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1.0 Introduction

The Heidelberg High-Speed Transport System (HeiTS) is a new-generation ead-to-ez:
communication system currently under development at the IBM European I\etwo-«'-
-ifng . Center (ENC)-in’ Heidelberg. HeiTS is-aimed at a heterogeneous environme=
comprising several computers with different operating systems and a variety o7
underlying local, metropolitan, and wide-area networks. [t incorporates both er:-
system and gateway communication functions. .

In new high-speed networks, an integration of different traffic types can be observes:
Whereas, ¢.g., Ethernet was designed for data traffic only, FDDI supports data-tzo=
traffic (asynchronous) as well as voice and video traffic (synchronous), zlbeit iz =

- rudimentaty form. Such an integration in the physical network should lezd to ==
integrated communication system as a whole. HeiTS is designed 1o support fast dz=
traffic and multimedia communication, in particular the transfer of digital zudio a:-:'
video. The HeiTS pretotype is concewed to be a generic basjs for high-spead deiz
transport applications such as CAD file transfer, and multimedia comn:"mcatt"
applications such as video distribution.

For many years, networks were the bottleneck of data transmission. Processi-:
equipment in the end-systems and gateways was faster than the transmission lines s:
that bandwidth usage had to be optimized over processing. With the upcomi-:
high-speed networks, this paradigm is changing: Shortage of resources is no® in =<
nodes. To achieve high performance, both architecture and implementation of Heils
are oriented to optimize processing over bandwidth use.

HeiTS is primarily directed to two platforms within IBM’s Small Systems line: i-s
PS/2 under OS/2 and the RISC System/6000 under AI1X. This imposes the burg=-
to interfacc HeiTS with two disjoint opcrating systems, but the common Microcher-
nel bus architccture of both machines offers the opportunity to use identicz! comrr. .-
nication network adapters on both svstems. The primary networks to be operaiz:
by HeiTS arec Token Ring, FDDI, and Broadband-iISDIN. For B-ISDN, a first ve--
sion will attach to an STM network, later versions will interface with an ATM ne-
work.



This paper discusses our implementation decisions for HeiTS. Section 2 introduces
the overall multimedia system architecture into which HeiTS will be integrated.
Section 3 elaborates on the support functions that serve as building blocks for the
construction of HeiTS. Section 4, finally, discusses the actual communication func-
tions that HeiTS provides. For thc objectives of the system please refer to an earlier

paper [5].

2.0 Overall Multimedia System Architecture

HeiTS is just one module within a general platform for multimedia applications. [t,
therefore, has to fit into the overall architecture of such a platform. This section
discusses the external constraints on the implementation of HeiTS which result from
the need for integrating HeiTS with a surrounding system.

2.1 Stream Handlers

Multimedia data usually enters the computer through an input device and leaves it
through an output device (where storage can serve as an 1/O device in both cases).
It is less common that the data is generated by the computer itself, i.e., calculated or
interpreted by the CPU., Nevertheless, this case occurs in simulation and control
applncatlons, a multlmedla archltccture needs to take it into. account too

An entity gcncratmg or consummg a raw stream of contmuous multlmedla data is
commonly called a stream handler. The term “raw” shall indicate that no stream-
- handler-spccific data is contained in the stream. For example, in a transport system
(which -would be a typical stream handler) the data must not contain-any protocol
headers or trailers; théy have no meaning to other stream handlers, e.g., those re-
‘spongible for video output. We make no restriction on the encoding of a raw stream.
~ In particular, a stream can be compressed or uncompressed. Any stream should be
- typed to prevent it from being directed to the wrong stream handler.

Stream handler functions are often distributed among the main CPU and on-board
processors. In case of video decompression adapters most of the stream handler.
, software executes on the on-board DSP of the adapter. . Additional software ¢om-
pletes the stream handler to access the board from an application. Whenever the
adapter does not deliver raw data, but some additional information, the stream han-
dler software that ¢xecutes on the main CPU becomes more complex. Multimedia file
or transport systems are examples of such stream handlers. In applications where
multimedia data is generated or consumed by the computer, a stream handler may
run on the CPU only.

In a modern system which follows the microkernel approach, one will arrive at the
following three-level code structure for a stream handler implementation:

s  Hardware portions of stream handlers are executed on an adapter board. In
many cases, on¢ will not be able to change these strcam handler portions.
However, some modern hardware strcam handlers are microprogrammable.

s Device drivers constitute the stream handler portion executed inside the operating
system kernel to interface to the hardware adapter.

s Software portions of stream handlers execute in user space, on top of the oper-
ating system kernel. From a software engineering viewpoint, the majority of the
stream handler code should belong to this portion. Stream handlers which do



. Dot require spec1al hardware support (e.g., simple filter fU[lCT.lOI]S) can be imple--
mented in software only.

This layered stream handler structure is continued within each stream handler por-
tion. In particular, the stream handler implementation of a tranSport svstem will
contain the traditional communication layers.

2.2 Threads

Stream handlers need to obey the inherent real-time requirements of audiovisual
data: They have to deliver their output before a certain deadline to make it available
in time for its presentation or consumption. In addition, they may have to reduce
jitter between the delivery of adjacent output items or synchronize the presentation
of their data items with those of other stream handlers.

The following implementation structure makes it easy to take these timing criteria
into account: All stream handler software portions are encoded as functions of ¢
single task. This task assumes the role of an audiofvideo server which — somewhat
similar to the X server — provides a common inputfoutput environment for time-
critical multimedia data. The functions of the AV server are executed bv threads
which escort a single piece of multimedia data from input to output. They wait to
obtain the data from the device driver, then execute the lavered functions of the inpu:
-stream handler in -an upcall fashion [2], execute the functions of the outpu: strear
handler in a downcall fashion and finally submit the data to the outpu: devics
through the corresponding device driver functions.

Threads, much better than messages themselves, can take the timing requirements of.

mult1med1a data into account. Each thread can be scheduled according to the ur-
gency .of the data item ‘it handles using real-time scheduling techniques. [t also cat -
be synchronized with the execution of other threads through well-known process
syrichronization functions. An appropriate synchronization point is the switch from
the upcall to the downcall segment. A thread can also be paced at this poini by de-
laying its execution for some time.

2.3 - Stream'Management

A multimedia application runs on top of the AV server outside of the real-time envi-
ronment. Multimedia data usually does not pass through the application; the appl-
cation merely manages the flow of data in the AV server. To manage the dzta flow.
we distinguish between device control operations that determine the content of =
multimedia stream and stream control operations that determine its direction.

Device control operations depend on the individual 1/O device. Devices may bz
grouped into classes and their device control operations may be derived genericaliy
as suggested in [10]. For storage devices, typical contro! operations includs
fast_forward, reverse and seek. Other opcrations are zoom for cameras anc velumec
for speakers.

Stream control operations are the same for all stream handlers. Thev include
openjclose (applicd to individual stream handlers, yielding stream handles<),

*  connect/disconnect (applicd to pairs of stream handles. yielding stream identifi-
cations), and



o - start/stop (applied to stream identifications).

The open function is a uybrid between a device control and a stream control opera-
tion. It usually requires information specific to the stream handler that also deter-
mines stream content. Except for stream handlers that cannot be multiplexed (such
as those for microphoues and speakers), opening the stream handler is not enough:
In a file system, the file to be accessed needs to be known. In a transport system, the
address of the communication partner is required. In a video display, the area where
to display the data on the screen is needed. This information is provided by
handler-specific parameters of the open call.

The connect function generates a thread to escort data from the input to the output
stream handler. When the connection is established, system resources are allocated
to ensure that the thread can perform its function according to the application’s re-
quirements (on time, with a certain reliability, etc.). In distributed applications, such
resource reservation has to be made from end to end, including the network.

In addition to the above functions, an application can also specify that a connection
(= thread) shall be synchronized. In this case, the above-mentioned synchronization
mechanism is enabled and threads are potentially delayed.

The following picture shows the overall architecture of HeiTS5:

.Appllccltlon -
Uger

Uaer

Kernel

Figure 1. HeiTS: Architecture

The devices drivers (DD), the transport system (TS) and thc audiofvideo handler
(AV) are examples of strecam handlers. Data flows from a network adapter through
the corresponding device driver to the transport systemn, where the communication



functions are provided (see 4.0), passed over.to the audiojvideo handler-ang written.
- to the adapter using the AV-device driver. The buffer management system (BMS;
enables the handling of the data between the different stream handlers without copied
them (see 3.1). The resource management system (RMS) allocates and manages the
resources (see 3.2). The stream management system (SMS) provides the mterfacc to
the application.

3.0 Support Functioﬁs

In protocol implementations, the protocol machine contributes only a small fractior
to the overall processing time. Most computation power goes into support functions
such as data administration, communication between modules (e.g., processes), etc.
-This is even more true for light-weight protocols with their streamlined protocol ma-
chines.

In HeiTS our goal is to handle data in real-time. First of all, this means that some
delay bounds for the data handling can be guaranteed. As delay bounds for audi-
ovisual data are tight, this automatically translates into fast data handling. To han-
dle data efficiently, a sophisticated buffer management is needed. To schedule the
resources for real-time data handling, we need a resource management which reserves
the resources in HeiTS and guarantees the commitments made.

B -3'.'1' : Bﬁffeijaiilag-ement_' -

Conceptually, data always {lows from one stream handler into another. However, i’
a significant portion of the stream handler is realized in software and makes use of -
the CPU, this flow of the data should not 1mply costly data copying, in particular
“copying from kernel to user space and back. -

~ The buffer management system (BMS) enables the transfer of the data “below” the
“stream handlers to achieve higher performance. In this case, special device capabili-
tics such as direct adaptet-to-adapter transfer can be uti[ized and the BMS hides
differences between buffers on different adapters and in main memorv.

The BMS not only avoids copying while data is flowing betweet stream Handlers, it -~ '

also provides features needed: for efficient protocol implementations such as chaining
of buffer fragments (headers from different layers, data, possibly trailers) and locking
{(e.g., to keep buffers for retransmissions).

A BMS buffer consists of one or more blocks of memory (called fragments) which are
linked together. The information describing the buffer is contained in a buffer de-
scriptor, so no buffer management information has to be stored in the fragments.
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Figure 2. BMS: Bulflers and Fragments
A ffagr_n_én_t coris_:ists of three parts:

¢  The data area is filled with information. ,
The empty area is free and can be used to store information (e.g., to add a pro-
~ tocol header).
¢  The dirty area cannot be used (1t can contain adapter specific informazion).

- The pointers to the. different areas are stared in-the buffer -descriptof. - Space ir 2
fragment is allocated from the back to the front, so each layer can add its heada=-.
If there is no empty space left- in the fragment, a new fragment is allocared anc i<
linked to the current buffer. So it is not necessary to copy the buffer.

A side effect of this scheme is, that segmenting and recombining of data units is pos-
sible without copying the data. To segment a data unit into, e.g., two pieces, 1':’
BMS allocates a second buffer descriptor which points to the same fragment(s) z=C
only changes the pointers to the different areas accordingly.

Normally the last stream handler handling the buffer gives the buffer back to =2
BMS after the data is copied to the external device and the buffer is freed. Uncz-
some circumstances a stream handler may want to keep the data for later use, ex..
the transport layer may keep a buffer for retransmissions if it has to provide z relia>x
service to its user. In this case the respective stream handler can tell the BMS to /o5
the buffer. When a locked buffer is returned 10 the BMS, it is not actually freed ur:..
the lock is removed.



3.2 Resource Management

The resource management system (RMS) allocates resources for connections w
guarantee a certain throughput, delay and reliability [6]. The workload model used in
HeiTS is the Linear Bounded Arrival Process { LBAP ), which was introduced by Cruz
{4] and employed, for example, in-SRP [1]. Whenever a new connection i5 establisuc.,
the RMS makes sure that this connection does not violate performance guarantees
already promised to other connections. There are two types of connections: best ef-
fort and guaranteed. ,

The RMS consists of submodules for each resource (e.g., local resources like CPU
processing capacity and network resources like bandwidth) to perform schedulability
testing, reservation, and resource scheduling. The RMS also reserves buffer space.
The buffers needed for a connection are allocated statically from a buffer pool. The
amount of buffer space to be reserved is based on the throughput and the burst size.

Let us discuss the reservation and scheduling of the CPU as an example for the re-
source management techniques employed. For any new connection, a schedulability
test is performed: Based on the maximum message rate of a connection and tke
processing time needed per message it is calculated whether the acceptance of this
new connection could violate guarantees for other connections. If this is the case the
new connection is rejected. The values calculated for accepted connections are stored
.in a local database.. This information is used by the RMS for further schedulabilitv
“tests and by the scheduler for scheduling the thread processing the message.

For CPU schedu&ing we are currently using three priority classes:

1. - critical threads, '

2. critical threads that have used up their processmg time, as spec1ﬁed by their
workload specification, but require further processing (this is based on cur opti-
mistic assumption that this message can makec up for the lost time in later re-

* sources and is especially useful for best effort connections), and.

3. threads that are no stream handlers (the normal system threzds).

Currently we investigate to use a fourth class for workahead messages, but it is.got
_ clear if- the potentlally better CPU utilization is- worth the scheduling effort (whick
consumes CPU capacity itself). ‘

The scheduling within the different classes is currently based on a modified rate-
monotonic scheme, where the priority of a thread is based on the message rate for the
respective connection. For incoming messages the urgency is calculated and depend-
ing on the outcome the message is passed to the thread handling the connection di-
rectly or it is hold back by the scheduler.

In the future we plan to also use deadline scheduling where the priority of a threaé
is calculated based on the urgency of an arriving message.

4.0 Communication Functions

Using the support environment introduced in the previous chapters, HeiTS realizes
the function of the lower 4 layers of the OSI reference mode! as 2 stream Fandles
providing endsystem-to-endsystem transfer of multimedia data items.



- 4.1 Design Decisions

Based on the application requiremeuts either a reliable or an unreliable communi-
cation path between a sender and a single or multiple recipients can be established
by HeiTS. QOS parameters are used to specify such requirements. Formally, the
services provided are based on the. ISO transport service standard document (7}];
however suitable enhancements had to be defined to cover typical multimedia re-
quirements. Additionally, the use of certain 1SO defined optional facilities had to be
restricted to ensure isochronity requirements could be met.

Specific design decisions have been made in the following areas:

e Calling conventions: Downcalls are used for outbound communication (i.e., re-
quests and responses in the OSI terminology), upcalls for incoming indications
and confirmations.

This architectural decision ensures in particular that incoming data can not only

be offered for processing to the application — as is standard practice in today’s

data-oriented communication systems —, but that any required processing can

directly be initiated by HeiTS at the correct ume. Side effects of this design de-

cision include reduced elasticity buffer requirements and that immediate

connection-specific processing can .be doue m thc user- provtdcd lﬂdlC&thl‘l and _
: ”conﬁrmatlon routines. '

Entry points into these user prowded functions are passed to the transport sub-
System at the latest’ p0531b1c occasion.

- e Multicast: Multicast is supported-by the network layer where the t0pology of thc
' network is known. Two forms of multicast are distinguished: In.traditional -
“sender-initiated” multicast, the sender enumerates its communication partners.
In “receiver-initiated” ‘multicast, a recciver may join an existing communication

(probably without even informing the sender about its presence).

e Multiplexing: Multiplexing is not supported for time-critical traffic above the

data link layer, i.e., a data link connection: will always -be mapped -0nto & single -

" transport con‘nec'tion It is necessary to support multiplexing in the data link

layer since some networks support only one physical connection. Its exclusion

for network and transport layer allows for easier identification of the receiving
process for incoming data.

e Splitting: Splitting is not supported, i.e., a single upper-layer connection does
not use more than one lower-layer connection. In particular, one transport con-
nection never sends data over two or more network adaptors. Splitting was once
used to let a fast processor output data to several slow networks, increasing the
overall throughput of a connection. In an environment, where networks become
faster than processors, splitting becomes obsolete.

¢ Segmentation: Scgmentation should be avoided, but is supported bv HeiTS.
Segmentation to and reassembly of very small data units (such as ATM cells),
however, shall be accomplished in hardware — HeiTS is not optimized for this
function.

s Flow control: Flow control consists of end-to-end flow control to prevent the
recciver from being flooded with data and access control 1o prevent the network



from- being overloaded: For ‘time critical unréliable trafﬁc,- HeiTS applies a.

rate-based control scheme for connections and enforces the rate of connections
through leaky bucket algorithms. For conventional reliable data communication
the standard techniques are used.

4.2 [mblementation Structure

Internally the communication subsystem is structured into 3 layers:

L]

Transport Sublayer: The transport subsystem provides reliable and unreliable
end-to-end communication services enhanced by provisions for multimedia data
transfer. The use of these provisions results in an isochronous data delivery
whenever a respective quality of service was negotiated. As a starting point, an
extended 1SO transport service is considered. A modified 1SO transport protocol
class 1 [8] has been implemented. Other protocols (e.g., XTP) are under consid-
eration.

Network Sublayer: The focus of the network layer work is in the areas of
multicast support and LAN/WAN internetworking. Two different protocols are
currently being implemented for experimentation: As a result of previous [SO

.work, a modified- X.25 version is used for unjcast expenmcnts In gateway sce-
"narios.” The Internet protocol ST-11 [12] is used to experiment with multicast ‘

communication over guaranteed-performance channels.

_Connectivity Subsystem: The connectivity subsystem’ provides a'data link service

interface to HeiTS. On most of the already available adapters for .high-speed-
networks a data-link protocol is implemented: The connectivity subsystem hides
the different interfaces of the drivers for the various network adapters. - Network -
adaptors currently under con51derat10n are 4 and 16 Mblt Token ng FDDI,
and B-ISDN.

A stream handler interface is built on' top of the HeiT$ stack.

4.3 Sample Session

Let us discuss a “typical” example scenario from the transport system interface per-
spective. Assume the head of a small company wants to give his Monday morning
speech (a monologue, of course) to his employees sitting in their offices with their
multimedia workstations switched on and ready to listen to their boss. When the chief
is ready to begin, we will see the following events at the transport service interface:



Chief ' Employees

ts_open_sap {MMSAP, ..., @ts_conn_ind, @ts_disc_ind, ...)
ts_open_sap (MMSAP, ...)
ts_conn_req (MMSAP, Employeelist,
{error_indication, 1.4 Hbps, 25 SDUs per second, 250 msec constant delay},
@ts_conn_conf, ...)
»ts_conn_ind (...)

ts_conn_vsp (..., €ts_data ind, ...)
>ts_conn_conf (...

ts_data_req (..., @first_picture_data)
>ts_data_ind (...)

ts_disc req {...)
>ts_disc_ind (...)
ts_close_sap {MMSAP)

Figure 3. Unidirectional Live Distribution of Compressed TV

In this example the symbol “>” js used-to xdcntlfy upcalls : “@"— stands for “address
of .

The example illustrates some of the key choices made for the HeiTS design: First, the
concept of specialized service access. points is uscd to distinguish multimedia and
regular data traffic. Second, a set of QQS. parameters is used to-specify the applica-
tion requirements. In this case typical values for the distribution of compressad video
are given. In particular, error indication but no cerrection is spcaﬁed This enables
the output stream handler to- substitute, e.g., a corrUpted vidéo frame by either a
previous full frame or a zero delta frame whlch will prevent the error from bemg Vis-
ible. However, strong isochronity for the individual pictures and voice sampie is re-
quired. Third, only addresses are passed at the procedure mterfacea whenex ar data_

. _need to be handed over an interface.

5.0 Summary

HeiTS is designed to handle high-speed data applications as well as multimedia data
applications within IBM’s Small Systermn line (PS/2 under QS/2 and the RISC
System/6000 under AIX). The main emphasis in this paper was put on the mult-
media aspect. In order to meet the real-time requirements of audiovisuz! data
streams HeiTS uses threads to handle this streams. These threads can be scheduled
dependent on their real-time requirements. In order to allow this kind of scheduling
the Resource Management System has been implemented in HeiTS. It atlows best
effort and guaranteed connections, and it supplies the scheduler with the necessary
information for real-time scheduling,.

Another aspect within HeiTS is to minimize the overhead of data handling. For this
reason, a Buffer Management System was defined that allows efficient data hendling.
This includes segmenting and rccombining of data units, chaining and locking of
buffers, and other features. With this buffer management all unnecessary data
movements can be avoided.



With all these supporting functions defined HeiTS is an implementation of the lower
four layers of the OSI Reference Model. It allows multicast on the network layer.
multiplexing up to the data link layer, segmentation, and ent-to-end flow control.

Currently a modified ISO transport class | has been implemented. But other proto-
cols like XTP are under consideration for future implementations. There is also st
some open issues in the resource management, e.g., the different threads are sched-
uled based on a rate-monotonic scheme, where the thread’s priority is based on the
message rate for the connection. This will be replaced by a deadline scheduling,
where the priority of a thread is adjusted to the urgency of an arriving message, and
is not based on a QOS input parameter.
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