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Abstract—Using cloud computing for IT service provisioning
has become a common practice over the last years. Besides basic
infrastructure services, more advanced multimedia services with
high Quality of Service (QoS) requirements are offered. To fulfill
such requirements, appropriate cloud resources must be used for
service provisioning. In this paper, we analyze different heuristic
approaches to speed up the selection procedure of cloud resources
while ensuring a high solution quality at the same time. In the
work at hand, we present a Best-of-Breed approach, which is
assembled by simple heuristics. Further, we adopt an advanced
metaheuristic approach, i. e., tabu search, for the given problem
and compare it with the former mentioned approach. With our
approaches, we offer the means for a cloud provider to select
appropriate resources from a large pool to facilitate QoS-aware
multimedia service provisioning.

Index Terms—cloud computing, data center, quality of service,
multimedia, service, heuristic, tabu search

I. INTRODUCTION

Over the last decade, cloud computing has developed from
the idea to sell a resource surplus of Information Technology
(IT) resources to a common paradigm for IT service provision-
ing. In accordance, the amount of services that are provided
via cloud data centers has grown rapidly over the past years.
Cisco predicts that the ratio of overall Internet traffic caused by
cloud data centers grows from 61% in 2014 to a share of 83%
in 2019 [1]. Along with the increasing quantity of provided
cloud services, the non-functional quality requirements, i. e.,
Quality of Service (QoS), also increase. For a centralized
cloud infrastructure with a small number of large data centers,
low-latency applications, such as cloud gaming, represent
a major challenge [2]. Specifically for multimedia services
such as cloud gaming, data centers and compute resources
close to the potential users are required, which subsequently
leads to a growing number of cloud resources. Regarding the
definition of cloud computing, compute resources are assumed
to be unlimitedly available [3]. Nevertheless, with increasing
requirements regarding functional and non-functional aspects
of multimedia services, resources which are able to fulfill these
requirements regarding a specific group of users are limited.

Thus, in our research, we analyze approaches for efficiently
planning new as well as for selecting existing resources from
cloud infrastructures. Thereby, we take the point of view of a
single cloud provider which aim to optimize its infrastructure.
In our past work we published a heuristic framework to

find valid solutions for this specific optimization problem [4].
These heuristics are characterized by a high performance and
very good solution quality. Nevertheless, regarding the nature
of heuristics, no guarantee whether a solution is close to a
optimal resource assignment can be given. Therefore, in the
work at hand, we investigate different heuristic approaches to
find possibilities to improve and guarantee the solution quality.
For that matter, we propose a Best-of-Breed heuristic, as well
as an improvement procedure based on tabu search. Further,
we systematically compare these approaches regarding perfor-
mance and solution quality.

The remainder of this paper is structured as follows: In
Section II, we give a problem description and briefly present
our optimization model. We also provide a brief summary
of our previously published approaches. In Section III, we
introduce our Best-of-Breed approach, and in Section IV,
we present the tabu search heuristic. These approaches are
subsequently evaluated in Section V. An overview of related
work is given in Section VI. Section VII concludes the paper
with a brief summary and an outlook on our future work.

II. PROBLEM STATEMENT AND MODEL

In the following sections, we briefly describe our previously
published problem, mathematical model and approaches.

A. Problem Statement

In this work, we consider a provider who aims to use a set
of (potential or existing) cloud resources, i. e., data centers, to
offer the cloud infrastructure for multimedia service providers.
The data centers are located in different geographical areas.
Thereby, each data center may provide resource units between
a lower and an upper bound. Using a data center and it
resources results in certain fixed and variable costs. The
resources are characterized by predefined QoS attributes and
corresponding QoS guarantees with respect to each user cluster
and each QoS attribute.

The amount of provisioned resources are determined by a
given demand. Each user cluster constitutes a specific demand.
A provider faces the challenge of the cost-minimal and QoS-
aware selection of appropriate resources. Thereby, we assume
that the overall service demand of all user clusters and the
corresponding QoS requirements must be matched. In our
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former work, we referred to this problem as Cloud Data
Center Selection Problem (CDCSP) [5].

B. Mathematical Model

In this subsection, we briefly describe the mathematical
model, which is based on our former work [5]. The presented
model constitutes a static, single period optimization problem.
To start with, we describe the required formal notations,
beginning with the basic entities:
• D = {1, 2, ..., D#}: Set of data centers
• U = {1, 2, ..., U#}: Set of user clusters
• Q = {1, 2, ..., Q#}: Set of QoS attributes

With respect to the basic entities, the associated parameters
can be defined as follows:
• SDu: Service demand of user cluster u
• Kmin

d ∈ R: Minimal capacity of data center d
• Kmax

d ∈ R: Maximal capacity of data center d
• CFd ∈ R: Fixed costs of selecting data center d
• CV Od ∈ R: Variable operational costs per resource unit

in data center d
• QGd,u,q ∈ R: QoS guarantee of data center d w.r.t. user

cluster u for QoS attribute q
• QRu,q ∈ R: QoS requirement of user cluster u w.r.t. QoS

attribute q

To model the CDCSP as an optimization problem, the follow-
ing decision variables are introduced:
• xd: Selection of a data center d
• yd,u: Capacity provided by data center d to user cluster

u

In the model, Equation 1 defines the objective of the
problem, i. e., the minimization of total cost C, which depends
on the decision variables xd and yd,u (Equation 7). The binary
variables xd indicate if data center d will be used for service
provisioning. yd,u are integer variables that denote the number
of resource units data center d provides to user cluster u.

Equation 2 constitutes the constraint that the service demand
of each user cluster needs to be satisfied. Equations 3 and
4 define the given lower bound Kmin

d and the given upper
bound Kmax

d of the available capacity for each data center. In
addition, they represent the link between the decision variables
x and y. In Equation 5 and Equation 6, the variables pd,u
restrict the resource allocation between data centers and user
clusters, depending on the fulfillment of the QoS requirements.

C. Previous Approaches

In the given exact formulation, the problem uses binary
and integer decision variables (cf. Equation 7), resulting in
an Integer Program (IP). Such an IP can be solved using off-
the-shelf algorithms, such as branch-and-bound [6]. However,
the computation time for such IPs grows exponentially with
the number of decision variables. To overcome this drawback,
we also introduced a simple heuristic approach based on the
common concept of Linear Program (LP) relaxation in our
past research [7]. Thereby, the binary and integer decision

Model 1 Cloud Data Center Selection Problem

Min. C(x, y) =
∑
d∈D

xd × CFd +
∑

d∈D,u∈U

yd,u × CV Od

(1)∑
d∈D

yd,u ≥ SDu ∀u ∈ U (2)

∑
u∈U

yd,u ≤ xd ×Kmax
d ∀d ∈ D (3)

∑
u∈U

yd,u ≥ xd ×Kmin
d ∀d ∈ D (4)

yd,u ≤ pd,u ×Kmax
d ∀d ∈ D,∀u ∈ U (5)

pd,u =

{
1 if QGd,u,q ≤ QRu,q ∀q ∈ Q

0 else
(6)

xd ∈ {0, 1} ∀d ∈ D (7)
yd,u ∈ N ∀d ∈ D,∀u ∈ U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xd ∈ R, 0 ≤ xd ≤ 1 ∀d ∈ D (8)
yd,u ∈ R, yd,u ≥ 0 ∀d ∈ D,∀u ∈ U

variables are substituted by corresponding real variables (cf.
Equation 8), thus trading potentially non-optimal solutions
against substantial reductions in computation time. Since this
basic heuristic approach do not consider the specific struc-
ture of the described problem, we introduced and evaluated
priority-based approaches in our past work [4]. The published
heuristic framework is based on priority and cost allocation
rules and puts us into the position to assemble numerous
heuristics, each of them with a different solution quality and
a different performance, depending on the given test case.

III. BEST-OF-BREED HEURISTIC

With this approach, we aim to ensure a better and more
constant solution quality compared to single heuristics while
maintaining a favorable performance. The basic idea behind
the approach is the efficient application of different heuristics
for the same problem. The predefined heuristics are executed
subsequently or in parallel for an identical problem instance.
Out of all different solutions, we select the one with the best
solution quality, i. e., lowest total cost.

Since the input parameters in a real life scenario are un-
known in advance, the solution quality between the individual
heuristics may differ. In principle, each possible heuristic
approach may be included within this Best-of-Breed heuristic.
Nevertheless, depending on the number of the used heuristics,



their characteristics, and the implementation of the Best-of-
Breed approach, the computation time increases. Thus, a wise
selection of the included heuristics is required.

In this work, we use the heuristic approaches that we
published in our former work [4]. On one hand, the con-
trollable factor for solution quality and performance is the
configuration of each heuristic, which is easy to determine for
a predefined set of input parameters. On the other hand, input
parameters such as demand and resource utilization, which
in real life scenarios are out of our control sphere, influence
solution quality and performance as well. Our past work shows
that these parameters cause different best-fitting configurations
depending on the test case. In the subsequent sections, we
describe our procedure to assemble appropriate heuristics for
this approach.

A. Solution Quality

To determine a set of heuristics that should be considered
within the Best-of-Breed approach, we evaluate a set of exist-
ing heuristic regarding there solution quality and performance.
First, for each evaluated test case, we select the one heuristic
with the best average solution quality compared to the exact
solution. We compare this heuristic to all other heuristics using
the statistical instrument of paired t-tests [8]. Based on this
approach, we are able to decide whether a given heuristic
approach differs statistically significant from the selected best
approach or not. As result, we get a group of heuristics that
deliver the best solution quality, i. e., a group of heuristics with
no statistically significant difference compared to the average
best solution.

B. Performance

Out of the previously described group, we select the one
with the best performance, i. e., lowest computation time. We
followed the same procedure like we did with the solution
quality. We compared the heuristic with the best performance
to all other heuristics to identify the best and the fastest heuris-
tics for each test case. The identified heuristic approaches are
included in our Best-of-Breed approach. With this methodol-
ogy, for a given set of problem instances, it is obvious that the
described Best-of-Breed approach should provide a better or
equal solution quality compared to a single heuristic. However,
it also causes a higher computational effort. In our prototypical
implementation, we execute the single heuristics subsequently,
thus increasing the computation time with each additional
heuristics. In scenarios with high performance requirements, a
parallel execution may be favorable. In the evaluation section,
we apply the Best-of-Breed approach to different test cases
and compare the results with the metaheuristic tabu search,
which is described in the following section.

IV. TABU SEARCH HEURISTIC

The second approach we evaluate is the metaheuristic tabu
search, which was introduced by Fred Glover in 1986 [9]. It
is used to guide a local search procedure with the aim to
overcome local optima and to find a solution close to the

global optimum. For the local search procedure, it can make
use of various methods, such as approximation procedures
[10]. Fig. 1 illustrates the different components of the tabu
search approach we used. These core elements and further
configuration of our approach are explained in the following
subsections.

A. Initial Solution

Since the tabu search heuristic is an improvement procedure,
it requires an initial solution as a starting point. Further, it
guides a local search procedure. In both cases, appropriate
heuristic approaches are required. For that purpose, we make
use of one of the heuristic approaches we determined within
the statistical analysis presented in Section III.

B. Local Search Procedure

The local search approach requires several steps, such
as defining the neighborhood, analyzing the neighborhood,
selecting an appropriate solution, updating the corresponding
data structure for every iteration, and checking the stop con-
ditions.

1) Defining the Neighborhood: The first step of the local
search procedure is the definition of the neighborhood. To
determine the neighborhood NB(x) of the current solution
x ∈ X, specific moves must be defined. Thereby, the size of
the neighborhood and next solution depends on the predefined
moves. In our case, we use single-attribute-moves, i. e., use or
not use a data center. Thus, with a given number of m possible
data centers, the neighborhood is restricted to m different
possible solutions of the assignment problem.

2) Analyzing of Neighborhood Solutions: To determine the
neighborhood, we use candidate lists [11]. The list Dunused

xcurr

includes all currently unused data centers that may be opened.
The list Dused

xcurr
includes all currently used data centers, which

are possible candidates to close. Thus, each list stores the
required attributes to transform a current solution x ∈ X
into an adjacent solution x′ ∈ NB(x). Consequently, an
adjacent solution differs in exactly one attribute from the
current solution. We sort our candidate lists by total cost per
resource unit (cf. Equation 9).

c(d) = CVd + CFd ·
1

Kmax
d

(9)

The candidate list Dused
xcurr

is sorted in descending order, since
we assume that more expensive data centers are less likely
part of the optimal solution. In contrast, the list Dunused

xcurr
,

which contains the currently unused data centers, is sorted
in ascending order, since we are assume that less expansive
data centers are more likely part of the optimal solution.

In each iteration, both lists are analyzed step by step. The
analysis of a list stops once the calculated total cost starts
to increase. That is, when the first calculated neighborhood
solution causes higher cost, the neighborhood search stops and
the current solution will be used as a result of the current
iteration. Thus, the size of the analyzed neighborhood depends
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Fig. 1. Components of the Tabu Search Heuristic

Algorithm 2 Analysis of the Neighborhood
Start: Current valid solution xcurr ∈ X and sorted candidate

lists Dused
xcurr

, Dunused
xcurr

1: xfav ← Null; costs(xfav)←∞
2: for all d ∈ Dunused

xcurr
do

3: x′ ← transformSolution(d, xcurr)
4: if x 6∈ tabu list or satisfiesAspirationCriterium(x′) then
5: if cost(x′) < cost(xfav) or cost(xfav) = ∞ then

xfav ← x′

6: else stop analyzing candidate list Dunused
xcurr

end if
7: end if
8: end for
9: for all d ∈ Dused

xcurr
do

10: x′ ← transformSolution(d, xcurr)
11: if x′ 6∈ tabu list or satisfiesAspirationCriterium(x′)

then
12: if cost(x′) < cost(xfav) or cost(xfav) = ∞ then

xfav ← x′

13: else stop analyzing candidate list Dused
xcurr

end if
14: end if
15: end for

on the development of the total cost. Algorithm 2 shows the
corresponding pseudo code.

In line 3 and line 10, we open or close a data center, respec-
tively. Thus, a new resource assignment is determined, i. e.,
assignments are shifted between data centers. The allocation
of the resources causes different cost compared to the previous
solution. The new costs are compared with the current cost
of the solution in line 6 and 13, respectively. To overcome
local optima, tabu search allows moves that temporarily lead
to worse solutions. So, if no better solution is available, we
accept a worse one as well.

The methods transformSolution in our pseudo code are sim-
ple representations of the (re-)assignment process. In practice,
to reduce computation effort in this step, we use different pro-
cedures depending on the conducted move: For an additional
data center, we can use a simplified calculation procedure
for the neighborhood solution because of the relaxed capacity
constraints.

First, we add all resource assignments to the list Yxcurr
and

check whether the additional data center is able to satisfy the
QoS requirements. Those resource units yd,u, that are in line

for a new assignment are added to the list Y toCheck
xcurr

. This list
is sorted in descending order by variable cost. Afterwards, we
compare the variable cost CVd between present data centers
and the new one for the assignments in Y toCheck

xcurr
. If the variable

cost for the new data center is less then the current variable
cost, the resource assignment is changed in favor of the new
data center. This procedure is repeated until the variable cost
of a new data center exceeds the current variable cost or until
the maximal capacity Kmax

d is reached.
Closing a data center reduces the available resources and

requires a complete recalculation of the resource assignment.
In this case, we use again a heuristic, which was selected
following the procedure stated in Section III. Since the amount
of available resources is reduced, it is possible that a neigh-
borhood solution does not satisfy condition 2 from our model
and causes an invalid solution. In such a case, we assume the
cost as infinite and the solution will not be taken into account.

C. Tabu List

The name giving and an essential component of the tabu
search is the tabu list. Thereby, the tabu list prevents the
algorithm from returning to an already visited solution within
a given number of iterations. In our approach, we use an
attributive tabu list, i. e., a recency-based memory [12]. This
type of tabu list only maintains attributes of solutions that
have changed in the recent past. In our case, this corresponds
to the id of an data center d ∈ D, which was recently
opened or closed. This data center will be added to the tabu
list and its state cannot be changed for a given number of
iterations. Regarding the first-in-first-out principle, a stored
value is removed from the tabu list when the maximum number
of entries is reached [13].

Thereby, the determination of the tabu list size is a major
challenge. A tabu list which is too short leads to circles
within the local search. A list that is too long results in a
big amount of possible solution that are tabu and causes an
early termination of the local search and thus, a bad solution
quality [11].

For our implementation, we use a tabu list that considers
properties of the current problem instance. We set the tabu list
size while considering the number of all possible data centers
|D|. Thereby, the size of the tabu list must be shorter than the
number of data centers to avoid that all possible solutions are
part of the tabu list. Further, the growth of the list must be



smaller then the number of data centers to permit extensive
problem instances. Based on this, we choose a size of 1

2 ·√
|D| for our experiments, which corresponds with findings

in the literature [14]. The analysis of this parameter is stated
in Section V-B1.

Further, there is also a possibility to overrule the tabu
list which is named Aspiration Criteria. Such criteria can
come into force when a so far unknown better solution exists
in the neighborhood, even when the corresponding move is
prohibited by the tabu list [10]. In Algorithm 2 in Line 4 it is
denoted as satisfiesAspirationCriterium(x′).

D. Long Term Memory
Besides the short term memory, i. e., tabu list, we use a

long term memory. Such a memory stores all solutions or
attributes of a solution that have been computed so far. Before
calculating a neighborhood solution, the long term memory is
consulted to check if the solution has already been calculated
during one of the past iterations. Thus, additional computation
effort can be avoided. Literature show that the effort for
maintaining a long term memory is negligible compared to
(re-)solving an assignment problem [15].

E. Stopping Conditions
As a metaheuristic, tabu search does not have a natural

stopping condition. To terminate the search process, Glover
and Taillard [11] distinguish between four possible stopping
conditions:
• No valid solution exists in the neighborhood
• The maximum number of iterations has been reached
• A specific number of iterations was performed without a

predefined improvement of the solution
• The optimal solution was found.

The objective in using one or more efficient stopping con-
ditions is to accomplish a good trade-off between solution
quality and required computational effort. In our tabu search
heuristic, we use a combination of the first three principles of
above list, whereby the third one in a adapted manner.

The first one occurs if no valid solution exists in the
neighborhood of the current solution or if all possible solutions
are part of the tabu list. In this case, the local search is
stopped. In the second case, the tabu search ends after a
given number of iterations. For our approach, this parameter
is based on the number of available data centers of a specific
problem instance. The predefined number of static iterations
is determined by Equation 10. A brief evaluation of this
parameter is stated in Section V-B1.

Iterstat = min(0.5 · |D| , 2 ·
√
|D|) (10)

Regarding the last principle, we add further iterations depend-
ing on the improvement of the objective. We assume, that
a large improvement of the objective value enables further
improvements. Hence, if we are able to find a better solution
within an iteration, we increase the total number of iterations
by Iteradd, where the latter is computed using Equation 11.

Iteradd = (1− c(x′)/c(x)) ·
√

Iterstat · 10 (11)

With this approach, we merge the second and the third stop
condition in the list and get an adaptive number of iterations.
If one of the stop conditions is fulfilled, the local search is
terminated. The best solution that is stored in the long term
memory becomes the final result of the tabu search.

V. EVALUATION

A. Setup

In order to evaluate the previously described heuristic
approaches, we prototypically implemented them in Java 8.
For the optimal and the LP-relaxed approach, we used IBM
ILOG CPLEX 12.51, which was accessed through the JavaILP
middleware2. The evaluation was conducted on a workstation,
equipped with an Intel Xeon CPU E5-1620 v3 with 3.50 GHz
and 16 GB of memory, operating under Microsoft Windows
7.

Our evaluation focused on two dependent variables, namely,
total costs to assess the solution quality and computation
time to assess the performance. As independent variables,
we considered the number of data centers and the number
of user clusters. Problem instances were generated based on
the 2010 United States census3. Using these data, we set
the service demands and different cost parameters according
the population of a randomly selected county and its median
income. As QoS parameter, we take latency into account
and set it corresponding to the requirements for multimedia
services.

B. Results and Discussion

This section is divided into three parts. First, we evaluate
parameters of the tabu search algorithm, i. e., the size of the
tabu list and the number of iterations. Second, we compare
the different approaches regarding solution quality and perfor-
mance. In the last part, we evaluate the approaches regarding
large test cases.

1) Tabu Search Parameters: The tabu search heuristic can
be varied by several parameters. Such settings determine the
solution quality and the performance of the heuristic. In this
evaluation, we focus on the tabu list size and the number of
iterations. In Fig. 2 and 3, fixed values for the tabu list size
from one to twenty were chosen to determine its influence on
solution quality and performance. To minimize the influence of
the number of iterations, we selected a fixed value of twenty
iterations for each test case, independent of the number of
data centers. Fig. 2 illustrates the influence of the tabu list
size regarding the solution quality. Clearly to recognize are the
high cost ratios for the tabu list size of one. Subsequently, with
an increasing size, the cost ratios for all test cases decrease
and thus the solution quality is improved. Afterwards, the cost
ratios increase again.

Reasons may include a cycling behavior for small tabu list
size and a high amount of forbidden solutions for a high value.

1http://www.ibm.com/software/integration/optimization/cplex-optimizer/
2http://javailp.sourceforge.net/
3http://www.census.gov/geo/maps-data/data/gazetteer.html
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Further, as illustrated in Fig. 3, the tabu list size has just a mi-
nor influence on the computation time. Thus, there is nearly no
trade-off between solution quality and performance regarding
this parameter. It is more important to find a favorable value
for each problem instance. The used formula 1

2 ·
√
|D| meets

this criteria quite well, nevertheless, it does not necessarily
constitute the ideal point for each test case. Furthermore,
we evaluated the number of iterations. For that matter, we
determine the value for the tabu list size using the above
mentioned formula and vary the number of iterations from one
to twenty (cf. Fig. 4 and 5). In the figures, a clear trade-off
between solution quality and performance is observable. With
increasing number of iterations, the solution quality improves
by a decreasing rate. Since the computation time may increase
by factor ten or more, a adequate compromise is required (cf.
Equation 10).

For both evaluations, tabu list size and number of iterations,
the fluctuations in solution quality for the smallest test case
(10/150) are outstanding. The reason for this phenomena can
be see in the small number of data centers. A change in the
used data centers may result in a substantial change in solution
quality.

2) Comparison of the Different Approaches: For our analy-
sis, we use our previously published exact approach (CDCSP-
EXA.KOM), our LP-relaxed approach (CDCSP-REL.KOM),
and our priority-based start heuristic (CDCSP-PBSH.KOM)
as benchmarks. We compare these approaches regarding per-
formance and solution quality to the heuristic approaches
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presented in this paper. For each test case we created 100
problem instances. We subsequently computed the observed
mean absolute computation times and the macro-averaged ratio
of total cost along with the respective 95% confidence intervals
based on a t-distribution.

Fig. 6 shows the solution quality of our approaches,
whereby three main observations need to be mentioned. First
– except of the first test case (10/150) – the solution quality of
all heuristics compared to the exact approach improves with an
increasing number of data centers and user clusters and thus
tends towards the optimal solution. The second observation
refers to the differences between the tabu search heuristic
(CDCSP-TS.KOM) and the Best-of-Breed approach (CDCSP-
BoB.KOM). Regarding the first test case (10/150), the differ-
ence between these two corresponds to 2.4 percentage points.
Up to the last test case (40/600), the difference continuously
shrinks to 1.0 percentage points. Further, the average solution
quality of the tabu search heuristic always exceeds the one
of the Best-of-Breed approach. The third observation refers
to the differences between the priority-based start heuristic
and the approaches presented in the work at hand. Both, the
tabu search heuristic as well as the Best-of-Breed approach
make use of this simple heuristic, which was selected using
the statistical analysis in Section III. Although the chosen
heuristic was selected as best and fastest for one test case,
the average results of the tabu search heuristic and the Best-
of-Breed approach are better for every test case. Thus, the
solution quality benefits from these approaches.
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Fig. 7 presents the computation time of five approaches.
Clearly recognizable is the increasing difference between the
exact approach and each of the heuristic approaches, due to
the previously mentioned exponential growth in computation
time for the former. Of specific interest to our present work is
the growing difference between the tabu search heuristic and
the Best-of-Breed approach. For the first test case (10/150),
the required computation time for the Best-of-Breed approach
is 45.5% less compared to the tabu search. For the last test
case (40/600), the Best-of-Breed approach requires 88.5% less
computation time. Thus, with an increasing number of data
centers and user clusters, the Best-of-Breed approach is more
favorable with repsect to computation time.

3) Large Test Cases: In this part, we focus on large
test cases with hundreds of data centers. Because of the
high computation effort the exact solution is not applicable
for our evaluation. Thus, we used the LP-relaxed approach
for comparison. Furthermore, we only generated 50 problem
instances per test case, compared to 100 in the previous parts
of the evaluation. Fig. 8 and Fig. 9 show the corresponding
results. Regarding the solution quality, the tabu search heuristic
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achieves the best results. Thus, we used it as benchmark for
the cost ratios. As mentioned before, with increasing test case
size percentage difference in solution quality decreases and
reaches a marginal level. Nevertheless, mapping the percentage
difference to absolute cost, the difference may be enormous.
A substantial difference between the heuristic approaches is
the computation time depicted in Fig. 9. In our configuration,
tabu search performs the worst for large test cases. For the last
test case (400/2000), tabu search requires in average nearly 38
times longer compared to the Best-of-Breed approach.

To summarize, our tabu search heuristic delivers the best
average results for every test case, but with the drawback of
significant higher computation time compared to the Best-of-
Breed approach. For increasing problem sizes, the advantages
regarding the solution quality of the tabu search decreases and
the disadvantages regarding the computation time increases.
Thus, for calculations with minor time constraints, such as
planing scenarios, tabu search may be the best choice. For
large infrastructures with a high number of data centers and
user clusters as well as fluctuating demand, our Best-of-Breed
approach may be more favorable.



VI. RELATED WORK

Cloud resource allocation and data center placement are
well studied fields in research. Therefore, in this section, a set
of papers is presented which fit best to our current research.

Goiri et al. [16] analyze the placement of data centers with
the aim to reduce the total costs of resource provisioning.
Therefore, the authors formulate an optimization model to
determine cost efficient locations for data centers. The opti-
mization problem is solved by the means of LP relaxation and
a simulated annealing heuristic. Thereby, the paper focuses on
data center placement and do not consider run time constraints
in large environments.

Regarding the current public cloud infrastructure, which is
mainly based on a few number of large data centers, Choy
et al. [2] demonstrate the need to enhance it by additional
resources to improve its multimedia capabilities. The results
of their work are based on the analysis of Amazons public
cloud infrastructure in the United States. The authors show
that only a portion of 70% of the population can use services
with stringent latency requirements such as cloud gaming. The
authors propose the use of additional data centers or so called
Edge Server. Thus, it is possible to improve the coverage by
about 30%. In contrast to our research, the authors neither use
an optimization approach, nor do they explicitly assign user
demands to given cloud resources.

Larumbe and Sansò [17] analyze their so called Cloud
location and routing problem. For this purpose, the authors
formulate an optimization problem which encompasses the
location of data centers, the assignment of the software com-
ponents to servers, and the routing between user and data
center. In a subsequent work, Larumbe and Sansò [14] en-
hanced their analysis regarding resources within data centers to
assign server and network resource. Because of the increased
complexity of the optimization problem, the authors develop
a tabu search heuristic to solve the optimization problem.
This approach bears resemblance with our work. However, the
authors do not aim to find heuristics with the best trade-off
between performance and solution quality to solve the problem
under runtime constraints.

In summary, to the best of our knowledge, our work is the
first that presents a Best-of-Breed approach based on priority-
based heuristics and compare it to a tabu search heuristic. With
the focus on QoS-aware services provisioning, we present
approaches that manage to maintain a high solution quality
while requiring reasonable computational effort at the same
time.

VII. SUMMARY AND OUTLOOK

In this paper, we presented advanced heuristic approaches
to tackle the Cloud Data Center Selection Problem. To solve
the problem, a variety of different heuristic approaches can
be used, which differ in performance and solution quality.
To ensure a stable solution quality in combination with high
performance, we investigated two major enhancements com-
pared to our former work. Specifically, we presented a Best-
of-Breed approach as well as an improvement procedure, i. e.,

tabu search. We evaluated these approaches and compared
them with each other for different problem sizes. Thereby,
specifically with the Best-of-Breed approach, we are able to
combine the benefits of high solution quality and low compu-
tational effort. In the future, we plan to apply this approach
for cloudlet-supported environments. These environments are
characterized by a high number of small data centers and
a volatile demand. Furthermore, a combination of the two
presented approaches may be promising.
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Springer, 2004, in German.

[7] R. Hans, “Selecting Cloud Data Centers for QoS-Aware Multimedia
Applications,” in PhD Symposium at the 2nd European Conference on
Service-Oriented and Cloud Computing, W. Zimmermann, Ed., 2013.

[8] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley, 1992.

[9] F. Glover, “Future Paths for Integer Programming and Links to Artificial
Intelligence,” Computers & Operations Research, vol. 13, no. 5, pp.
533–549, 1986.

[10] ——, “Tabu Search – Part I,” ORSA Journal on Computing, vol. 1,
no. 3, pp. 190–206, 1989.

[11] F. Glover and E. Taillard, “A User’s Guide to Tabu Search,” Annals of
Operations Research, vol. 41, no. 1, pp. 1–28, 1993.

[12] F. Glover, M. Laguna, and R. Marti, “Principles of Tabu Search,”
Approximation Algorithms and Metaheuristics, vol. 23, pp. 1–12, 2007.

[13] T. Grünert and S. Irnich, Optimierung im Transport: Grundlagen.
Shaker Verlag, 2005.
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