
Rhaban Hark, Nils Richerzhagen, Björn Richerzhagen, Amr Rizk and Ralf Steinmetz Towards an Adaptive Selection of Loss Estimation
Techniques in Software-defined Networks In: Proceedings of 16th IFIP Networking 2017 Conference (NETWORKING’17), pp: 1–9, IEEE,

June 2016, ISBN 978-3-901882-94-4 © 2017 IFIP .

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Towards an Adaptive Selection of Loss Estimation
Techniques in Software-defined Networks

Rhaban Hark, Nils Richerzhagen, Björn Richerzhagen, Amr Rizk, and Ralf Steinmetz
Multimedia Communications Lab, Technische Universität Darmstadt, Germany

{rhaban.hark|nils.richerzhagen|bjoern.richerzhagen|amr.rizk|ralf.steinmetz}@kom.tu-darmstadt.de

Abstract—Next generation Software-defined Networks (SDN)
aim at deeply programmable switches which can be leveraged
by SDN controllers to offload self-contained, logically persistent
tasks. One such task is flow and network monitoring, specifically,
fault detection and loss estimation, which is essential for SDN
applications that provide quality of service guarantees under
network dynamics. In this work, we devise, implement, and
evaluate fault detection and loss estimation techniques built upon
tasks devolved to SDN switches. Subsequently, we contribute (i)
an analysis and empirical evaluation of the benefits and costs
of different packet loss estimators depending on the network
conditions; (ii) a case study showing how an adaptive monitoring
framework which flexibly exchanges the estimation techniques
would retain a thoroughly good fidelity while optimizing the
monitoring costs.

I. INTRODUCTION

Software-defined Networking (SDN) has become the de-
facto standard architecture for new generation networks. A
recent paradigm change within the SDN research indicates a
shift from first generation strict network partitioning of in-
telligent SDN controllers and fast-but-dumb switches to more
flexible, logically persistent and programmable SDN switches.
The aim of this shift is to move from a rigid separation of
programmable elements in controllers and stateless forwarding
elements in switches [16], [18], [23] to offloading tasks that
require persistent packet state information into schedulers [8],
[10], [32]. A significant example of tasks requiring per packet
state information is loss estimation, fault detection and flow
monitoring. Many SDN research concepts, e.g. [2], assume
regularly updated if not real-time monitoring information.
The ability to detect packet loss surges and network faults
is crucial for accurate network management. This monitor-
ing information forms a basic building block for adaptive
behavior, such as dynamic network resource slicing in multi-
tenancy scenarios [15] or upgrade and migration of Virtual
Network Functions. Such networks possess requirements that
go beyond the abilities of traditional monitoring solutions such
as sFlow [28] and NetFlow [14], e.g., by estimating flow
correlations [12], detecting heavy hitters [21], and estimating
traffic matrices [19].

Current monitoring frameworks usually provide one method
of choice for estimating packet loss [35] which might not
be as accurate or as efficient as required depending on the
network and traffic conditions. Subsequently, in this work
we address two research gaps that are associated with this
problem, i.e., (i) understanding the varying characteristics of

different measurement and estimation techniques for fault
detection and packet loss in SDN, and (ii) analyzing the
required adaptivity of monitoring applications depending on
the network environment. This adaptivity not only entails
adjusting measurement parameters depending on the network
conditions, but rather replacing the entire fault detection
technique for higher accuracy or lower measurement overhead.

The contributions of this paper are as follows: First, we
devise different measurement techniques for fault detection
and packet loss estimation in SDN that fall into two categories:
(i) controller-based match-action techniques and (ii) offloaded
switch-based techniques. We propose and analyze different
loss estimators based on these measurement techniques and
finally compare their benefits and costs in different scenarios.
Ultimately, we discuss how to combine different loss estima-
tion techniques into an adaptive monitoring framework which
minimizes monitoring overhead depending on the network
state and the required measurement accuracy.

The remainder of the paper is structured as follows: Sec-
tion II defines the techniques that we investigate in this paper
including first insights into their assets and limitations. Subse-
quently, Section III evaluates and compares those techniques
regarding changing network conditions and requirements. Sec-
tion IV provides a cost assessment for each technique followed
by a discussion of an adaptive technique selection strategy and
a corresponding case study. Section V summarizes relevant
related works, while Section VI concludes the paper and
provides an outlook about ongoing and future work.

II. LOSS MEASUREMENT TECHNIQUES

In this section, we describe a number of techniques that we
devised for fault detection and packet loss measurement. We
use the term technique to denote a collection of procedures and
formats to measure a network characteristic such as the loss
rate or the state of a network entity, e.g., switch, middlebox
or link. In a nutshell we require:

1) The desired information, e.g. the loss rate1.
2) The captured metric and how it is processed to de-

rive the desired information, e.g. from the number
of observed packets N to the average loss rate, as

1In this work we use the terms loss rate and packet loss probability inter-
changeably. This is generally true under very mild conditions of stationarity
and ergodicity of the loss process [3]. The rate is the intensity of the simple
stationary 0 (no loss) - 1(loss) process {ln}n∈Z, while the loss probability
is defined as E[l0] = PL.
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limN→∞
1
N

∑N
i=1 li with li ∈ {0, 1}, where 1 indicates

packet loss.
3) A procedure to transfer this information (either raw or

processed) to a monitoring entity for further analysis
and/or processing, e.g. active polling.

Generally, we would like to compare the performance of
techniques that desire the same information (first property).
If the captured information (second property) is identical,
however, the processing differs then the comparison is quanti-
tatively easy. Note, however, that in this paper we also consider
vastly diverse techniques that seek the same information (loss
rate) to explore their design space and also leverage their
different strengths. In addition, some techniques only differ
through the information transfer procedure (third property).

In the following, we compare four techniques to infer the
loss rate PL of a network link of interest as depicted in
Fig. 1: Using (i) packet counters on switches; (ii) in-line
sent packet counter values; (iii) packet samples; (iv) active
network probing. The network links of interest are defined
as a contiguous connection between two ports of two SDN
network nodes that are either connected via one direct link
or multiple links as in a network segment (see Fig. 1). Note
that for fault detection and real-time monitoring we are mainly
interested in a running estimate of the packet loss rate PL. In
the following, we first describe the loss estimation techniques
before providing a comparison of the techniques in Sect. III.
A. Legacy packet Counters (LC):

First, we investigate a technique that uses simple packet
counters that are common, e.g., in OpenFlow switches but
also in legacy networks using various management protocols
like SNMP. Basically, switches increment their packet counters
for every forwarded packet. OpenFlow provides counters on
a flow-level basis which are usually actively fetched by the
controller. Later OpenFlow versions (1.5) provide optional
push-based counter value transmission. In the following, we
describe a technique that infers the flow loss rate (specifically
estimates the packet loss probability) from packet counters.
For the sake of illustration we describe this technique for a
single monitored flow, however, this technique can be easily
adapted to collections of data flows using OpenFlow rules.

Estimating the loss probability: Consider the illustrated link
in Fig. 1. Let cs(ti) be the cumulative packet counter value at
a discrete time ti for i ∈ N for the flow of interest at switch
s where s ∈ {in, eg} denotes the ingress or egress switch,
respectively. Assuming negligible queueing we calculate the
number of lost packets Li in the time interval [ti−1, ti] as

Li = (cin(ti)− cin(ti−1))− (ceg(ti)− ceg(ti−1)) . (1)

Subsequently, we calculate the packet loss probability estimate
P̂L,i for the ith time interval as

P̂L,i =
Li

cin(ti)− cin(ti−1)
= 1− ceg(ti)− ceg(ti−1)

cin(ti)− cin(ti−1)
. (2)

Note that we are mainly interested in a running estimate
of the loss rate, i.e., P̂L,i, for fault detection and real-time

1–PL

single link

segment

σin

σout
Ceg(t)

SDN-based
monitor

(e.g. controller)

Cin(t)

Fig. 1: Conceptual overview of SDN loss estimation / fault detection including
relevant measurement metrics.

monitoring applications. Under stationary packet losses it is
straightforward to calculate the steady state loss rate PL.

Limitations of Legacy Counters (LC): This technique
has some limitations arising from unsynchronized counter
requests. A controller may request statistics containing counter
values from the ingress and egress switch at the same time,
however, the time a statistic request reaches a switch may
vary, e.g. due to delay variations on the control paths or
due to load dependent processing times at the switches [11].
Another limitation is the number of packets in flight, e.g.,
that are queued. These packets introduce a bias in P̂L. This
bias in the average loss rate can, however, be accounted for
using information on the average queue lengths. Although one
could argue that the packets in-flight in one estimation interval
[ti−1, ti] are carried over to the next interval [ti, ti+1] and also
that, for large estimation intervals the impact of the number of
packets in-flight diminishes, both mentioned limitations lead
to uncertainty when loss is calculated using legacy packet
counters (LC). Adding these uncertainties to the model gives:

P̂L,i = 1−
ceg(ti + tεi,eg)− ceg(ti−1 + tεi−1,eg)

cin(ti + tεi,in)− cin(ti−1 + tεi−1,in)
, (3)

where tεi,in/eg is the time delay between the request timestamp
ti and when the counter is actually reported. Minimizing the
time error tεi,in/eg as well as taking estimates of the average
in-flight packets into account yields better estimates in (2).

B. In-line packet Counters (IC):
This technique uses production traffic based counter updates

from the ingress and egress switch to infer the loss probability.
The difference to the polling-based legacy packet counter
(LC) technique is that switches send the counter values in-
line with other control messages, thus, the updates arrive at
the controller at irregular times. For this, we assume switches
capable of piggybacking packet counter values to the control
messages that are sent to the controller. Although to the
best of our knowledge no such piggybacking mechanism is
standardized, the threshold-based statistic trigger from the (not
yet widely used) OpenFlow version 1.52 is a good example

2https://www.opennetworking.org/sdn-resources/technical-library, accessed
21.12.2016
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of a comparable approach with similar properties. One main
advantage of this technique is that there are no extra control
messages necessary for monitoring purposes. However, due to
the irregular counter updates, the controller cannot compare
counter values from the ingress switch and the egress switch
directly. Hence, to estimate the loss probability, we compare
throughput changes (in packets per second) both at the ingress
and the egress.

Estimating the loss probability: First, we use the in-
line counters to calculate the most recent incoming packet
throughput as

R̂in(ti−1, ti) =
cin(ti)− cin(ti−1)

ti − ti−1
, (4)

while cin(ti) indicates the counter value at the ingress switch
at timestamp ti. The outgoing packet throughput R̂eg(t′i−1, t

′
i)

is calculated analogously while ti need not be equal to t′i.
Using the throughput estimates of the ingress and egress
switches, we estimate the loss probability on every (ingress
or egress) counter update using

P̂L,i = 1− R̂eg(tk−1, tk)

R̂in(ti−1, ti)
, (5)

where tk ≤ ti is the most current time a control message
is sent to the egress switch.

Limitations of in-line counters (IC): This technique relies
on the frequency of control message that are exchanged
between the controller and the switches. As control protocols
such as OpenFlow use keep-alive messages which are sent
when no control communication is present, this frequency has
a defined minimum (values of 15s are common3). We model
the IC limitation due to no synchronization using the difference
between [tk−1, tk] and [ti−1, ti] in (5) as

P̂L,i = 1− Reg(tk−1, tk)

Rin(tk−1 + t∆k−1, tk + t∆k )
, (6)

where we used t∆k to indicate the time difference to ti. The
accuracy of this estimator is improved when minimizing t∆k .

C. Sampling-based packet Counters (SC):
Maintaining accurate counter values in high-speed software-

defined networks is a challenging task requiring expensive and
power hungry TCAM counters. In the following, we propose
a sampling-based counter approach which does not need to
take every traversing packet into account and increments a
counter only with a fixed probability to decrease the overhead
on a switch allowing the use of cheaper counter implementa-
tions (e.g. SRAM). Sampling-based counters provide another
possibility to determine the loss rate P̂L,i. This technique is
similar to the legacy counter approach (LC) while having ad-
ditional uncertainty due to sampling. Note that this technique
is fundamentally different from the technique in [31] since
we do not sample and forward packets to the controller. A

3Dell OpenFlow Deployment and User Guide: echo-request interval http:
//www.dell.com/support/manuals, accessed Jan 20, 2017

mathematical illustration of the difference between the two
methods is given in [12].

Estimating the loss probability: Consider a stochastic
sampling of arriving packets according to independent and
identically distributed (iid) Bernoulli random variables taking
values in {0, 1} standing for (take no sample) and (take
sample), respectively. The sampling probability at the ingress
switch and at the egress switch are denoted pin and peg ,
respectively. We estimate the number of incoming packets
as ĉin(ti−1, ti) = c∗in(ti−1, ti)/pin, where c∗in(ti−1, ti) is the
number of sampled packets at the ingress switch in the
time interval [ti−1, ti]. We estimate the number of outgoing
packets ĉeg(ti−1, ti) analogously, so that we estimate the loss
probability for interval [ti−1, ti] as

P̂L,i = 1− ĉeg(ti−1, ti)

ĉin(ti−1, ti)
. (7)

Limitations of sampling-based counters (SC): In addition
to the timing problem which we stated for the legacy counter
(LC) technique, the sampling based approach is also vulnerable
to low traffic rates. A sampling rate of pin = peg = 1
recovers the legacy counter technique, while a sampling rate
of pin = peg = 0.1 requires on average 1/pin, i.e., ten times,
the number of packets to have the same number of samples.
This simply implies that the sampling-based counters trade
accuracy for less overhead.

D. Active Probing (PR):

Active probing - a known technique to infer network
properties - provides estimates solely based on injected extra
probe traffic. In our setting, this requires controller knowledge,
e.g., appropriate Openflow rules, making it difficult to be
offloaded to switches. Here, the controller sends the active
probing packets in each estimation interval to the ingress
switch which forwards the packets to the egress switch. The
egress stream is then collected and processed for statistics
by the controller. The controller can craft the probing packet
stream in different manners. In this work, we limit to two
simple types: a smooth constant rate stream or a burst probing
stream. Note, that under equal rate probing bursts remove the
risk of in-flight probes and lead to shorter but higher load on
the network. The burst rate must be set carefully to avoid
artificially congesting the network.

Estimating the loss probability: We define σin,i as the
number of packets sent out in interval [ti−1, ti]. Then, given
the number of received probes σout,i at the end of interval
i we calculate the loss rate estimate as

PL,i = 1− σout,i
σin,i

. (8)

Limitations of active probing (PR): The main limitation of
actively probing communication networks is the induced extra
load which perturbs the network state. Active probing has to
be carefully designed such that it does not introduce artificial
packet loss which yields biased estimates P̂L,i.
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TABLE I: Relevant notation and parameters. Default values are underlined.

Notation Values Description

r [pkts/s] 102, 103, 104, 105 Average packet rate
– Poisson, Bursty Traffic model
[ti, ti+1] [s] 2, 5, 45, 180 Estimation interval length
α 0.2 EWMA smoothing factor
pin, peg 2−2, 2−4, 2−6, 2−8, 2−10 Sampling probability (in-

gress/egress)
PL deterministic, Markov (bursty) Loss model

III. TECHNIQUE COMPARISON

In this section, we investigate the techniques described in
Section II with respect to their accuracy under (i) different
traffic conditions, (ii) various estimation interval lengths, and
(iii) for different packet loss burstiness. Here, we consider the
accuracy in terms of the estimation error P̂L−PL, where P̂L
is the loss rate estimate and PL is the given ground truth. For
emulated random losses, we consider the average estimation
error. Table I shows the relevant system parameters and, if not
stated otherwise, underlined parameters are the default values.

A. Technique implementation

We analyze the techniques in a test environment within the
GENI [7] testbed based on a topology such as the one sketched
in Figure 1. We use a central Floodlight4 SDN controller,
capable of communicating with the network devices, while
Open vSwitches [27] run on the network devices to forward
the emulated UDP traffic. We emulate losses using the Linux
kernel traffic scheduler tc on a link between a rack at Stanford
and a rack at the University of Illinois.

For the legacy packet counter technique (LC) we use the
OpenFlow protocol version 1.3. Here, the controller polls
the statistic request for the flow of interest at the end of
every estimation interval. Once it receives statistics from both
(ingress and egress) switches, it extracts the number of incom-
ing packets and outgoing packets using the previous statistics
to get the number of lost packets as described in Section II-A.

We implement the in-line packet counter technique (IC)
by emulating control-traffic events as they may occur in
production networks. We trigger such switch-to-controller
message events with piggybacked counter values according
to an approximate Poisson process with inter-arrival times
from a truncated exponential distribution (λ = 15) with
maximum of 15 seconds, as this is a common default value
for echo messages of OpenFlow switches in the absence
of production control messages. Further, when a counter
value reaches the controller, it updates the packet throughput
estimation using an exponentially weighted moving average
such as RMA(t) = α ·R′(t) + (1− α) ·RMA(t− 1), where
R′(t) is the instantaneous measured throughput and RMA(t)

4http://www.projectfloodlight.org/floodlight/, accessed Jan 04, 2017

is the smoothed throughput at time t.5 This smoothing factor
avoids rough estimates on frequent, between ingress and egress
unbalanced counter updates. Note that α resembles a tradeoff
between the responsiveness and the accuracy under stable loss
rates. Finally, we compare the ingress and egress throughput
to estimate the loss probability as described in Section II-B.

To implement the sampling based packet counter (SC) we
use sFlow [28]. A built-in agent on the switches sends packet
samples to the controller, where an sFlow collector takes the
samples to determine the sample count. Denote the packet
sample probability at the ingress switch as pin and at the egress
as peg . In an auxiliary evaluation, cf. Figure 4b, we found a
sampling probability of pin = peg = 2−4 to be an empirically
reasonable choice as higher sampling rates do not improve the
estimates. At the end of the estimation interval the sampled
collector compares the counters to determine the number of
lost packets as described in Section II-C and resets the counter.

The active probing approach (PR) is, in conjunction with LC,
implemented using basic OpenFlow features. The controller
prepares a set of minimum-sized probing packets and in each
estimation interval it dispatches these packets to the ingress
switch towards the measured link with minimal delay. The
egress switch intercepts these packets and sends them to the
controller, where the number of retrieved packets is used to
calculated the loss rate (cf. Section II-D).

B. Traffic rate sensitivity

We first analyze the accuracy of the techniques with regard
to the amount of forwarded traffic the techniques can utilize.
Therefore, we change the packet rates of the Poisson traffic
arrival processes to 102, 103, 104, and 105 pkt

s , respectively,
with exponentially distributed inter-arrival times. Figures 2a
to 2d depict the accuracy in terms of absolute estimation error
per technique. For the lowest packet rate of 102 pkt

s , we see that
the legacy counter technique (LC), the active probing approach
(PR), and the in-line counter (IC) achieve reasonable results,
having a median error around 2% or less. The sampling-based
approach (SC) delivers poor results and suffers, in particular,
when the traffic rates are low (compare Figure 2a to Figure 2d).

Hence, for the default estimation interval of 2s the legacy
counter technique (LC) improves with higher traffic. Note
that LC and the in-line packet counter technique (IC) possess
reasonable accuracy given low packet rates. Active probing
(PR) is independent of the packet rate, however, a combination
of high traffic load and (PR) should be avoided to prevent
biasing the measurements through network overloading. An
important observation is that the sampling-based technique
(SC) is only feasible with fairly high packet rates.

C. Impact of the estimation interval length

In a second investigation, we measure the absolute estima-
tion error for different lengths of the estimation interval which
we show in Figure 3. where P̂L is the estimate and PL is

5Here, we empirically optimize the EWMA parameter α = 0.2, however,
we note that it basically controls the tradeoff of the oscillation and respon-
siveness of the measured throughput.
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Fig. 2: Different techniques under varying average traffic rates with Poisson traffic arrivals, deterministic loss (PL = 0.5), and a estimation period of 2s.
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Fig. 3: The impact of the different loss estimation frequencies (time between
two consecutive estimates) for Poisson traffic and deterministic loss rate PL.

the ground truth. Here, LC improves with longer intervals,
PR is independent of the interval length, and SC requires
larger intervals, since it requires many samples to produce
meaningful results. However, as IC is independent of the
interval length, its accuracy does obviously not change.

D. Non-stationary loss rate jumps (Fault detection)

We consider link faults as non-stationary changes in the loss
rate as shown in the exemplary excerpt from a testbed emula-
tion in Fig. 4a where the changes occur at {73, 124, 185, 226}
seconds. Here, we keep this example simple to illustrate how
the different techniques react to such loss rate changes. In the
next section we introduce a Markov loss model that we used
in the next emulations. A qualitative observation of the time
(respectively the number of samples) needed by a technique to
converge to the ground truth PL after a loss rate jump shows
that the different techniques possess different sensitivities. For
example, LC, PR, and SC are able to quickly conflate both the
estimate and the ground truth PL values while inline packet
counters IC are generally slower to converge. The convergence
speed of IC partially depends on the smoothing factor α (here
α = 0.2) as motivated in Sect. III-A. Note that the sampling-
based approach SC overestimates PL as seen in Fig. 4a. A
deep investigation revealed that sampling at the egress switch
in our setup becomes biased under high load. Sampling fewer
packets lets this bias vanish.

E. Accuracy comparison for bursty traffic and bursty losses

In the previous sections, we evaluated the estimation tech-
niques for friendly Poisson traffic. Next, we consider bursty
traffic with uniformly distributed burst length UL[1, 10

3] pack-
ets and uniformly distributed inter-burst times Ut[1, 10] sec. In
addition, we model packet losses using a Gilbert-Elliot 2-state

Markov discrete time model [20] with slot length of 3 seconds
that alternates between a peak loss of PL,max = 0.5 and no
loss with the following parameters: We parameterize the aver-
age loss in this case as PL,avg = 0.25 and vary the burstiness
parameter T of this Markov chain in the experiments. The
parameter T is defined as the average number of slots for this
Markov chain to change states twice and can be used to control
the burstiness of the losses given fixed peak and average losses.
Hence, a higher T denotes slowly alternating long-lived losses
while smaller T refers to quickly alternating short-lived losses.
We vary the burstiness of the losses to explore how fast the
different techniques converge to the ground truth.

In Figures 4c to 4h we present cumulative distribution
functions (CDF) of the estimation error P̂L−PL for combina-
tions of Poisson and bursty traffic together with different loss
burstiness values T . In Figure 4c we show friendly Poisson
traffic and long-lived loss bursts (T = 50). Here, legacy
counters and active probing (LC, PR) behave similarly while
inline counters IC have more outliers due to longer ramp-up
times after loss rate changes. The sampling-based counters
technique SC shows overestimation issues as discussed in
Sect. III-D. Moving to short-lived loss bursts as depicted in
Figures 4d and 4e, we see that inline counters IC suffer the
most as it is not able to quickly converge to the correct value.
For LC and PR the ratio of estimates with an error under 10%
reduces from over 95% for long-lived loss bursts (T = 50)
to 50% for short-lived loss bursts (T = 5).

Figures 4f to 4h show the estimation error CDFs for emu-
lated bursty traffic and bursty losses. In general, the accuracy
of all techniques degrades for bursty traffic when compared
to the friendly Poisson traffic case. With bursty traffic, we
can first observe in Figure 4f that active probing PR is slightly
superior to legacy counters LC on rather long-lived loss bursts.
Note, that moving to short-lived loss bursts in Figures 4g
and 4h affects the accuracy of all loss estimation techniques.

F. Discussion

Next, we discuss qualitative advantages and drawbacks of
the considered loss estimation techniques as summarized in
Table II. Apart from the techniques’ accuracy, a comparison, in
particular, regarding the overhead and costs is not straightfor-
ward. For example, the message overhead produced by legacy
and sampled counters (LC and SC) is equal under the same
conditions. However, taking the packet counting overhead
into account or the advantage of having packet samples at
a monitoring entity for further processing tasks, then it can be



Rhaban Hark, Nils Richerzhagen, Björn Richerzhagen, Amr Rizk and Ralf Steinmetz Towards an Adaptive Selection of Loss Estimation
Techniques in Software-defined Networks In: Proceedings of 16th IFIP Networking 2017 Conference (NETWORKING’17), pp: 1–9, IEEE,

June 2016, ISBN 978-3-901882-94-4 © 2017 IFIP .

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

50 100 150 200 250

time [s]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

P
L

Theorical PL LC PR IC SC

(a) Excerpt from an emulation run of the estimated loss over time with loss rate jumps (Gilbert-Elliott
2-State Markov Model; PL,avg = 0.1; PL,max = 0.2).
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changing ingress/egress sampling rates.
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(c) Poisson traffic and Gilbert-Elliot loss profile
(T = 50 long-lived bursts).
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(d) Poisson traffic and Gilbert-Elliot loss profile
(T = 25 medium size bursts).
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(e) Poisson traffic and Gilbert-Elliot loss profile
(T = 5 short-lived bursts).

0.5 0.0 0.5 1.0

P̂L −PL

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F LC

PR

IC

SC

(f) Bursty traffic and Gilbert-Elliot loss profile
(T = 50 long-lived bursts).
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(g) Bursty traffic and Gilbert-Elliot loss profile
(T = 25 medium size bursts).
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(h) Bursty traffic and Gilbert-Elliot loss profile.
(T = 5 short-lived bursts)

Fig. 4: Loss rate estimation techniques show contrasting accuracy under different conditions such as variable traffic and loss burstiness. (LC: Legacy Counter,
PR: Active Probing, IC: In-line Counter, SC: Sampling-based Counter).

argued for either technique. Nevertheless, it is clear that under
certain classes of network conditions and requirements some
techniques are superior to others. This is the key motivation to
an adaptive selection of the used loss estimation technique. In
the next section, we transform the conducted comparison into
a guideline for an adaptive loss rate technique selection.

IV. TOWARDS AN ADAPTIVE SELECTION OF LOSS
ESTIMATION TECHNIQUES

Backed up by the analysis in the previous section, we
provide, in the following, guidelines for the dynamic selection
of the best-fitting loss estimation technique based on the
requirements and conditions in the network. Note that we do
not consider the accuracy as the sole criterion to determine the
best-fitting technique, but also the costs of each technique, if
possible. Although we leave a detailed quantitative comparison
of the costs of the investigated techniques for future extensions
of this work, we introduce the following qualitative cost
guideline: (i) First, we suggest to use active probing (PR)
if and only if none of the other techniques provide proper
estimates to avoid notable probe traffic on the control plane
and especially on data plane. (ii) With respect to costs, the
legacy counter (LC) approach is inferior to the sampled counter
(SC) approach since all packets must be taken into account in

LC. It is also inferior to the in-line counter (IC) as it creates
explicit control traffic to fetch counter values. Thus, it is only
of choice if IC and SC are not applicable due to conditions
known to provide poor accuracy. (iii) A qualitative separation
of the in-line counter (IC) and sampling counter approach
(SC) is not easily possible, however, we argue that the IC
approach requires more resources: For example, the number of
bytes piggybacked in a control packet could exceed the bytes
for explicit statistic requesting and reporting. Furthermore, all
packets must be processed by the counter, which is not trivial
in high speed networks and forces the devices to use expensive
TCAM counter. (iv) Thus, we would recommend starting with
the sampled counter technique (SC) if the approach delivers
reasonable accuracy.

We use this guideline in combination with the performance
analysis from Section II to discuss the suitability of different
techniques under various conditions given performance and
overhead requirements. We consider a network operator that
uses some knowledge on the production traffic rates (minimal,
low or high traffic amounts and whether it is bursty or not) to
select the most suited loss estimation technique. The following
recommendations are summarized in Table III.

Minimal traffic: Given negligible amounts of production
traffic the passive techniques that count present traffic, may not
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TABLE II: Qualitative review of the considered loss estimation techniques.

Technique Review

LC: Legacy Counters

Usable with low production traffic rates and short estimation intervals, however, better with higher packet rates and
longer estimation intervals. Acceptable impairment due to loss burstiness and traffic dynamics.
Costs: Requires available packet counters on forwarding devices. Costs are mainly due to the controller-switch
communication: One statistic request and one statistic reply for each counter update.

PR: Active Probing

Good performance independent of the production traffic packet rate or estimation interval length. Highest accuracy
on idealized static loss rates and little impairment due to loss burstiness.
Costs: Probes consume resources on the control plane and mainly on the data plane. Active probing may perturb the
network state leading to additional packet losses, e.g., in case of heavy production traffic.

IC: In-line Counters

Good performance throughout various traffic rates but requires smoothing/filtering. Does not depend on a fixed
estimation interval, i.e., capturing samples on different time scales. Smoothing, e.g., using a exponential moving
average, leads to a trade-off between steady-state accuracy and reaction time to changing loss ratios.
Costs: Requires available packet counters on the forwarding elements, but only a small number of bytes are piggybacked
on control messages.

SC: Sampling-based Counters

Achieves reasonable estimates given high packet rates or long estimation intervals. Saves on resources since only a
fraction of all packets are counted and packet samples can be processed to determine other metrics, e.g., traffic matrix.
Costs: Reduces the packet counting overhead significantly, however, it still possesses the controller-switch communi-
cation costs for statistic requests and replies.

Active Probing (PR) Legacy Counter (LC) In-line Counter (IC) Sampling-based Counter (SC)
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Fig. 5: Dynamic technique selection to estimate PL with varying traffic conditions and estimation intervals.

TABLE III: Technique selection scheme based on coarse traffic properties and
the desired estimation interval.

Traffic Profile Short Intervals Long Intervals

Minimal PR PR

Non-bursty, Low LC LC

Non-bursty, High IC4 SC

Bursty, Low LC
c

LC
c

Bursty, High IC4 SC4

4LC for failure detection
c

PR if probing traffic acceptable

produce usable results due to sparse data points. For this case,
we suggest to use the active PR approach independent of the
interval length. The additional probe traffic on the control and
data path would obviously not perturb the network operation.

Non-bursty, low traffic load: For this case we showed, e.g. in
Figure 2a or 2b, that LC, PR and IC deliver results where 75%
of the values have at most a 2% error. However, considering
Figures 4c to 4e and Figure 4a, we showed that in-lined
counters (IC) are more vulnerable to non-stationary loss jumps
such that we favor using (LC). In this scenario of low traffic
load, it is justifiable to take the burden of counting all traffic

packets as in the legacy counter technique (LC). This decision
holds true for short, but especially also for long intervals as
the accuracy of LC increases even further.

Non-bursty, high traffic load: With a higher amount of
production traffic there are many more packets which can be
used to estimate the loss rate, such that less costly techniques
provide good results as well. For short estimation intervals, we
see in Figures 2c, 2d and 3 that in-line counters (IC) deliver
results where 75% of the estimates possess errors below 1,5%.
Hence, we prefer IC for short intervals with high traffic rates,
however, so far only for deterministic loss rates or non-bursty
losses. Given the slow convergence of IC on loss rate jumps
(cf. Figure 4a), we propose to use LC as fallback if such jumps
are expected or if we are interested in failure detection rather
than the stationary loss rate. If long estimation intervals are
desired, we recommend SC given its performance in Figure 3.

Bursty, low traffic load: Considering bursty traffic which
may alternate between times of no traffic and times of long
traffic bursts, however, for an overall low traffic load. Here
LC provides high accuracy as depicted in Figures 4f and 4g.
If probing traffic is acceptable under this low traffic load,
we recommend using PR which delivers continuous estimates
instead of depending on sporadic production traffic while
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retaining the same accuracy as shown in Figures 4f and 4g.
Bursty, high traffic load: Here, we find that less costly tech-

niques IC and LC show acceptable performance in Figure 4f.
For long estimation intervals, we recommend the use of SC as
a primary technique and LC as fallback alternative whenever
larger loss jumps are expected or failure detection is targeted
(cf. Figures 4g and 4h). For short estimation intervals, we
showed in Figures 4c to 4h (for an estimation interval length of
5 sec) that SC performs poorly and that IC or LC perform much
better. Table III summarizes the above recommendations.

Case study of dynamic technique selection for loss estimation:

Next, we describe a crafted scenario in which we emulate
changing network conditions and requirements to show the
benefit of a loss monitoring system that adapts its estima-
tion techniques. Here, we select the best-fitting technique to
maintain a low estimation error while optimizing the costs
as discussed previously. We vary the production traffic rates
to emulate changing conditions. To emulate a change in the
requirements, we change the desired loss estimation interval at
the end. This emulates a system that changes between coarse
and fine-grained measurements (interval length) depending on
whether loss/faults are suspected.

Figure 5 depicts an example of the dynamic selection of the
most suitable loss estimation technique over four equally long
time frames. In the uppermost subplot, we present the absolute
estimation error over time. It can be seen, that in the first two
time frames (PR & LC) the system uses a small estimation
interval (in this case 2 seconds), while IC in the third time
frame is independent of the estimation interval, and in the last
time frame the system uses a larger estimation interval of 45s.
The middle subplot shows the production traffic rate over time.
In the first time frame only negligibly low traffic traverses the
network. In the second time frame flows of a low packet rate
of 102 pkt⁄s are transmitted while in the latter two time frames
the traffic rate increases to 105 pkt⁄s. The lower subplot shows
qualitatively the costs for counting (dashed), control traffic
(red spikes), and data plane probe traffic (yellow).

As we find low traffic conditions in the first time slot
PR is of choice using its own test traffic. Here, the lowest
subplot shows the use of the control plane as well as the data
plane probe traffic. In the next time frame production traffic
rises, which can be used to measure loss passively. Hence,
we use the LC technique. The regular statistic requests and
replies between the controller and the switches are sketched
in the lower subplot. Here, we also face the overhead of
counting packets in the switches. In the third time frame,
the traffic rises to a high load such that we can switch over
to IC to further save resources on the control plane using
only piggybacked counter values. The upper subplot depicts
again a good accuracy. Note that the control channel traffic
is not deterministic due to the fact that the times at which
estimates are taken are also not deterministic. For the last time
slot the system switches to a coarse estimation interval of 45
seconds, such that, in combination with the high traffic load,
SC produces estimates with good fidelity and low overhead.

Using SC we save resources when counting packets (in this
case only 1/16 of all packets are counted on average at the
switches) and the number of statistic requests and replies
decreases as shown in the lower subplot.

V. RELATED WORK

Communication networks of various sizes ranging from re-
gional networks over Internet service providers to autonomous
systems exhibit temporary and persistent packet losses due
to many reasons such as failures, misconfigurations and sim-
ply heavy traffic [9], [25], [26], [34], [37]. Software-defined
networks provide new abilities for fault detection and loss
measurement as some monitoring tasks can be delegated to
network switches.

Generally, it can be discerned between active and passive
measurements for loss estimation. On the one hand, active
loss estimation techniques use dedicated probes to infer packet
loss [1], [30]. A number of approaches aim to improve
active loss measurements through optimizing the probing
patterns [4], [22]. They show that within the class of popular
ASTA (Arrivals See Time Averages) probing patterns one
could still optimize the variance of the estimation error. On
the other hand, passive measurement techniques use network
switch/router capabilities to infer the loss rate from traffic
information [6], [17], [24]. Such passive techniques became
also common in SDN where switches provide packet counter
information. The authors of [35] propose OPENNETMON
which is capable of measuring loss through fetching coun-
ters between two endpoints. Besides loss estimation, SDNs
enables monitoring other network metrics, in particular, traffic
amounts [12], [13], [19], [33] not only using counters but
also using controller-offloaded switch-based techniques [31],
[36]. Our work here differs from the aforementioned work,
such as [31], [35], [36], as we investigate, first, the accuracy
and properties of different loss estimation techniques and,
secondly, propose to adaptively select the best suited technique
depending on the current network conditions and requirements.

Apart from works that consider a single technique to infer
loss, there is only little work regarding the trade-offs between
different techniques. In [29] the authors provide a quantitative
comparison of Poisson and Uniform probing patterns, while
showing the benefits of irregular patterns. To the best of
our knowledge the closest work to ours is given in [5].
The authors quantitatively compare active probing based loss
measurements approaches (ZING and PING) with passively
measured router information (SNMP) to estimate loss in wide-
area networks. In [5] the authors focus on the correlation
between active and passive measurements while in this work
we compare the absolute accuracy of different SDN-based
techniques under different network conditions.

VI. CONCLUSION AND FUTURE WORK

In this work, we discussed how a monitoring service benefits
from exchanging different loss estimation or fault detection
techniques based on the network and traffic conditions. To
achieve this, we first introduced, revised, and evaluated four
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techniques (three passive and one active technique) that range
from sending probes through the network to offloaded switch-
based counter sampling techniques. Switch-based techniques
leverage forwarding device capabilities such as packet counters
or follow more sophisticated approaches such as piggybacked
packet counters and sampled counters. Through extensive eval-
uation, we showed how the accuracy of the various techniques
is affected by the network traffic, the estimation interval
length, and the loss rate dynamics. Furthermore, we qualita-
tively assessed the monitoring costs of each technique to find
the best-fitting techniques under various network conditions
and requirements. We showed in a case study that exchanging
estimation techniques retains a high fidelity while keeping the
monitoring costs as low as possible.

Future work will consider a detailed quantitative comparison
of the monitoring costs. Using a quantitative measure will
allow on-the-fly switching between the techniques. Extensions
also include the analysis of further offloaded techniques, such
as, sketch-based counters or threshold-based counters.
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