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Abstract - Simuiations a re  an important tooi in network 
research. As the selected topology often iniiuences the outcome 
of the simulation, realistic topologies are  needed to produce real- 
istic simulation results. We first discuss the different types of 
topologies and present our  collection of real-world topologies 
that can be used for simulation. We then define several similar- 
ity metrics to compare artificially generated topologies with real 
world topologies. We use them to find out what the input param- 
eter range of the topology generators of BRITE, TIERS and GT- 
ITM are to create realistic topologies. These parameters can act 
as a valuable starting point for researchers that have to generate 
artificial topologies. 

1 Introduction 

router-level topologies. We also point to our library of real-world 
topologies. 

Usually artificially generated topologies are judged realistic or not 
by pure visual inspection. In this paper, we define objective criteria 
(similarity metrics) for the similarity between two topologies. Using 
these metrics we compare artificial topologies with real-world topol- 
ogies. We present the optimal combinations of input parameters for 
three different topology generators that yield the highest similarity to 
two real-world topologies. Researchers can take these Parameter 
combinations as a starting point and vary them to generate topolo- 
gies that are similar to real-world topologies. 

We conclude with a short Summary and outlook, our tools are avail- 
able at: http://www.kom.tu-damstadt.delheckmann/topologies/. 

1.1 Motivation 1.2 Related Work 

Simulations are an important tool in network research. The proper- In [ I ]  poweriaw relationships are found in three inter-domain (AS- 
ties of a selected topology often cnicually influence the outcome of level) topologies of the Intemet which were constmcted from BGP 
the simulation, realistic topologies are therefore highly desirable for data. ~ h i ~  opened up discussion about powerlaw ~ s - 1 ~ ~ ~ 1  
realistic simulation results. topologies. [2] investigate based on the work of Barabasi and Albert . - . .  - 

There is a lot of work [I, 2, 3 ,4 ,  5, 6, 7, 8,9] discussing the proper- [14] possible origins of these power laws using topology generators 

ties of Internet topologies and there are a number of different topol- to create artificial topologies, among them are BRITE and GT-ITM 

ogy generators, e.g. [IO, 11, 12, 131. These generators offer a big which we also use in this paper. More works [6, 5, 81 are based on 

range of configuration parameters, GT-ITM for example has 16 dif- the powerlaw relationship. 

ferent configuration Parameters (for the transit-stub model). [3] show that dunng the process of constructing the topologies of [I] 

How realistic a generated topology is depends on the combination of from BGP data 20 to 50% of the physical links are missed and that 

these parameters. How should a researcher Set these parameters? more exact topology graphs do not follow the powerlaw relationship 

With this paper we try to answer that question and furthemore try to found in [I]. The authors also show that works based on [14], e.g. 

make an initial comparison of existing topology generators. [2], are not supported by the more exact topologies. 

We discuss the different types of topologies depending on the level Contrary to the Papers mentioned above for the basis of this paper 

of abstraction and introduce the term "POP-level" topology arguing we do not investigate whether the powerlaws hold true or not. In 

that people should carefully distinguish between POP-level and addition, we focus on POPIrouter-level instead of AS-level topolo- 
gies. We use the powerlaw metrics in our metrics with low weights 
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least 1000 nodes in order to evaluate topology generators for AS 
level graphs. We investigate smaller and for POPIrouter-level graphs. 

[9] presents an interesting method of measuring router-level topolo- 
gies based on traceroutes, BGP and DNS data. The results look very 
promising aiid can be used as input for our tool. 

2 Types of Topologies 
Literature typically distinguishes between AS-level topologies where 
one node represents one autonomous system (AS) and router-level 
topologies which implies that one node represents one router. But the 
latter is not always the case, many topologies that are labeled "router- 
level" are actually what we call POP-level with one node represent- 
ing one point of presence (POP) of a provider. Take for example the 
AT&T topology depicted in Figure I which is quite famous and often 
used for simulations. The New York node in that topology does 
surely not represent a single router but instead the complete POP of 
AT&T in New York consisting of a larger number of interconnected 
backbone and access routers. Using the data from [9] which is based 
on BGP and DNS data AT&T has at least 6 1 routers in New York, 24 
of them being backbone routers. 

3 Similarity Metrics 

To measure the similarity of two network topologies we define a set 
of mehics that capture the basic connectivity properties of the topol- 
ogy graph. We are interested in graphs with the same connectivity 
properties but not necessarily in equivalent graphs. We are not inter- 
ested in any geographical information or whether the graphs look 
visually similar. We concentrate on the shortest paths, the distance 
between nodes and the degree of connectivity because these are the 
properties we deem most important for network simulations. 

In the graphs, we can distinguish between edge nodes (which are 
connected to end-users and other networks) and corelbackbone nodes 
(which are only connected to nodes of the same network). 

We define the following similarity metrics to calculate the similarity 
between a generated topology and a real-world reference topology: 

1. The first metric uses the hop-plot of all nodes. For each graph G 
we look at all n nodes and calculate how many other nodes can 
be reached on their shortest path within h=1,2,3 ... hops. 

G .  
From this we derive the relativ fre uency distribution F,, with 8 
J classes j with frequencies fh, k .  We have to compare the fre- 
quency distributions of the generated and the reference topol- 
ogy. We could do this by comparing the mean values but 
obviously two very different distributions can have the same 
mean value, so that would not be a good criterion. Comparing 
the standard-deviation has the same problem. Therefore, we 
sum up the absolute cumulative difference of each class j: 

' reference I i; fhg;neraled- fh, k 

J I k = l  k =  l I 
An example demonstrates the logic behind this: 

f; = { 0.0, l .o, 0.0 ) 

Both have the same mean value but are obviously very different. 
Our criterion would return a difference d of 
d = 0 . 5 + 0 . 5 + 0 . 0 =  1.0 
Two equal distributions would return a difference of d = 0.0. 

Ge . , 
2. The second metric F,, is similar to the first but only looks at 

edge nodes. It captures how many other edge nodes can be 
reached from an edge node within h hops. 

3. We derive the relative frequency distribution of the outdegrees 
di of all nodes i of one graph. We use the significance level of a 
Wald-Wolfowitz test for the similarity of the distributions of the 
two graphs as third similarity metric.' 

4. While the third criterion tests the complete distribution of outde- 
grees we also compare with the fourth criterion the rank expo- 
nent % of the first powerlaw as defined in [I]: The outdegree di 
of a node i is proportional to the rank of the node ri to the power 
of a constant 3 : 

5. Because the powerlaws are a well discussed phenomenon we 
also include the outdegree exponent 0 of the second powerlaw 
[I]. This fifth criterion is quite similar to the third one, we 
account for that in the weights for this criterion later one. The 
second powerlaw claims that the frequencyfd of an outdegree d 
is proportional to the outdegree to the power of a constant 0 : 

We compare the relative difference of the rank exponent of the 
artificially generated topology and the real-world reference to- 
pology: 

We use the relative difference of the outdegree exponents as the 
fifth criterion 

'generaled -'reference 

'reference 

6. As sixth criterion we use the relative difference in the number of 
nodes n: 

(3) 

Consider the two frequency distributions 

n g e n e r a ~ e d -  n r e f e r e ~ ~ c e  

nreference 

I 
fh, = { 0.5,0.0,0.5 } and 

(6) 

I. The Wald-Wolfowitz lest did not discriminate well enough for the 
first criterion but good enough for this criterion. 

7. For the seventh criterion we use the relative difference in the 
number of links I: 
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Figure 1 : The DFN and AT&T Topologies 

All of these criteria were normalized so that 1.0 represents the high- 
est similarity. Some criteria can theoretically retum negative values 
if topologies are extremeiy different but that was of no significance 
as we are looking at relatively similar topologies. 

The metrics mentioned above and some additional mehics are imple- 
mented in our Topology Comparison Tool. It is written in Java and 
can be easily extended with additional meh-ics. Every metric can be 
given a weight and based on those the tool calculates the difference 
between two topologies normalized to a number between 0.0 and 1 .O. 

4 Fitting based on Similarity Metrics 

Based on the similarity metrics of the last section we try to determine 
the input parameters of the most often used and referenced topology 
generators BRITE [IO], TIERS [I 11 and GT-ITM [I21 for two well- 
known real-world topologies (see Figure 1). The 154 node AT&T 
topology is quite famous and often used for simulations. The 30 
nodes DFN (German Research Network) topology is also often used 
in German projects. Both topologies are POP-level topologies. We 
did not have any router level topologies at the time of our experi- 
ments. It is quite hard to get real-world topologies, ISPs are some- 
what reluctant to reveal information about their topologies. Because 
of this we started to collect available real-world topologies, they are 
publicly available at our topology site: http://www.kom.tu-darms- 
tadt.de/-heckmann/topologies/. 

4.1 Fractional Factorial Analysis 

We started with a fractional factorial analysis to determine the influ- 
ence of the different input parameters of the topology generators on 
the different similarity metrics. The results were very disappointing 
because of the strong non-linear influence of practically all input 
parameters on the similarity metrics. Only for small parameter varia- 
tions the linear model which the factorial analysis is based upon can 
be assumed. Because of these results another search heuristic to 
search the parameter space was implemented. 

4.2 Systematic Search 

The topology generators use random numbers in their topology cre- 

Table 1: Weights 

ation algorithm. We first tested how similar topologies created with 
the Same parameter Set are. For all topology generators the combined 
similarity metric varies less than 2% if the Same parameters set is 
used. So the topology generators retum stable results if tlie parame- 
ters are unchanged, the influence of the random number generator on 
the similarity metrics is not strong. 

We then used a heuristic similar to Hooke & Jeeves [I 51 to search for 
the parameter combination that yields the maximum combined simi- 
larity meh-ic. The weights chosen for the different metrics from Sec- 
tion 3 are summarized in Table 1. We are aware of tlie fact that these 
weights are subjectively chosen. We put our emphasis on the number 
of nodes and links and the distributional criteria and not on power- 
laws. Our tool allows to add further metrics and change the weights 



to what the researcher deems important for his experiment. highest similarities found in our experiments, they are given Table 3. 

4.3 Results The results for GT-ITM are displayed in Table 4 and Table 5 and 
have a similarity of 0.966 rsp. 0.879. 

The parameters of Table 2 were found for Brite and the DFN and 
To conclude, Tiers was able in both cases to produce topologies that 

AT&T topologies with a high and satisfying combined and normal- 
had the highest similarity to the real world ISP topologies, GT-ITM 

ized similarity of 0.972 rsp. 0.95 1. Please note that the values a and produced the least similaities. ~h~ level of similaritv that could be 
ß do not seem to significantly influence the outcome of the measure- reached is quite high and indicates that hierarchical topology genera- 

ments when the parameter linkslnode is set to 2. tors are able to produce realistic POP level topologies. This is con- 
trary to the findings of [l]  for AS level topologies. 

The parameters for Tiers result in a similarity of 0.998 and 0.995, the 

I I I I I 

DFN I Bottom up I randoin pick 1 17 1 30 1 GLP / 0.42-0.46 10.62-0.68 1)-1 
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Table 2: Parameters of Brite for DFN I AT&T-like Topologies 

Table 3: Parameters of Tiers for DFN I AT&T-like Topologies 
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Furtlier experiments showed that the similarity with regard to most 
metrics (except of Course the number of links and nodes metrics) 
remains roughly equal if the number of nodes and links are increased 
proportionally for all topology generators. The Parameters found 
seem to be scalable to larger topology graphs and thus are a valuable 
hint for researchers. 

5 Summary and Outlook 
This work should help the researcher in finding or creating realistic 
topologies. We first introduced the term POP-level topologies, many 
topologies that are called "router-level" are in fact POP-level topolo- 
gies aiid no true router-level topologies. 

We also introduced our collection of real-world topologies that can 
be used for simulations. They are available at our topology Page 
(http://www.kom.tu-darmstadt.del-heckmann/topologies/) in 
human-readable GML [I61 file format and as an NS2 OTcl script that 
can directly be used for NS2 simulations. On that page we also offer 
our software, for example a topology converter that can read the most 
common topology file formats. 

In this work, we also presented similarity metrics for comparing net- 
work topologies and based on these we derived the combination of 
input parameters for 3 topology generators that lead to the highest 
similarity with 2 real world ISP-level topologies. The results show 
ranges of parameter combinations that generate realistic topologies 
and can act as a starting point for anybody who wants to do realistic 
ISP level simulations. 

We are aware that our results are only estimations for a limited num- 
ber of topologies and metrics and plan to continue it using more 
topologies as well as more and different combinations of similarity 
metrics. 
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