. P. Anderson. R. G . Herrtwich. C . Schaefer: SRP: A Resource Reservation
Protocol for ~ u a r a n t e e d - ~ e r f o k a n c e in- the Internet. ICSI, Berkeleu.
TR-90-006, Feb. 1990.

[2] D. D. Clark: The Structunng of Systems Using Upcails. 10th ACM SIGOPS
Symposium on Operating System Priciples, Orcas Island, Washington, Da.
1985, PP. 171-180.

[3] D. D. Clark, D . D . Tennenhouse: Architecturai Considerations for a Few Gem
eration af Protocols SIGCOMM '90. Symposium 'Communications Architec- , ,

tures arid Protocols'", Philadelphia, ~ennsys16a:nia. Sep: 1990, pp. 200-208. ' Y . . .

[4] R. L: Cruz: A Calculus for ~ e t w o r k Delay,. Part I: Network Elements in .Iso-
lation. IEEE Transactions on Information Theory. Val.. 37, No. 1. Januap-
1991.

(51 D. Hehmann. R.G. Herrtwich, R. Steinmetz.: Creating HelTS: Objectirg of the
Heidelberg High-Speed Transpoit System. . GI-Jahre~tagung, Darmsiadt,' Oct.
1991.

[G] R. G . Herrtwich, R Nagarajan, C . Vogt: Guaranteed-Performance hlultimedia
Communication Usine ST-11 Over Token Rine. Submitted for ~ublication.

[7] Internationat ~ tanda;ds Organisation: lntern~tional Standard 8072, Information
Processine Systems - Open Systems lnterconnection - Transoort S e m c e Defi-
nition. 1q86: . . ,. , . .

.. i8.l Internatianäf ~ t & d a ~ d ~ ~igariiscitioh: lntemational ~ k n d g r d l n h a t i o r i - -
Processing Systems - 0pen Systems Intercomection - ~omec t ioo -~r i en ted
Transport Protocol specification, 1986.

[9] N. Luttenberger, R. V. Siiegtitz: Performance Evaluation of a Commtmication
Subsystem Prototype for Broadband ISDN. IEEE Workshop on the Future
Trends of Distributed Computing Systems, Cairo, Sep. 1990.

[I01 R. Steinmetz. R. Heite, J . Rückert, B . Schöner; Compound Multimedia Objectc
- Integration into Network and Operating Systems. International Workshop on
Network and Operating System Support for Digital Audio and Video. Interna-
tional Computer Science Institute (ICSI), Berkeley, Nov. 1990.

[I I] D. L. Tennenhouse: Layered Multiplexing Considered Harmful. In: H Rudin.
R. Williamson (Eds.): Protocols for High-Speed Networks, Elsevier (North-
IHolland), 1989.

[I21 C . Topolcic (Ed.): Expeninental Internet Stream Protocol, Version 2 (ST-11).
lntcrnct Requcst for Commcnt 1190, Oct. 1990.

