
- - - - -
I . ; [HKSt92] Dietmur Hehrnann, 27tornas Käppner, RavSteinmetz; An Introduction to HeiMAT:

The Heidelberg Multimedia Application Toolkit; 3rd International Workshop on
Network and Operating System Support for Digital Audio and Video, San Diego, CA,
USA, November 1992, und in Lectures Notes in Computer Science, Springer-Verlag,
1993.

An Introduction to HeiMAT:
The Heidelberg Multimedia Application Toolkit

T h m a s Käppner
Dielmar Hehmann

Raif Steinmetz
IBM European Networking Center

P.O.Box 10 30 68
D-6900 Heidelberg 1

Germany
{kaeppner, hehmunn, sreinmet) @ dhdibml .bifnef

Phone: +49-6221-404-403 / -214 / -280
Fax: +49422 1-404-450

Abstract: HeiMAT is a toolkit that supports ihe development of disiributed multimedia applica-
tions. It provides adaptable communication services, distribution eansparency. and Cross plat-
form interconnectivity (between various operating and window systems). HeiMAT makes
extensive use of product and prototype level available multirnedia communications and operat-
ing system environments. This paper motivates the major design decisions and presents the sys-
k m structure of HeiMAT.

1 Introduction

1.1 Motivation

At the IBM European Networking Center (ENC) in Heidelberg, Germany, the
HeiProjects have been established to develop Prototypes that support distributed multi-
media applications on RiSC System/6000s under AiX as well as on PSDs under OSD
[Hentwich, 19921 Luttenberger and Steinmetz, 19921. Within this framework three
related areas have been worked On:

HeiCoRe: The Heidelberg Continuous-Media Realm is concemed with providing
local support services for multimedia on the workstations mentioned above. Those
services consist of buffer management, an operating system shield, resource man-
agement, and a real-time environment for stream handlers [Herrtwich and Wolf,
19921 [Herrtwich, 199211 that handle multimedia data. In the initial phase this sys-
tem support was designed and implemented for AiX as well as 0S12. However,
with the inuoduction of appropriate multimedia products, some of HeiCoRe's ear-
lier prototype code will be replaced. This has already happened with IBM's Multi-
media Presentation Manager12 (MMPW) [IBM, 19921, i.e., on OSl2, HeiCoRe
stands for M M P W with an additional resource management and an operating sys-
tem shield.
HeiTS: The Heidelberg Transport System mehmann et al., 19911 [Hemwich and
Delgrossi, 19921 is designed to transfer continuous media data between systems
over today's networks such as Token Ring or FDDI in real time. The kind of media
and its properties are specified by the transpofl service User employing quality of
service (QoS) Parameters, which are then negotiated between the different HeiTS
stacks. HeiTS mns as a strearn handler in the HeiCoRe environment.

HeiMAT: The Heidelberg Multimedia Application Toolkit interfaces HeiCoRe pro-
viding a uniform distribution mechanism on both platforms. It allows for abstrac-
tions of multimedia data, giving access to functions that are commonly needed in
multimedia appiications like synchronization and mixing of streams. On top of
these generic abstractions, modules are provided that are ready to use for develop-
ment of applications that belong to specific classes. It is aimed to supply AIX as
well as OS12 applications with a homogeneous interface. This paper focuses on this
third project area.

Today's multimedia application products are usuaily programmed in conventionai lan-
guages (such as C), augmented with hardware-specific multimedia libraries. Replacing
any underlying continuous-media device, even with a functionally-equivalent compo-
nent from another vendor, often requires re-implementing a substantial part of the
application programs. If, on the other hand, appiications were built using high level
abstractions, they would not be affected by these replacements. These applications
could even be poned to other platforms where the absuactions are provided without
any effon.

1.2 Related Work

We believe that various levels of abstractions for multimedia are required starting with
the low-level operating system extensions like [Hemwich, 19901 and Leung, 19881.
Newly available multimedia products, such as IBM's MMPW, Microsoft's Multime-
dia Extensions [Microsoft, 19911 and Apple's QuickTime [Apple, 19911 provide the
next layer of abstraction for programming of applications. They are however, unlike
HeiMAT, not aimed at the distributed environment, and H e W T goes beyond their
interfaces in providing top-layer abstractions such as a video conferencing module that
serves as a complete building block for multimedia applications.

Several experimental systems provide subsets of HeiMAT's functionaiity. Among
them are ACME [Anderson et al., 19901, VOX [Arons et al., 1989][Arons et al.,
1989a1, [Angebranndt et al., 19911, and [Sventek, 19871. Those systems Cover the dis-
mbution aspect of H e W T , in that they provide access to an 110-server within a dis-
tributed environment. HeiMAT does not only provide network transparency, but also
serves as a tooikit to allow for application development that is independent of multi-
media encoding and devices. Those existing toolkits that yield similar support [Ander-
son and Chan, 19911 are solely aimed at a homogeneous environment in terms of
windowing and operating system which usually is UNIX. H e i m Covers two differ-
ent environments.

In the subsequent section we introduce our major design principles. These design
decisions lead to the system stmcture of HeiMAT as discussed in Section 3. Section 4
describes the generic functionai blocks and Section 5 introduces the concept of support
for special classes of applications in HeiMAT.

2 Design Principles
In [Steinmetz and Fritzsche, 19921, the authors note that multimedia programming
today is typically based on low-level constructs with strong hardware dependencies.
The available multimedia operating system extensions relieve this problem to a certain

degree for local applications. Application programmers who want to build, e.g., a mul-
timedia tutoring system have to bridge a wide gap between the functions available to
thein and the service Uiey want to provide. The complexity they have to deal with
increascs whcn the multimedia appiication is distributed and network access has to be
prograinined as well. We experienced this with our Grst OS12 based integrated multi-
inedia coininunication system [Cramer et al., 19921 [Steinmetz and Meyer, 19921.
Relying on this experience and the HeiProjects fiamework we designed the foliowing
set of principles.

2.1 Flexibility of Services

At the highest level it should be very easy to develop applications. The toolkit requires
only the essential knowledge From the application in order to supply the demanded ser-
vices. All the details involved with establishing data streams using devices in the dis-
tributed systcm are hidden from the application.

Multiinedia applications that are to be supported by HeiMAT form a very diverse
Set. Even applications, which belong to one class at the Grst sight, can range from very
simple to full featured professional Systems. Imagine e.g. a simple multimedia editor
for rnaiiing pwposes compared to a professional system used for editing commerciais.
Their requirements with regard to timeliness, quality of edited data streams, and exact-
ness of presentation differ substantially. For some developers fast development is
impomt, whereas others demand the usage of special compressed data types. Thus,
services offered by HeiMAT should not only be easy to use, but must also be flexible
enough to be useful for every application. This flexibility imposes a set of subse-
quently discussed transparency requirements which also belong to the design princi-
ples.

2.2 Device Transparency

The independence from multimedia devices requires to hide the characteristics of
physical devices, thus, allowing for the development of portable applications and mak-
ing the development much more wonhwhile. It also includes the provision of a sourcel
sink paradigm as part of the HeiMAT upper layer interface.

Generaily, using audiolvideo data in applications causes the establishment of
streams on the lower level of the system Merrtwich and Wolf, 19921. Since streaming
of data is very illustrative, it serves also well as a programming abstraction [Steinmetz
and Meyer, 19921. Using this abstraction, an appiication specifies the endpoints of
streams they want to establish. However, details of the stream, which the application is
not interested in, can be hidden by HeiMAT.

Information about endpoints can be specified using the level of detail demanded by
the application. Imagine e.g. a voice maii system establishing a data stream from the
central Server to the workstation. It can issue a request to HeiMAT naming the
involved devices and a quality for the data stream of high quality voice. HeiMAT will
map this specification to lower level data formats which not only correspond to the
expressed general quality, but are also appropriate for the devices. In conmst, a more
powerful retrieval system can utilize speciai audio formats and compression schemes
by explicitly requesting them.

Independently of whether the infonnation about endpoints and filters is specilied at

a high or low level, wc can distinguish three different ongins: - The application is not interested in that specification: HeiMAT will select an appro-
priate vaiue.
The application wants to specify it by itself.
The application lets the uscr make thc decision.

Programmers of applications can decide which one of the alternatives is used. If
Parameters are simply omitted, HeiMAT wiil assign a value. Using the corresponding
interface functions of HeiMAT, the application can specify any value. In order to let
the User decide about the information, HeiMAT provides elements that an application
can construct a User interface of. These elements, applied by an appiication, wiii let the
User decide on a specification transparently for the application.

2.3 Presentation Transparency

Today's coding technology and standards are still evolving, compete again de-facto
standards, and provide diverse aigorithms for the sarne coding problems. The ISO
JPEG standard defines compression and coding of single images like many available
de-facto standards. ISO MPEG video specifies compression and competes with, e.g.,
CCIl'T H.261 and the DVI de-facto compression standard. MPEG-2 is still to be
defined for video compressicn with high er quality. MPEG audio Covers audio com-
pression similar to CCITT (e.g. G.721 and 722). However, it also ailows for a com-
pressed data rate of more than 64 kbit per second.

Applications need to be developed without constraining to certain coding stan-
dards. They should be allowed to specify quality Parameters in a manner, which is
independent of the real encoding of data. Requesting a new data stream, the applica-
tion can connect devices with different data types. If a conversion needs to be applied,
HeiMAT will insert a filter in the data suearn converting from source to sink type. This
filter is fully transparent to the application. Thus, HeiMAT ailows applications to use
lower levels of specification and even explicit usage of different encoding schemes
aiong a data stream will be handled gracefully by the toolkit.

Explicit specification of filters (e.g. mixer, multiplexer) can either be made by type
or by name of the device to be used. If only the type of the device is specified, the
appiication is not interested in location and implementation of that specific unit. On the
other hand using device names, an application can choose from several different
implementations of the Same type of a device (e.g. choose disuibuted or centralized
mixing for their respective advantages [Vi et al., 1991][Anderson and Chan, 19911).

2.4 Distribution Transparency

Applications do not need not know about the actual location of devices. For the appli-
cation there should not exist any difference between usage of locai and remote devices.
Since development of applications is more complex being aware of their distributed
nature, HeiMAT must provide mechanisms to hide the distribution from the applica-
tion where desired. Hiding the distribution means

Dispatching requests of an application to the corresponding remote Servers
Managing necessary transport connections for multimedia data.

Imagine a distributed application, which establishes a data stream between two or

more Iiosts. Such an application can be realized by one application entity residing on
any host. The application would have to contact the respective servers, which are
responsible for devices on the involved hosts. However, HeiMAT Supports device
names consisting of a host and a device name local to that host. Any request with
regard to a specific device is routed to the responsible server by HeiMAT, thus leaving
the application unaware of the need to communicate with possibly several servers.

During establishment of data streams HeiMAT will Set up a transport connection,
wherever a data stream crosses host boundaries, thus completing distribution transpar-
ency.

Hence, applications can be developed totally unaware of their dismbuted nature.
Changing device names is sufficient to switch between local and remote operation. The
appiication can run on any host accessible in the network without any changes. How-
ever, applications are free to use their knowledge about device distribution if they
decide to do so. For example, an application could insert speciai compression and
decompression filters in the data stream before and after the network devices, respec-
tively.

Note, HeiMAT does not preclude any architecture for an application. Distributed
applications based on the clientJserver approach can also be build easily on top of
HeiMAT. The advantage of this approach is that local and remote execution of func-
tions can be triggered independently. For example, a stop stream operation could be
perfonned locaily, immediately freezing a video image on the screen, whereas in the
distribution-transparent case, the request would aiways be sent to the application,
wherever it resides. This will cause the video not to stop before one round-tnp time.

3 The System Structure
This Set of design principles of HeiUGT together with the availability of HeiMAT on
two different piatforms imposes hard design requirements on it's system structure.
HeiMAT must be a seamless integrator of the available paradigms on both platforms.

The OS12 platform provides the MMPh4/2 as local multirnedia extension to the
operating system. MMPW aiiows the definition of sources and sinks of streams to be
used by the application. HeiCoRe adds resource management and an operating system
shield. The resource management provides the reservation and scheduling of resewed
resources in a distributed system [Vogt et al., 19921. The implementation of the full
HeiCoRe environment as a port from AiX with adaptation to the MMPW is in
Progress. MMPM/2 closely interacts with the Presentation Manager, the OS/2 native
window system. This window system was designed for fast response with a large Set of
functions in a locai environment.

For the input and output of discrete media in a UNIX environment, the X window
system is the most prominent and widely used system. It provides abstractions from
both the hardware dependencies of text and graphics I/O and network transport. It
introduces various layers of abstraction from the basic Xlib over the X tooikit to a wid-
get Set such as OSFIMotif. Most application programmers base their code on the high-
est abstractions; however, they can access the lower layers if they need to do so. We
envisage multimedia support in a distributed environment to be architected similar to
X. In addition to the traditionai X server, handiing discrete media, there is another

server in that architecture, which we call the AV server. It deals with continuous media
and cornmunicates with X for presentation on the common display for video output.

Application

AV protocol \ I HeiMAT

AV server

1 HeiCoRe I
other IFlMl

Fig. 1: HeiMAT and it's enviroment on different platforms.

The AV server encapsulates the functionaiity of HeiCoRe providing access to all
types of stream-oriented multimedia deviceslfilters through a consistent interface (see
Fig. 1). As in X, communication between server and application program (client) is
supported by an AV protocol which itself is hidden by an AVlib. A typical function set
provided by the AVlib includes operations for creation, modification, connection, con-
trol, and desuuction of the logical multimedia devices, which run in a dedicated real-
time environment.

The base layer of HeiMAT comprises the top layer of the AV server that handles
the AV protocol, thus, HeiMAT being the first level that allows for remote access to
HeiCoRe functionaiity. On top of this base layer HeiMAT provides Services that
belong to two distinguished layers:

Generic functions are common to most multimedia applications (see Section 4).
They are provided in a network and device transparent fashion and form a general
basis for the development of applications.
Application specific modules are built on top of generic functions (see Section 5).
They provide suppon for specific classes of applications. The classes include con-
ferencing, collaboration, editing, mailing, and retneval of multimedia data.

However, HeiMAT will also support the development of multimedia interfaces

tlirough User interfacle elements, which partiy are already provided in MMPW2. For
this purpose in M X , HeiMAT itself uses the X toolkit stack. Thus, HeiMAT is residing
on both the AV Server and the X toolkit stack to provide it's services.

in OS12 the base layer of HeiMAT is being built around the native Media Device
Interface which is a component of the MMPM/2 capabilities in HeiCoRe. It distributes
calls to the locai multimedia devices. In the first release of the distributed OS12 System,
HeiCam (Heidelberg Remote Camera Control) uses this transparent dismbuted access
to remote multimedia devices.

4 Generic Functions of HeiMAT
Generic functions are used in ail types of applications. They are provided according to
the design principles and form the basis for application development.

4.1 Abstract Devices

Audio and video devices differ in their capabilities and interfaces. To ailow applica-
tions to work device üidependently, logical devices are introduced, which hide the
detailed characteristics of physicai devices. Classes of devices are defined, in which
they are grouped by type (e.g. audio input, mixer, multiplexer, weaver). Every member
of a ciass provides a similar interface to the application. However, devices can imple-
ment subsets of the ciass' functionality and can generaily differ in their implementa-
tion. It tumed out to be a rather dificult task to define a common interface across
several similar audio or video devices [Steinmetz and Fritzsche, 19921.

In order to give the User control over a device, HeiMAT provides User interface ele-
ments, readily applicable by the application. Thus, the User can control e.g.

Start and stop of a device by a button,
volume and balance of a stereo device by circular siiders and rnixing ratios of sev-
eral channels by slider bars,

ail in a device control window, communicating with HeiMAT transparently for the
application.

4.2 Data-Qpe-Related Functions

During establishment of a data suearn HeiMAT has to arbitrate the capabilities of the
devices/filters involved. If data types that the devices can work with do not match, Hei-
MAT mes to apply a conversion. Data type conversion Comes in different flavors:

Degradation of quality: This has to be appiied, if in a data stream the quality of the
data at the source is higher than the quality which can be displayed at the sink (e.g.
the source supplies an stereo audio signal and the sink can play mono only). Gener-
ally, downgrading the quality should be done at the source, since degraded streams
use less resources in the workstations as weii as in the network [Anderson and
Chan, 19911. Note however, the JPEG hierarchicai coding mode comprises the
joint compression with several resolutions. Since the compression makes use of the
redundancy at the different resolutions, the choice of the picture to be displayed
can be done at the sink only.
Multiplexer/üemultiplexer: A data stream contains either one medium only or con-

sists of several interleaved rnedia (e.g. PCM audio and RTV video in an DVI AVSS
stream). The conversion between these kinds of formats is referred to as weaving
and unraveiing.
Mixer: When several audio streams arrive at a single sink, they generaily must be
mixed digitally, since only one device is used to apply the conversion to an analog
signal.
Compression/Decompression: In today's multirnedia Systems, multimedia data
streams are normaily compressed, due to Storage and data rate constraints. Com-
pression and decompression have to be negotiated and applied by HeiMAT. This
can include conversion between different compressed data formats.

4.3 QoS Management

During estabiishment of a data stream, HeiMAT denves the QoS Parameters that are
valid for the lower layer services. These are passed to HeiCoRe, where they are used to
evaluate whether and how the necessary resources can be provided by the real-time
environinent.

QoS parameters do not only depend on the kind of media used in a data stream or
on the classes of service the application provides (as defined in CCITT Study Group
XVIII, Draft Recommendation 1.211, which include conversational, dishibution,
remeval).

The great diversity of CCITT services and applications within individual CCITT
service classes yield a great variability of communication requirements. Hence, it
rernains difficult to classify applications such as dismbuted tutoring or joint editing
based on the CCITT scheme alone.

Other groups of performance criteria have been proposed by [Wright and To,
19901: Delay sensitive, loss sensitive, and delay and loss sensitive. However, this clas-
sification is very coarse.

We suggest that a service must be treated within its context; coding and compres-
sion must be taken into account. The QoS depends on the kind of media as weil as the
service class, the type of sink and source (live -nonpersistent- or stored -persistent-), as
well as the configuration of the application [Steinmetz and Meyer, 19921.

4.4 Synchronization

Most applications need synchronization for the correct display of several separated
data sueams. HeiMAT provides abstractions to group data streams in order to (1)
express time relations between them and (2) aiiow for concurrent execution of opera-
tions on ail suearns in a group.

Synchronization can be expressed (1) implicitly, by combining audio and video
(which easily solves many synchronization issues), or (2) explicitly using separate
connections for different strearns.

Utilizing HeiTS for transport connections, synchronization can be guaranteed by
imposing the Same end-to-end delay on related streams (choosing an absolute end-to-
end delay and Iimiting the jitter of the data information units to about 0 msec). In prac-
tice, it is neither possible nor necessary to guarantee service with such tight tolerantes.
Audio can be played ahead of video for about 120 msec, and video can be displayed
ahead of audio for about 240 msec [Murphy, 19901. Both temporal skews will some-

times be noticed, but can easily be tolerated without any inconvenience by the User.
Note, this asymmetry is very plausible: In a conversation in which two people are
located 20 m apart, the visuai impression will aiways be about 60 msec ahead of the
acoustics due to the fast light propagation compared to the acoustic wave propagation.

In the next version a more sophisticated implementation of synchronization ailows
to guarantee timing relations between various sources: A logical time System (LTS) is
being introduced as suggested by [Anderson et al., 19901. Presentation of the data is
perfonned based on a comparison of the LTS with the real-time clock of the destina-
tion workstation.

5 Application Specific Functions

The upper layer modules are described in the following by looking at modules
designed to provide Parts of the functionality needed for conferencing.

An application-specific module can be understood as a complete application itself.
However, the module can as weil be used as one building block in other applications.
Imagine e.g. Uie development of a banking application in which the customer at an
automatic teller machine communicates with specialists located at the remote support
Center. By utilizing this conferencing module, the development of the banking applica-
tion can be drastically reduced towards adaptation and enhancements of the available
conferencing module.

On the other hand, a module usuaily comprises several independent application
speciüc functions. Thus, an application can reuse some of the functions provided and
implement others on top of it. That yields full flexibility and support for the applica-
tion.

For conferencing we envisage the following functions:

Conference Environment

Conference directories are utilized to store information about potential participants in
conferences. Group information in the directory indicates a special relationship
between participants. It contains the information who may assume which role in a con-
ference instantiated on that group. Groups ailow Users to conveniently invoke confer-
ences with people they need to meet more often.

Conference Scheduling

Scheduling of conferences aiiows to make appointments for and to plan conferences.
These mechanisms are not only needed to announce future conferences to many partic-
ipants, but can also be used to reserve scarce resources in advance.

Conference Management

There are two different approaches to conference management: Centralized and dis-
tributed architectures. Independently of the approach many aspects are involved:

invitation protocols must be provided, which can handle concurrent requests by
several participants.
Negotiation is needed about media types to be used, roles participants can assume
in a conference, whether mixing of media streams is applied, which floor mecha-

nisrns are used etc. - Strearns are established, using the lower layer functions of HeiMAT.
Floor passing comprises mechanisms and strategies to determine which participant
in a conference can provide input at a given time.

All of above functions must be accessible via natural graphical interfaces, e.g. a virtual
confcrence room (represented by a window), which can be left by participants simply
by dragging out their picture.

6 Concluding Remarks
HeiMAT, the Heidelberg Application Tooikit, will provide a set of functions that
greatly simplifies development of multimedia applications. In analogy to the X Win-
dow toolkit stack it will allow application programmers to use a high level of abstrac-
tion by which details of distnbution and multimedia devices are handled uansparently.
However, applications can be build refining this high level specification and thus uti-
lizing advanced features of the underlying system. The system structure allows for the
integration of two different system environments, AIX and OSl2. Note, the described
work is still in Progress.

We would like to thank Ralf Guido Hemwich for his many useful comments on an ear-
iier version of this Paper.

7 References

[Arons et al., 19891
Arons, Barry; Binding, Carl; Lantz, Keith; Schmandt, Chris: "A Voice and
Audio Server for Multimedia Workstations", Proceedings of Speech Tech '89,
May 1989.

[Arons et al., 1989al
Arons, Barry; Binding, Carl; Lantz, Keith; Schmandt, Chris: "The VOX Audio
Server", 2nd IEEE COMSOC International Multimedia Communications
Workshop, Montebeiio, Quebec, Canada, Apr. 1989

[Anderson et al., 19901
Anderson, David; Govindan, Govindan; Homsy, George: "Abstractions for
Continuous Media in a Network Widow System", Technical Report UCB/
CSD 901596, UC Berkeley, Sep. 1990.

[Anderson and Chan, 199 11
Anderson, David P.; Chan, Pamela: "Tooikit Support for Multiuser Audiol
Video Applications", in: Hemwich, R.G. (Ed.): Proc. Second International
Workshop on "Network and Operating Systems Support for Digital Audio and
Video", Heidelberg, Germany, Nov. 199 1,230-24 1.

[Angebranndt et al., 19911
Angebranndt, Susan; Hyde, Richard L.; Luong, Daphne Huetu; Siravara,
Nagendra; Schmandt, Chris: Integrating Audio and Telephony in a Distributed
Workstation Environment", Proceedings 1991 Summer Usenix Conference, 59-

74.

[Apple, 199 11
Apple: "QuickTime Developer's Kit Version 1.0, Apple Document Number
030- 1899.

[Cramer et al., 19921
Crarner, Andreas; Farber, Manny; Hehmann, Dietmar; Jungius, Chnstiane; Lut-
tenberger, Norbert; Markgraf, Frank; McKellar, Brian; Mengler, Stefan; Meyer,
Thomas; Reinhardt, Kurt; Sander, Peter; Sandvoss, Jochen; Schütt, Thomas;
Schulz, 'Werner; Steinbeck, Wemer, Steinmetz, Ralf; Stüttgen, Heiner; Vogt,
Carsten: "The Heidelberg Multimedia Communication System: Multicast, Rate
Enforcement and Performance on Single User Workstations", IBM ENC Tech-
nical Report no.43.9209, July 1992.

[Herrtwich, 19901
Herrtwich, Ralf Guido: 'Time Capsules: An Abstraction for Access to Continu-
ous-Media Data", IEEE Real-Time Systems Symposium, Orlando, December
5-7, 1990, PP. 11-20.

[Hehmann et al., 19911
Hehmann, Dietmar, Herrtwich, Ralf Guido, Schulz, Wemer, Schütt, Thomas,
Steinmetz, Ralf: "Implementing HeiTS: Architecture and Implementation
Strategy of the Heidelberg High-Speed Transport System", in: Herrtwich, R.G.
W.): Proc. Second International Workshop on "Network and Operating Sys-
tems Support for Digital Audio and Video", Heidelberg, Germany, Nov. 1991,
33-44.

[Herrtwich, 19921
Hemwich, Ralf Guido: 'The HeiProjects: Support for Distributed Multimedia
Applications", IBM ENC Technical Report No. 43.9206,1992.

Berrtwich, 1992al
Herrtwich, Ralf Guido: "An Architecture for Multimedia Data Stream Han-
dling and 11s Implication for Multimedia Transport Service Interfaces", 3rd
IEEE Workshop on Future Trends of Distributed Computing Systems, Taipei,
April, 1992.

[Herrtwich and Delgrossi, 19921
Hemwich, Ralf Guido, Delgrossi, Luca: "Beyond ST-11: Fuifilling the Require-
ments of Multimedia Communication", 3rd Intl. Workshop on Network and
Operating System Support for Digital Audio and Video, San Diego, Nov. 1993.

[Herrtwich and Wolf 19921
Herrtwich, Ralf Guido; Wolf, Lars: "A System Software Structure for Distrib-
uted Multimedia Systems", 5th ACM SIGOPS European Workshop, Le Mont
Saint-Michel, France, September 1992.

UBM 19921
IBM: "Multimedia Presentation ManagerI2: Programming Reference" IBM

Document Number 41G2920.

Leung et al., 19881
Leung, W. H.; Luderer, G. W. R.; Morgan, M. J.; Roberts, P. R.; Tu, S.-C.: "A
Set of Operating System Mechanisms to Support Multi-Media Applications",
Proc. Intern. Seniinar on Digital Comm., Zurich, Mar. 1988,71-76.

[Luttenberger and Steinmetz, 19921
Luttenberger, Norbert; Steinmetz, Ralf: "Videocommunication over the IBM
Token Ring", leaflet for CeBIT '92 and Didacticum no. 14, July 1992,20-23.

[Microsoft 199 11
Microsoft Corporation: "Microsoft Wmdows: Multimedia Prograrnmer's Ref-
erence", Microsoft Press, 199 1.

PMurphy, 19901
Murphy, Alm: "Lip Synchronization" Personal Communication on a Set of
Experiments.

[Steinmetz and Fritzsche, 19921
Steinmetz, Raif; Fntzsche, J., Christian: "Abstractions for Continuous-Media
Programming", Computer Communications. vol. 15, no. 4, JulyJAugust 1992.

[Steinmetz and Meyer, 19921
Steinmetz, Raif; Meyer, Thomas: "Modeiling Distributed Multimedia Applica-
tions", Intl. Workshop on Adv. Comm. and Appl. for High Speed Networks,
Munich, Germany, March, 1992.

[Sventek 19871
Sventek, J. S.: "An Architecture for Supporting Multimedia Integration", IEEE
Computer Society Office Automation Symposium, Apr. 1987, pp.46-56.

W n et al., 199 11
Vin, Harrick M; Rangan, P. Venkar Ramanathan, Srinivas: "Hierarchical Con-
ferencing Architectures for Inter-Group Multimedia Coilaboration", Proceed-
ings of Conference on Organizationai Computing Systems (COCS'91),
November 1991.

[Vogt et al., 19921
Vogt, Carsten; Herrtwich, Ralf Guido; Nagarajan, Rarnesh: " H e W The Hei-
delberg Resource Administration Technique, Design Philosophy and Goals",
IBM ENC Technical Repon no.43.9101, March 1991.

M g h t and To 19901
Wnght, David J.; To, Michael: "Telecommunication Applications of the 1990s
and their Transport Requirements", IEEE Network Magazine, vo1.4, no.2,
March 1990, pp.34-40.

