
Darmstadt University of Technology

Department of Electrical Engineering & Information Technology
Merckstraße 25 • D-64283 Darmstadt • Germany

Phone: +49 6151 166150
Fax: +49 6151 166152
Email: info@KOM.tu-darmstadt.de
URL: http://www.kom.e-technik.tu-darmstadt.de/

Industrial Process and System Communications (KOM)

Multi-Period Resource Allocation at System Edges

(MPRASE)

Oliver Heckmann, Jens Schmitt
{heckmann;schmitt}@kom.tu-darmstadt.de

Version 1.0
October 2000

Last major update 01.02.01
Last minor update 06.03.01

es. This

es scarcity

of re-

ervices

ering

tion deci-

cisions

oblems

for the

ms can

blems

d fashion.
Abstract

Providing guaranteed QoS, be it statistical or deterministic, necessarily requires allocation of scarce resourc

might happen on a session or on an aggregate basis, nevertheless, it is conceivable that at least at system edg

of resources, exposed in the form of non-negligible (virtual) costs, will prevail to necessitate explicit allocation

sources as opposed to pure overdimensioning. An example of this logic is constituted by the Differentiated S

(DiffServ) architecture which is largely based on explicit bilateral Service Level Agreements (SLA) between pe

providers. Often such resource allocation decisions are done on a multi-period basis because resource alloca

sions at a certain point in time may depend on earlier decisions and thus it can turn out sub-optimal to look at de

in an isolated fashion. Therefore, in this paper, we investigate a fairly large and diverse set of (network) QoS pr

all of which deal with the problem of multi-period resource allocation at system edges. We devise a taxonomy

classification of these problems and introduce a common mathematical framework under which these proble

be tackled. The ultimate goal of our work is to strive for solution techniques towards the generalized class of pro

such that these are applicable in a number of scenarios which have so far not been regarded in an integrate
3

he key

by the

systems

as well

es rose

ber of

y nota-

ternet

tion of

only be

t peering

system

etwork

SVP/

ATM

fferent

d and di-

tems re-

ced with

sually

n in het-

overlaid

rlaying it
1 Introduction

Decentralized organization has always been at the heart of the Internet’s philosophy. Actually, this is one of t

explanations for its success in a world of increasing deregulation. The decentralized organization is exhibited

fact that the Internet consists of multiple independent providers that usually operate so-called autonomous

which interwork with each other by peering agreements. It is interesting to note that both the number of ASes

as the average number of ASes a given AS is peering with is increasing at a fairly high rate. The number of AS

from 909 in 9/95 to 4427 in 12/98 and 7563 in 10/00 [1,2]. Similarly, the average peering degree, i.e., the num

providers a certain provider has peering agreements with, rose from 2.99 in 9/95 to 4.12 in 12/98. It is also ver

ble that a single provider may peer with up to 1000 other providers [1].

From these observations it becomes obvious that for the efficient and dynamic provision of QoS in the In

there is a good potential for optimization of resource allocations at provider edges. In particular, this optimiza

resource allocations becomes a competitive factor for Internet providers. However, such an optimization can

done on a multi-period basis, i.e., by making decisions based on earlier decisions about resource allocations a

providers. In this paper, we want to deal with a general problem class called multi-period resource allocation at

edges (MPRASE) for which the peering providers have been the motivating scenario, although some other n

QoS problems also fit into this problem class as we will discuss later on.

1.1 Motivating Example: Decoupling Different Time Scales of Network QoS Systems

Different time scales of providers’ network QoS systems may arise due to different QoS architectures like R

IntServ (Resource reSerVation Protocol/ Integrated Services) [3], DiffServ (Differentiated Services) [4], or

(Asynchronous transfer Mode) [5] being used. Choosing different QoS architectures results from serving di

needs, e.g., for an access and backbone provider. An access provider that has a comparatively moderate loa

rectly connects to end-systems may favour a fast time scale system responding immediately to the end-sys

quests. A backbone provider that connects access providers respectively offers transit services is generally fa

a drastically higher load of individual transmissions, so that reaction on the time scale of individual requests is u

not possible and a slower time scale system needs to be enforced. When different time scales are in operatio

erogeneous network QoS systems, it is simply not possible to query the underlying QoS system each time an

system is altering its state. Here, the system operating on a faster time scale needs to be smoothed when ove

onto a system that operates only on slow time scales.
4

tServ to

allow

riving

roughput

. To see

e in

l with

oaches

ecou-

which

nother

ion con-

t an

vice tries

ade off

ess re-

between

etwork

that the
A realistic configuration for access and backbone providers may be, e.g., that access providers use RSVP/In

suit their customers’ needs while a backbone provider uses DiffServ with a Bandwidth Broker (DiffServ/BB) to

for some dynamics but on a slower time scale. This scenario is shown in Figure 1.

Here it is also very obvious why a BB is generally not able to react to individual RSVP requests that are ar

at edge devices between access and backbone provider. Because if it did, the BB would need to operate at a th

of requests that is proportional to the square of the number of access providers it serves - that is not scalable

this, assume each ofN edge devices would haveM (new or modified) RESV messages for each other edge devic

a given time period and would query the BB for each of these requests. Then the BB would have to dea

requests in the same period. Note that the problem is not solved by spatial aggregation appr

like, e.g., [6] or [7] since for each of theM RESV messages the aggregate would have to be rearranged. Here a d

pling of the different time scales is necessary. The decoupling can be achieved by building “depots” of capacity

stabilize the fluctuations of the “nervous” demand curve for backbone capacity by individual requests. From a

perspective, the decoupling technique can also be viewed as introducing a combined local and global admiss

trol for the DiffServ/BB network. Global admission control is only invoked whenever local admission control a

edge device runs out of resources in its capacity depot. In such a case, local admission control on an edge de

to obtain more resources from the global admission control represented by the BB. This scheme allows to tr

resource efficiency for a more stable and long-term capacity demand presented to the BB.

Note that the slow time scale of an underlying QoS system may not express itself in being unable to proc

quests for QoS at short time scales but by the fact that significant setup costs are incurred for QoS requests

different administrative domains. Such a scheme of QoS tariffing is an instance where a QoS strategy of a n

provider restricts the capabilities of the employed QoS architecture. A possible reason for this may be, e.g.,

BB

RSVP/IntServ
Access Networks

DiffServ Domain

Control

IntServ/DiffServ
Edge Device

Invokation of BB
for global admission control

Figure 1: Combined local and global admission control.

Incoming
Flows

N N 1–()× M×
5

es a lot

ation at

ions of a

cture.

k QoS

ntial to

lem in-

m for a

e exact

es for

t that is

nt prob-

ifferent

MPP).

o devise

pare the

r work.
charging and accounting system is not able to deal with a large number of individual requests since this involv

of operational costs.

In conclusion, we have here a certain instance of the general problem class of multi-period resource alloc

system edges.

1.2 Outline

In the next section, we generalize the above presented example problem and extend it along several dimens

conceptual component model by which we try to capture all the different facets of the MPRASE problem stru

We show how the different characteristics of the components and their combinations lead to known networ

problems. We thus establish the incentive to treat the generalized problem in a framework that has the pote

solve all MPRASE problems in an integrated fashion or at least establish relationships between different prob

stances which may be helpful when approaching a certain problem, e.g., by making use of an existing algorith

certain problem as part of a solution strategy of another (more complicated) problem instance.

In Section 3, we then look at the most basic problem, the so-called single provider problem (SPP). We devis

algorithms for its solution as well as some heuristics since it turns out to be fairly compute-intensive. Techniqu

the SPP could be the basis for a solution strategy to the example problem described in Section 1.1 and in fac

what has been proposed and evaluated in [8]. This constitutes an example where a relation between the differe

lem instances captured by our general model is used. In this paper, however, we try to exploit the SPP along a d

dimension: the number of providers. Therefore, in Section 4, we turn to the so-called multi-provider problem (

The MPP constitutes a really hard problem, however by using our techniques for the SPP we are at least able t

heuristic approaches towards the MPP. To evaluate our techniques we carry out extensive simulations to com

different alternatives.

In Section 5, we review related work and discuss how our approach differs from respectively extends forme

In Section 6, we summarize our findings and draw some conclusions.
6

eriod

long its

ustom-

which an

the one

e inter-

mer or

ffered by

stomers.

and. Let

le cus-

d with a
2 MPRASE - Generalization & Taxonomy

In this section, we introduce a general structural model which tries to capture all the different facets of multi-p

resource allocation at system edges (MPRASE) problems. This model then allows us to derive a taxonomy a

components which establishes the relations between the different problem incarnations.

2.1 Generalized Problem Structure Model

Figure 2 shows the overall structural model of the general class of MPRASE problems. Obviously, there are c

ers which generate requests towards several providers. These two groups are separated by a system edge on

intermediary instance is located. The intermediary tries to mediate between the two by selecting providers on

hand and enforcing admission control of the customers on the other hand. Note that the logical separation of th

mediary instance from customer and provider does not necessarily imply that it may not belong to either custo

provider premises. The requests are originated by the customers which desire a certain amount of resources o

the providers. Furthermore, requests incur certain costs at the providers which need to be accounted for by cu

Several requests are generated in the course of time, thereby, reacting upon the dynamics of customers’ dem

us now look at the different components of the structural model for MPRASE.

2.1.1 Customer

The customer component of the MPRASE model captures the number of customers, i.e., if a single or multip

tomers are considered, and the flexibility of the demand, i.e., whether demand may be dissatisfied or be serve

degraded quality.

System Edge

Costs

Resources

Costs

Resources

Costs

Resources
Provider

Provider
Provider

Provider

Customer
Customer

Figure 2: MPRASE problem structure.

Intermediary

Provider SelectionAdmission Contro
l

Time
Request
7

r unlim-

ly ex-

rovided

which

n in our

actional

odelled,

hether de-

ed. In

used as

s not to-

ant role

eptually

on tech-

gain be

incarna-

shows
2.1.2 Provider

The provider model encompasses the number of providers and whether they are modelled as having limited o

ited capacity. While the latter is unrealistic it can be a simplifying, yet valid assumption for the case where supp

ceeds demand with very high probability.

2.1.3 Resource

This component models the resources, i.e., whether they are one- or multidimensional or whether they are p

on a deterministic or statistical basis. Here, we make no particular assumption on the kind of guarantee with

resources are provided, i.e., whether they are statistically or deterministically available. Therefore, an allocatio

context does not necessarily mean an isolated, exclusive access to resources for a customer that made it.

2.1.4 Cost

The cost model seizes the cost structure for allocation requests, i.e., whether these incur certain fixed or trans

costs or whether the number of requests is just bounded and how variable costs for resource allocations are m

e.g., linearly or non-linearly.

2.1.5 Edge

The edge model encompasses the nature of knowledge about capacity demands at the system edges, i.e., w

terministic or statistical knowledge about future demands is available or if total uncertainty needs to be assum

our work here, we focus on deterministic knowledge at system edges because methods for this case may be

basic methods for other edge models, as is demonstrated in [8]. Furthermore, the deterministic edge model i

tally unrealistic as it applies to advance reservation scenarios as described in [9, 10] and may play an import

in DiffServ-based scenarios as described in [11].

2.1.6 Intermediary

Note that the intermediary is the component where solution techniques towards MPRASE problems are conc

located. Therefore, this component does not capture problem characteristics but characteristics of the soluti

niques, e.g., whether these are striving for the exact solution or whether they are just heuristics which could a

classified in construction and improvement techniques.

2.2 MPRASE Problem Incarnations

The above dimensions, which are largely orthogonal to each other, span a large space of MPRASE problem

tions. Some of these - the ones considered in this paper in varying detail - are given in Table 1. The table
8

is illus-

nd us-

euristics

vement

e only

ions it

inistic

g (MP)

ell as

owing
MPRASE problem incarnations where each component is varied at least once (indicated by bold entries). Th

trates our basic goal of treating MPRASE problems in an integrated fashion by making their relations explicit a

ing that knowledge for solution approaches.

2.2.1 MPRASE Solution Strategies

The solution strategies can also be divided into several classes. First they can be exact or heuristic, while h

can be further divided into metaheuristics (like genetic algorithms or tabu search) and construction and impro

technics.

A strategy can look forward into the future in order to anticipate future development (look-ahead) or can us

input data for the actual period (myopic). If a strategy is adapting it’s behaviour in time by looking at past decis

is called adaptiv.

Stochastic strategies can come to different solutions for the same problem instance if run twice while determ

strategies will always come to the same solution for one specific problem instance.

2.3 Mathematical Programming Models for MPRASE

As a common framework for the general MPRASE problem class we make use of mathematical programmin

techniques [12]. From our point of view, MP techniques provide a good tool to model this problem class as w

they allow for a common set of standard solution techniques for the different problem incarnations. In the foll

MP formulations of MPRASE problem incarnations we try to illustrate this point.

Problem Abbrev. Cost Resource Customer Provider Edge

Single provider problem SPP
linear fixed and
variable costs

one-dimensional single customer single provider deterministic

Multi-provider problem MPP
linear fixed and
variable costs

one-dimensional single customer multiple providers deterministic

capacitated MPP cMPP
linear fixed and
variable costs

one-dimensional single customer
multiple providers
with finite capacity

deterministic

Flexible demand problem
with admission control

SPPAC
linear fixed and
variable costs

one-dimensional
multiple reject-
able customers

single provider deterministic

Flexible demand problem
with degraded quality

SPPDQ
linear fixed and
variable costs

one-dimensional
single degrad-
able customer

single provider deterministic

Limited number of alloca-
tions problem

SPPLAP

limited number of
allocations, linear

variable costs
one-dimensional single customer single provider deterministic

Buffered capacity alloca-
tion Problem

SPPBCP
linear fixed and
variable costs

Token Bucket single customer single provider deterministic

Uncertain SPP SPPUE
linear fixed and
variable costs

one-dimensional single customer single provider uncertain

Table 1: MPRASE problem incarnations.
9

in

nge

ent pe-

s. Using

3) and

ally in-

our ob-

on. The

er
2.3.1 The Single Provider Problem (SPP)

Let us first look at the single provider allocation problem (SPP). The customer has capacity demandsbt that must be

fully satisfied at every discrete time intervalt = 1,...,T. As the edge model is deterministic, the demand is known

advance for all periods. Capacity is requested from a single provider who is charging a fixed costsft for every alloca-

tion and variable allocation costsct per reserved capacity unit and period. A new allocation is constituted by a cha

in the allocated capacity. Allocated capacity is available in the period the allocation is made and in all subsequ

riods until the next allocation is made. Note that the allocated and not the really used capacity causes the cost

two types of variables and a number of parameters, this problem can be formulated as model M1.

The objective function (1) minimizes total costs. (2) ensures that demand is fully satisfied in each period. (

(4) forcezt to one wheneverxt andxt-1 differ, i.e., a new resource allocation takes place. Note thatzt will be set to 0 in

all other cases automatically because of the non-negative entryft in the objective function.

So far we have only assumed costs for the reserved and not for the really used capacity. We could addition

troduce costs for the really used capacity but as demand is fixed these costs would effectively be a constant in

jective function and can therefore be eliminated without influencing the solution.

2.3.2 Multi-Provider Allocation Problems

In this section, we present the multi-provider allocation problem in an uncapacitated and a capacitated versi

single provider allocation problem presented in Section 2.3.1 is a subproblem of this with the number of providJ =

M1 Single Provider Problem - SPP

Variables:

xt Amount of reserved capacity in periodt = 1,...,T.

zt Binary variable, 1 if a allocation is made at beginning of periodt = 1,...,T and 0 otherwise.

Parameters:

bt Demanded capacity in periodt = 1,...,T. Demand is assumed to be greater than 0.

ft Fixed allocation costs, costs per allocation. We assume positive costs (ft > 0).

ct Variable allocation costs, costs per reserved capacity unit per period.

x0 Allocation level before the beginning of the first period.

M M is a sufficiently high number (e.g., max {bt}).

Minimize (1)

subject to
(2)

(3)

(4)

(5)

f tzt
t 1=

T

∑ ctxt
t 1=

T

∑+

xt bt≥ t∀ 1 ..., T,=

xt xt 1–– M zt⋅≤ t∀ 1 ..., T,=

xt 1– xt– M zt⋅≤ t∀ 1 ..., T,=

zt 0 1,{ }∈ t∀ 1 ..., T,=
10

in

defect
1. Let us assume that there is more than one provider offering capacity to the customer. We assign indexj = 1, ...,J to

the different providers. Based on M1 we can model this problem with M2.

This model mainly differs from M1 in the additional indexj. Furthermore, we now have to model the case that

a certain period no capacity is allocated at a certain provider. This is captured by the introduction of demand

variables,djt, and the constraints (10) and (11). Here, needs to be chosen small, e.g., , whereasM and

L need to be chosen large, e.g., and .

In the next step we use additional parameters,kjt, to model by (15) that each providerj can offer only a limited

amount of resourceskjt in periodt. This leads to model M3, the capacitated MPP (cMPP).

M2 Multi-Provider Allocation Problem - MPP

Variables:

xjt Amount of allocated capacity in intervalt from providerj.

zjt 1 if an allocation for providerj is made at the beginning of periodt and 0 otherwise.

djt 1 if allocation for providerj drops to 0 in intervalt and 0 otherwise.

Parameters:

bt Demanded capacity in intervalt = 1, ...,T. Demand must be fully satisfied in each period.

fjt Fixed allocation costs, i.e., cost for an allocation in periodt from providerj, we assume .

cjt Variable costs, i.e., costs per capacity unit per period (specific per provider and period).

xj0 Allocation level before the beginning of the first planning period.

Minimize (6)

subject to

(7)

, (8)

, (9)

, (10)

, (11)

, (12)

, (13)

, (14)

M3 Capacitated Multi-Provider Allocation Problem - cMPP

Minimize (6)

subject to (7)-(14) and

, (15)

f jt 0>

f jt zjt d jt–()
t 1=

T

∑
j 1=

J

∑ cjt xjt
t 1=

T

∑
j 1=

J

∑+

xjt
j 1=

J

∑ bt≥ t∀ 1 ..., T,=

xjt xj t 1–()– M zjt⋅≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

xj t 1–() xjt– M zjt⋅≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

djt εxjt+ 1≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

L xjt xj t 1–()+() djt≥ j∀ 1 ..., J,= t∀ 1 ..., T,=

djt 0 1,{ }∈ j∀ 1 ..., J,= t∀ 1 ..., T,=

zjt 0 1,{ }∈ j∀ 1 ..., J,= t∀ 1 ..., T,=

xjt 0≥ j∀ 1 ..., J,= t∀ 1 ..., T,=

xjt k jt≤ j∀ 1 ..., J,= t∀ 1 ..., T,=

ε ε 1
max bt{ }
---------------------=

M max bt{ }= L
1

min bt bt 0>{ }
-------------------------------------=
11

two re-

m, de-

ediary

oose cus-

iary is

ustomers

del with

ol if the

are esti-

ariable

.

llows

lly sat-

e other
2.3.3 Single Provider Problems with Flexible Demand

Above, we have assumed that the provider(s) had to satisfy customers’ demand at all times. Now we describe

lated SPP formulations where this is not the case, i.e., we have a different customer model. In the first proble

mand can be dissatisfied (leading to degraded quality for the customer), yet for dissatisfying demand the interm

has to take penalty costs into account. Those can be either real costs or opportunity costs because he risks to l

tomers.

A related problem is then formulated in which we explicitly assume that the demand faced by the intermed

the superposition of several customers’ demands. The intermediary has the freedom to choose among those c

whose demands it accepts and fully satisfies and whose not, i.e., it exerts admission control. Note that the mo

degraded quality (which is easier) can also be used as an approximation for the problem with admission contr

number of customers is high enough (dissatisfying means not to accept all customers and the penalty costs

mates of the lost profit).

Let us first turn to the problem with degraded quality. It is based on M1 and adds another variable,st, that repre-

sents how much the allocated amount of capacity remains below the demand in periodt. In the objective functionst is

weighted with penalty costs . The problem only makes sense if the penalty costs are higher than the v

costsct because otherwise it would be optimal to never allocate anything. The MP formulation is given by M4

M4 differs from M1 in two ways: objective function (16) now includes the penalty costs and constraint (17) a

to dissatisfy demand by setting to a positive value.

Let us now have a look at the problem with admission control. We introduce indexi for identifying the customers.

Each accepted customer obtains its demanded capacity and pays a pricepi. The resulting model is given by M5. Ob-

jective function (18) maximizes profit, constraint (19) ensures that the demand of all accepted customers is fu

isfied in each period. In M5, it is sensible to assume the intermediary is located at the provider whereas for th

ct
s ct

s

M4 Single Provider Problem with Degraded Quality - SPPDQ

Variables:

st Unsatisfied demand in periodt.

Parameters:

Penalty costs per unit of dissatisfied demand in periodt.

Minimize (16)

subject to (4), (5) and

(17)

ct
s

f tzt
t 1=

T

∑ ctxt
t 1=

T

∑ cs
tst

t 1=

T

∑+ +

xt st+ bt≥ t∀ 1 ..., T,=

st
12

ver, that

mally

odel for

ucket
problems described above the intermediary’s location would have naturally been at the customer. Note, howe

there might also be some third party taking the role of the intermediary, e.g., as a service to the customer.

2.3.4 Single Provider Token Bucket Allocation Problem

So far traffic was described only by one parameter, the capacity (for example bandwidth). Multimedia traffic nor

includes a kind of burstiness and is therefore described better described by other models. A commonly used m

describing multimedia streams is the token bucket filter. We try to reformulate Model M1 in order to use token b

as resource model.

M5 Single Provider Problem with Admission Control - SPPAC

Variables:

ai 1 if customeri is accepted, i.e., if his demand is fully satisfied or 0 otherwise.

Parameters:

bit Demanded capacity from customeri = 1, ...,I in intervalt = 1, ...,T.

Maximize (18)

subject to (3)-(5) and

(19)

(20)

piai
i 1=

I

∑ f tzt
t 1=

T

∑– ctxt
t 1=

T

∑–

xt ai b⋅ i t
i 1=

I

∑≥ t∀ 1 ..., T,=

ai 0 1,{ }∈ i∀ 1 ..., I,=
13

bytes /

all the
Token Bucket characteristics One com-

mon way to describe bandwidth and burst

characteristics of sources is the token bucket,

which is described by two parameters: the to-

ken rate r and the bucket depth B. It works as

follows:

To be allowed to send n bytes in one period the

sender must own n tokens. The sender starts

with no tokens in his bucket and accumulates

them at a rate of r per second. However he

can’t aquire more tokens than the bucket depth

B at any time. The token bucket enables the

sender to send a burst of length B as fast as he

wants (as fast ashis hardware is able to), but

over a sufficiently long interval, he can’t send

more than r bytes per second.

A common way to picture the token bucket

characteristics in continuous time is depicted

in figure 3. The y axis is the total number of

bytes sent since a point in time t0, the x axis is

the time since t0. A valid flow must remain be-

low the depicted curve that starts at B and has

a slope of r at all times t0.

Fig. 4 shows two example flows with constant data rate. Note that the y axis here shows the bandwidth (

second) and not the aggregated number of bytes as in figure 3. A transformation1 of fig. 4 into fig. 3 is shown in fig.

5 for a chosen time t0. As we can see, flow A remains below the token-bucket curve and so has enough tokens

time while flow B is sending too much data and running out of buckets at point P.

1 The transformation is simply an integral over the time starting at t0.

Figure 3: Token-Bucket curve

Figure 4: Two example data flows

Figure 5: Flow B running out of tokens at point P

B

t-t0

bytes

r
1

r

t

bytes/sec

A

B

t0

b

a

B

t-t0

bytes

P

B

A

b>r

1

14

rvation

vider is

they com-
For modelling puposes we use discrete time

intervals. Fig. 3 corresponds to Fig. 6, rate r re-

fers to one period now (instead of one second). In

the first period you are allowed to send B bytes

plus r bytes, because you get r tokens that period.

Fig. 7 shows two example flows that are trans-

formed for the critical interval t0 (see fig. 8). As

we can see, flow C equals the token-bucket curve

while flow D remains below it for all the time.

Pricing Before we start to model the reserva-

tion problem using token buckets characteristics

let’s first think if linear prices for the rate and the

bucket depth are reasonable. It is reasonable to

assume linear prices for bandwidth, because oth-

erwise it would be possible to arbitrage the pro-

vider . This is why we have assumed linear prices

for the reserved capacity in the models above.

But is it also reasonable to assume linear pric-

es for the bucket-depth? To answer this question

we look at the following type of contract between

us and our provider:

„I can reserve variable bandwidth by making

reservations for my data flow. The flow must be

described with the two parameters of the token-bucket model. For each reservation I have to pay a fixed rese

price and I have to pay a certain price each period depending on the parameters of the token bucket. The pro

offering a guaranteed service, that means he is guaranteeing that none of my packets are dropped (as long as

ply with the token-bucket model) and every packet reaches it’s destination within a certain time .“

Figure 6: Token-Bucket curve in discrete time

Figure 7: Two example data flows in discrete time

Figure 8: Aggregation of the two data flows

B+r

t-t0

bytes

r

t

bytes/period

r C
D

t0

B+r

B+r

t-t0

bytes

D

C

ϒ

15

e bucket

model

the used

e

ough,
If accepting a token bucket flow, the provider must re-

serve some bandwidth for serving that flow. The amount of

necessary bandwidth depends on as is shown in figure 9.

To guarantee , the provider must be ready to serve the to-

ken-bucket flow with a rate R which is proportional to B

and independent of the token-bucket rate r.

So B translates linearly into a bandwidth R. As we have ar-

gued, it is sensible to assume linear prices for bandwidths, so it is also sensible to assume linear prices for th

depth.

Model M6 is based on M1 but instead of a one dimensional capacity a two-dimensional buffered resource

based on a token-bucket is used. Equations (21)/(22) minimize the total costs. Note that the reserved and not

bucket rate and height has to be paid.The variablesyt are included in the objective function as an incentive to refill th

bucket via (27) as quickly as possible. (23) ensures that the demand is met each period, if the rate is not enyt

extra tokens have to be used. (24) and (25) in combination with (3) and (4) forcezt to one wheneverht and/orxt are

changed, that is when a new allocation is made. (27) ensures that used tokens are accounted for correctly.

Figure 9: Bucket depth and needed bandwidth

B

t-t0

bytes

2B

ϒ

rate R, the provider is
serving the token-bucket
flow to guaranteeϒ

ϒ

ϒ

ϒ B
R
---= R⇒ B

ϒ
---=
16

M6 (Single Provider Token Bucket Allocation Problem)

Variables:

yt Excess capacity in periodt = 1, ...,T.

lt Total amount of excess tokens in periodt = 1, ...,T.

ht Bucket depth in periodt = 1, ...,T.

Parameters:

Rate costs, costs per reserved capacity-unit per period (assuming linear cost strukcture).

Bucket depth costs, costs per bucket depth unit per period (assuming linear cost structure).

l0 Amount of used tokens at the beginning of the first period.

Small number > 0, e.g., .

Minimize (21)

or, assuming a linear cost structure

Minimize (22)

subject to (3)-(5) and

(23)

(24)

(25)

(26)

(27)

(28)

, (29)

ct
r

ct
b

ε

c t ht xt zt, , ,()
t 1=

T

∑ εyt
t 1=

T

∑+

f tzt
t 1=

T

∑ ct
r xt

t 1=

T

∑ ct
hht

t 1=

T

∑ εyt
t 1=

T

∑+ + +

xt yt+ bt≥ t∀ 1 ..., T,=

ht ht 1–– M zt⋅≤ t∀ 1 ..., T,=

ht 1– ht– M zt⋅≤ t∀ 1 ..., T,=

l t ht≤ t∀ 1 ..., T,=

l t l t 1– yt+= t∀ 1 ..., T,=

yt R∈ t∀ 1 ..., T,=

ht 0≥ l t 0≥ t∀ 1 ..., T,=
17

iques

e. From

trivial

t quali-

are also

ection 4

ans,

ich the

it is for-

plan-

vation to

 costs f.

de, it is

s

3 Tackling the Single Provider Problem

After the presentation of the general MPRASE framework, we now want to investigate different solution techn

for the simplest possible problem incarnation: the uncapacitated single provider problem at a deterministic edg

simulative experiments as well as theoretical observations it turns out that even this problem is not absolutely

although we are able to devise reasonably efficient exact solutions as well as computationally inexpensive, ye

tatively satisfying heuristic techniques. Besides the value of having a solution for the SPP, these techniques

the base components for devising techniques for more advanced problems. This will be demonstrated in S

where we tackle the MPP by reusing solution techniques for the SPP.

3.1 Optimality Conditions

The optimal solution of M1 must adhere to the following condition (30):

: (30)

(31)

(32)

The interval is the interval for which the allocation that includes period t is made.(30) effectively me

that the allocated amount of capacity is exactly equal to the maximum amount of demand in the periods for wh

allocation is made. It clearly does not make sense to allocate more capacity than the maximum requested and

bidden to reserve less.

If we assume that all f = f t are equal, which is a reasonable assumption considering the short timescale we are

ning for, the following condition (33) must also be met in an optimal solution:

: (33)

This means, that if we can satisfy the demand in period t exactly, it does not make sense to make a new reser

buy more capacity now for later periods, because this can always be done at later periods for the same fixed

3.2 Exact Algorithms

At first we want to look at techniques that guarantee to produce an optimal solution for the SPP.

3.2.1 Full Enumeration

In every period a allocation can be made or not. Once the decision is made in which periods allocations are ma

very easy to calculate the cost minimal allocation levels xt using the optimalitz conditions from Section 3.1. But a

there are 2T possible solutions the algorithm needs exponential time.

t∀ 1 T,[]∈ xt max bτ τ υ t() υ t(),[]∈[]=

υ t() max τ zτ= 1() τ t≤()∧[]=

υ t() min τ zτ= 1() τ t>()∧[]=

υ t() υ t(),[]

t∀ 1 T,[]∈ xt bt= zt⇒ 0=
18

rder to

t uses

wer

s low

g in

 x

-

prohib-

ot make

st

till ex-

ms as,

g

3.2.2 Branch and Bound with Linear Programming (LP) Relaxation

A standard approach to solve the single provider problem SPP is to use a mixed integer problem solver in o

solve model M1. A typical algorithm for solving a mixed integer LP model is a branch and bound algorithm tha

the LP relaxed problem M1’ of M1:

Bounding The resulting problem can be easily solved with the simplex algorithm. The solution of M1’ is a lo

bound to the optimal solution of M1. To get a very good (that is very high) lower bound, parameter M must be a

as possible. If M is very high, zt can be very close to zero while still making new allocations every period resultin

a very bad lower bound.

A good value for M is the maximum demand in all periods as this is the maximal difference between any twot:

Note that we can also calculate an upper bound each iteration.

Branching Branching can be done by fixing the highest not yet fixedzt to 1 in the first and to 0 in the second sub

problem. Branching can also be done by fixing the zt with the highest (lowest) difference between bt-1 and bt. This is

done because high (low) differences make a new allocation more (less) probable resulting in the subproblem

iting (forcing) the new allocation beeing ruled out more often.

An example problem with only 50 periods took already 33 minutes to be solved2. Problems with more than 100

periods could not be solved within several days. The reason for this is that the structure of the problem does n

it very amenable to branch and bound algorithms sincezt are often set to very low values greater 0 resulting in a va

underestimation of fixed costs which leads to very loose bounds. Therefore, we strived for more efficient, yet s

act algorithms for the SPP.

3.2.3 Shortest Path (SP) Algorithm

The SPP can be transformed into a shortest path problem which can then be solved with well-known algorith

e.g., Dijkstra’s Algorithm [13]. The graph for the shortest path problem consists ofT+1 vertices {t1,..., tT+1}, one for

each period (numbered in ascending order) and one final state vertex. Each edge (ti, tj) represents an allocation from

periodti to tj. For each vertexti there must be an edge to all verticestj with . This results in the graph representin

2 All experiments have been performed on a 400 MHz Pentium II processor.

M1’ LP Relaxation of M1 (SPP)

The binary condition (5) is dropped from M1 and replaced by
(34)0 zt 1≤ ≤ t∀ 1 ..., T,=

M max bt t 1 T,[]∈{ }=

j i≥
19

as fol-

ven in

, the

eds
all possible multi-period allocations. Each edge is assigned the costs of a single allocation, which is calculated

lows:

Let (t1, t2) be the edge from vertext1 to vertext2. The costs (or length) of edge (t1, t2) are defined as

. (35)

The number of edges is , resulting in a complexity for creating the graph ofO(T3). Dijkstra’s shortest path

algorithm then requiresO(T2) steps to find the optimal solution, i.e., we obtain an overall complexity ofO(T3).

3.2.4 Dynamic Programming (DP)

An O(T2) approach which also guarantees to find an optimal solution is the dynamic programming algorithm gi

Figure 10. The functionC(t1, t2) is the same as in (35).

This algorithm exploits the structure of the problem which causes . Hence

complexity of DP can be reduced toO(T2) in comparison to SP. A further advantage of DP over SP is that it only ne

anO(T) instead ofO(T2) sized table to store intermediate solutions.

3.2.5 Assessment of Execution Times

Table 2 shows the execution times for all of the exact algorithms for two differently sized problem instances.

Algorithm B&B SP DP

T=50 1920.7 0.0046 0.0026

T=1000 not available 38.2 9.0

Table 2: Execution times for exact SPP algorithms (in sec).

C t1 t2,() f t1
cτ max bt t t1 ... t2, ,{ }∈()⋅

τ t1=

t2

∑+=

1
2
---T T 1+()

Preparation:

Prepare an empty arraycMin and an empty arraypred, each withT entries.

Start:

cMin(1) = C(t1, t1)

pred(1) = 1

Iterationt = 2, ...,T:

cMin(t) = min{C(i, t) + cMin(i-1) | i = 1, ...,t}

pred(t) = argmin{C(i, t) + cMin(i-1) | i = 1, ...,t}

Result:

cMin(T+1) contains the minimal costs while arraypred stores the hops towards that solution.

Figure 10: Dynamic programming algorithm for SPP.

C ty tx,() C ty tx 1+,()≤ ty tx,()∀ x y>
20

e still

ber of

s, e.g.,

fore, we

cation

towards

. After

llowing

fixed

iven in
3.3 Heuristics

While the last section introduced exact solutions for the SPP, which while they provided fairly good performanc

required a certain computational effort that might be prohibitive in scenarios where there is either a large num

periods to be planned for or where there is only an extremely limited amount of time available for computation a

if the resource allocation is done in response to signalling messages and thus affects setup latencies. There

now want to investigate heuristic techniques which do not guarantee an optimal solution but allow very fast allo

decisions. A further reason for investigating heuristics becomes obvious when we extend the SPP techniques

the MPP in Section 4 where we then need to solve a potentially large number of SPPs.

3.3.1 LP Heuristic (LH)

The LP heuristic is solving the LP relaxation M1’ of Section 3.2.2 to determine the amount of allocated capacity

solving M1’ (using the simplex algorithm), any is set to 1 wherever necessary (that is, wherext andxt-1 differ).

This leads to a relative high number of allocations since fixed costs are systematically underestimated by a

continuous zt. To improve the results of LH the parametersft can be replaced withft’= at ft with at > 1.

3.3.2 Merge Heuristic (MH)

The merge heuristic starts with a separate allocation for each period

and then tries to merge two successive allocations into one if the

saved fixed costs of the allocation are less than the waste of variable

costs (see Figure 11 for an illustration of this). A formal description

for the merge heuristic is given in Figure 12.

3.3.3 Split Heuristic (SH)

The split heuristic starts with a single allocation and then tries for all periods to split existing allocations if the

costs for the new allocation are less than the saved waste of variable costs. A formal description of SH is g

Figure 13.

zt 0≠

time

cap./sec

allocation 1

allocation 2waste

Figure 11: Waste of variable costs.

allocation
demand
21

g and

imula-

ed

ristic
3.3.4 Incomplete Branch and Bound

3.3.5Another heuristic can be easily implemented by stopping the branch and bound algorithm if it takes to lon

to use the best solution found so far.Combined Heuristics (CH[x,y])

3.3.6The merge and split heuristics can also be used to further improve the results of other heuristics. In our s

tions we therefore iterated through merge and split in sequence until no further improvement could be achiev

(CH[MH, SH]). Moreover, we also tried the combination of merge and split based on the result of the LP heu

Assumptions:

x0 = 0 and Start:

zt = 1 andxt = bt for all t = 1, ...,T

Iterationn:

For eacht0 in [1, T-1] with = 1 try:

t1 is the next period aftert0 with = 1

t2 is the next period aftert1 with = 1

 =

 =

if (<) then
∆ = - andΛ = [t1,t2-1]

else∆ = - andΛ = [t0, t1-1]

if then

merge [t0, t1-1] and [t1, t2-1]

Stop:

 If no merges during last iteration

Merging:
set = 0 andxt = max(,)

b0 0≠

zt0

zt1

zt2

Bt0
max bt t t0 t1 1–,[]∈{ }

Bt1
max bt t t1 t2 1–,[]∈{ }

Bt1
Bt0

Bt0
Bt1

Bt1
Bt0

f t1
cτ∆

τ Λ∈
∑≥

zt1
bt0

bt1
t∀ t0 ... t2, ,{ }∈

Figure 12: Merge heuristic.

Start:

xt = max(bt| t = 1, ...,T) for t = 1, ...,T

z1= 1 andzt = 0 for t = 2, ...,T

Iterationn:

For eacht1 in [2, T] with = 0 try:

t0 is the latest period beforet1 with = 1

t2 is the next period aftert1 with = 1

 =

 =

if (<) then∆ = - andΛ = [t1,t2-1]

else∆ = - andΛ = [t0, t1-1]

if then

split [t0, t2-1] into [t0, t1-1] and [t1, t2-1]

Stop:

If no splits during last iteration

Splitting:
set = 1 and .

zt1

zt1

zt2

Bt0
max bt t t0 t1 1–,[]∈{ }

Bt1
max bt t t1 t2 1–,[]∈{ }

Bt1
Bt0

Bt0
Bt1

Bt1
Bt0

f t1
cτ∆

τ Λ∈
∑≤

zt1
xt max bt t Λ∈{ }= t∀ Λ∈

Figure 13: Split heuristic.
22

ni-

medi-

d 30%.

tion of a

re 11).

euristic

formed

ved by

ces ex-

eri-

1

(CH[LP,MH,SH]).Simulations for Qualitative Assessment of the Heuristics

In order to evaluate the performance of the heuristics

we ran a simulation over 100 random problem instanc-

es, each withT=1000, fixed costsft ∈ [200,800] drawn

from a uniform random distribution once and then set

equal for allT periods. Variable costsct are drawn

from [3,5] and remain equal forp periods;p is drawn

from [10,20].

The demand is calculated by superposing a number

of requests (for example representing individual re-

quests from several users) with their interarrival time modelled by a poisson distribution (λ = 4) and their duration

modelled by an exponential distribution (µ = 20)3. For calculating the requests’ capacity demand we draw from a u

form random distribution from one out of three possible intervals [2,8], [10,20] and [35,50] representing small,

um and high capacity requests. The interval itself is selected for each request with a probability of 40%, 30% an

Figure 14 shows a sample problem generated in this way.

Table 3 shows the results generated by the simulations. Here, allocation length denotes the average dura

single allocation and waste is the total waste of variable costs for a single SPP instance (as illustrated in Figu

As a very simple alternative heuristic and to have a reference value we also used what we called the peak h

(PH) which makes a single allocation with the highest capacity demand over all periods. Expectedly, PH per

very poorly compared to the other techniques. A much better performance at very low execution time is achie

the merge heuristic (MH): on average it imposes less than 5% additional costs relative to the optimum and redu

3 We have to admit that parameter choice is rather arbitrary (albeit sensible) due to lack of empirical data. However, we have exp
mented with other values without changing the results in a significant manner.

Algorithm
Costs Relative deviation from optimum costs

Allocation
length

Waste Time (sec)

av av stddev min max av av av

Optimum (DP) 452304 n.a. n.a. n.a. n.a. 9.43 36515 9.000
PH 1010199 123.81% 32.96% 58.97% 221.73% 1000.00 645804 < 0.00
MH 474027 4.79% 1.07% 2.05% 7.15% 10.65 64257 0.002
SH 568759 25.93% 10.43% 12.96% 73.65% 3.72 63295 0.010
LP 554317 22.34% 8.37% 6.12% 39.07% 2.62 424 0.452
CH[MH, SH] 469723 3.85% 0.74% 1.80% 5.34% 9.81 56064 0.005
CH[LP, MH, SH] 460404 1.77% 0.70% 0.39% 3.75% 8.93 41918 0.452

Table 3: SPP simulation results.

0

50

100

150

200

250

0 200 400 600 800 1000

Figure 14: Sample capacity demand curve.

Time

C
ap

ac
ity
23

ctive.

t allo-

MH.

his is

ocation

n 3.3.5.

tter re-

st per-
ecution time by a factor of 4500. The conceptually very similar split heuristic (SH) is considerably less effe

Looking at the allocation length shows the reason: it overdoes its job by splitting too often, resulting in too shor

cation lengths and thus incurring fixed costs more often although waste of variable costs is roughly equal to

The LP heuristic performs only marginally better than SH, although it consumes considerably more time. T

due to its characteristic of underestimating fixed costs which is also expressed in a very low waste and small all

lengths.

Next, let us see how these results may be improved by the combination of heuristics as described in Sectio

The combination of MH and SH leads expectedly to better results than the techniques in isolation. Yet, even be

sults can be achieved by integrating LP with MH and SH.

In conclusion, the best results are achieved by CH[LP,MH,SH], yet the most attractive trade-off between co

formance and execution time is probably achieved by MH or CH[MH,SH].
24

model

rovider

which

e ap-

ed one.

er’s de-

the se-

ixing of

od can

fy the

illustrat-

ristics

d

solving

provider

execu-

result
4 Extension to the Multi-Provider Problem

After the rather extensive treatment of the SPP, we now want to extend our investigations along the provider

by assuming more than one provider, i.e., we move to the MPP. Note that the MPP can also model a single p

that offers multiple tariffs among which can be chosen, e.g., tariffs comprising different fixed and variable costs

do not dominate each other. In line with our argument for taking an integrated view on MPRASE problems w

proach the MPP by trying to take advantage from the techniques developed for the SPP.

In Section 2.3.2, we have modelled two different versions of the MPP, an uncapacitated and a capacitat

Here, we want to take a look at both of them. The uncapacitated MPP represents a situation where a custom

mand is relatively small compared to the provider’s supply such that the resulting problem consists mainly in

lection of the cheapest provider. The capacitated MPP (cMPP), on the other hand, rather deals with a good m

providers to achieve low total costs.

Note that the problem complexity of MPP is much higher than that of SPP. First, the demand of each peri

be satisfied by 2J-1 different combinations of providers and second, if two or more providers are selected to satis

demand of one period there is a high number of sensible shares between these. This higher complexity is also

ed by the execution times of applying the standard branch and bound solver to model M2. A small MPP withT=20

andJ=4 already took 1920.8 seconds to solve while the corresponding SPP withT=20 only took 1.2 seconds. For any

larger MPPs execution times were no longer reasonable. With this complexity in mind we go directly for heu

and try to use our knowledge about the SPP.

4.1 SPP-Based Heuristics for the Uncapacitated MPP

4.1.1 Static Cheapest Provider Heuristic (SCPH)

A straightforward approach to tackle the uncapacitated MPP is to transform it intoJ SPPs, one for each provider an

each with the full demand. The SPPs can then be solved by any of the algorithms discussed in Section 3. After

theJ SPPs we select the provider of the SPP with the least costs. That means we obtain a solution where one

is used for all periods.

In our simulations, we use DP to solve the SPPs because it yields the optimal results for the SPP at affordable

tion time. Alternatively, we use the peak heuristic to see how non-optimal solutions for the SPP will affect the

for the MPP.
25

tion as

ms for

le pro-

n each

t

e select-

e shown
4.1.2 Dynamic Cheapest Provider Heuristic (DCPH)

One drawback of SCPH is that it does not allow provider changes.

Using a technique similar to the dynamic programming algorithm

from Section 3.2.4 we can eliminate this characteristic of the SCPH.

The resulting algorithm is called dynamic cheapest provider heuris-

tic (DCPH). This is also illustrated in Figure 15.

We use the same algorithm as in Section 3.2.4, but the minimal

costsC(t1, t2) for satisfying the demand between two periodst1 and

t2 are obtained by solvingJ independent SPPs for the interval [t1, t2]

and choosing the cheapest provider. Unlike the DP algorithm from

Section 3.2.4, this algorithm does not necessarily lead to the optimal result as it does not allow for a constella

depicted for the optimal solution in Figure 15. Again, we have the freedom of selecting any of the SPP algorith

solving the sub-SPPs. In our simulations, we choose again DP and PH.

4.2 Adaptation of the Heuristics for the Capacitated MPP

If the capacity of one provider is not enough to satisfy the whole demand we can no longer simply select a sing

vider in SCPH and DCPH but have to combine several providers. We do this by first cropping the demands i

SPP to the capacity of the according provider. We then solve the SPPs for allJ providers and select the provider tha

has the minimum costs per satisfied demand. The overall demand is then reduced by the capacity served by th

ed provider and the procedure is repeated until no more demand remains unsatisfied. Example allocations ar

in Figure 16.

P1
P2
P3

SCPH

P1
P2
P3

DCPH

P1
P2
P3

Optimal Solution

Figure 15: Provider usage of the different
algorithms for the uncapacitated MPP.
26

DCPH

the sim-

a cMPP

hird a

oviders

roviders

rform

ults are
Please note that the non-zero demand assumption in section

2.3.1 can now no longer be held and model M1 as well as the heu-

ristics of Section 3.3 had to be adapted to cope with periods of no

demand.

4.3 Other Heuristics for the MPP

4.3.1 LP Heuristic (LP)

Of course, we can again use the results of the LP relaxation for M2

and M3 to obtain a solution for MPP/cMPP.

4.3.2 Merge Heuristic (MH)

We adapted the merge heuristic to the multi-provider case and to the capacity constraints and combined it with

and LP in order to investigate whether it can improve their solutions.

4.4 Simulations for Qualitative Assessment of the Heuristics

In order to evaluate the MPP heuristics described above we ran a simulation over 50 MPP instances similar to

ulations in Section 3. Because of the much higher computational complexity we reduced the number of periodsT from

1000 to 100. We used 10 providers and three different levels of capacity: first the uncapacitated MPP, second

with the capacity of each provider drawn from [30%, 50%] of the maximum demand over all periods, and t

cMPP with provider capacity drawn from [15%, 35%].

The results for the uncapacitated MPP simulations are displayed in Table 4. Here, the total number of pr

denotes how many of the providers were selected at least once by a heuristic whereas average number of p

expresses how many providers were on average simultaneously active.

DCPH is obviously and expectedly significantly better than SCPH, however all DCPH-based heuristics pe

identically, although the SPP heuristics are very different. Even if using the simple PH as SPP solver the res

Algorithm Costs
Allocation

Length
Waste

Total Number
of Providers

Av. Number
of Providers

SCPH (PH) 59563 100.00 350954 1.00 1.00
SCPH (DP) 36428 8.23 31271 1.00 1.00
DCPH (PH) 31999 7.62 29751 5.10 1.00
DCPH (DP) 31999 7.62 29751 5.10 1.00
CH[DCPH (PH), MH] 31999 7.62 29751 5.10 1.00
LP 39165 2.52 35 3.28 1.27
CH[LP, MH] 35246 5.55 27269 3.28 1.27

Table 4: Results for the uncapacitated MPP.

P1
P2
P3

SCPH

DCPH

Optimal Solution

Figure 16: Provider usage of the different
algorithms for the capacitated MPP.

P4

P1
P2
P3
P4

P1
P2
P3
P4
27

mming

ry.

y op-

 MH.

 choice.
very good (in contrast to SCPH(PH)). The explanation for this behaviour is that the use of the dynamic progra

paradigm as provider selection strategy makes the use of dynamic programming as SPP strategy unnecessa4 Note

that MH is ineffective for DCPH because within its range (i.e., only one provider at a time) the solution is alread

timal. The LP heuristic shows the same behaviour as in the SPP case and can again be further improved by

In Table 5 and 6 the results for the cMPP with high respectively low ca-

pacity providers are given. Now DCPH with DP is significantly better than

with PH. Since more providers are involved at the same time there is now

potential for more intelligent SPP strategies such as DP. Not surprisingly,

the number of providers in the low capacity provider case is higher.

To make recommendations for the MPP heuristics we also have to take

into account the execution times of the different alternatives as given in

Table 7. While DCPH(DP) exhibits the best cost performance it needs con-

siderably more time than the other heuristics. If execution time plays a crucial role then SCPH(DP) is a good

4 This is due to the fact that under the further constraint of using only one provider at a time DCPH is an exact algorithm.

Algorithm Costs
Allocation

Length
Waste

Total Number
of Providers

Av. Number
of Providers

SCPH (PH) 65548 32.17 320415 3.14 3.14
SCPH (DP) 38890 7.64 31421 3.04 1.90
DCPH (PH) 38048 5.63 45981 6.68 1.88
DCPH (DP) 35650 6.72 29182 5.52 1.79
CH[DCPH (PH), MH] 36990 7.21 49292 6.64 1.88
LP 44334 2.21 10 4.96 2.05
CH[LP, MH] 38910 5.04 27344 4.96 2.05

Table 5: Results for the capacitated MPP (high capacity providers).

Algorithm Costs
Allocation

Length
Waste

Total Number
of Providers

Av. Number
of Providers

SCPH (PH) 62219 19.60 348896 5.18 5.18
SCPH (DP) 37084 7.42 34826 4.68 2.77
DCPH (PH) 39105 5.22 58985 7.08 2.75
DCPH (DP) 34976 6.52 29759 6.26 2.58
CH[DCPH (PH), MH] 37165 7.61 63301 7.00 2.75
LP 45167 2.04 78 5.72 2.75
CH[LP, MH] 37860 5.25 32848 5.72 2.75

Table 6: Results for the capacitated MPP (low capacity providers).

Algorithm
Execution
Time (sec)

SCPH (PH) 0.010
SCPH (DP) 0.397
DCPH (PH) 0.689
DCPH (DP) 243.073
CH[DCPH (PH), MH] 0.689
LP 2.323
CH[LP, MH] 2.323

Table 7: Execution times of MPP
heuristics.
28

ated

serv-

issions

ain of

not so

nvi-

em by

o opti-

g opti-

euristic

of the

th an

serva-

yield

half of

ement.
5 Related Work

It is difficult to find directly related work since our MPRASE approach is very general and other work mainly tre

individual MPRASE problem incarnations in isolation. Yet, interestingly, work done in the field of renegotiable

ices, e.g. [14,15] , arrives at very similar algorithms to calculate renegotiation schedules for stored video transm

which furtherly emphasizes the general structure of the MPRASE framework for problems found in the dom

providing network QoS. However, the emphasis of [14,15] is on the definition of renegotiable services and

much on algorithms and their evaluation whereas this is the main focus of our paper.

Relating to the analysis of dynamic provisioning in a multi-provider environment (in particular a DiffServ e

ronment), the work described in [16] gives very interesting insights into the global behaviour of such a syst

game-theoretic observations. Yet, our perspective is more local from a single system’s point of view and how t

mize resource allocations for its purposes. It would certainly be interesting to investigate how providers usin

mized resource allocation strategies as proposed in our work would interoperate from a global point of view.

In [8], we dealt with the SPP under uncertainty and made use of the deterministic edge SPP in an adaptive h

scheme which is based on past optimal resource allocations. This constitutes another example of utilization

MPRASE framework in that it links different problem incarnations together. In general, MPRASE problems wi

uncertain edge model show similarities to capacity management problems from other domains like air-line re

tions or hotel booking in which usually yield management techniques are applicable, e.g. [17]. In contrast to

management, however, we view the MPRASE problems from the perspective of an intermediary acting on be

the customer (in most models) and not so much from the provider’s perspective as is the case with yield manag
29

ation at

lass of

mework

en dealt

s per-

r mod-

roblem

MPP in

rest-

re than

analysis
6 Conclusion & Outlook

This paper has dealt with a so far largely neglected class of network QoS problems related to resource alloc

system edges over multiple time periods. We developed the MPRASE model to classify and describe this c

problems and to analyse their mutual dependencies and relationships. Next, we have established a solution fra

for MPRASE based on mathematical programming models. The most basic MPRASE problem (SPP) has be

with extensively by developing and evaluating a variety of exact as well as heuristic techniques. The algorithm

form fast and well. We have then shown how to extend the SPP along one dimension of MPRASE (the provide

el) towards the MPP and how to apply the SPP techniques to this extension. Since the MPP is a very complex p

we concentrated on the development and evaluation of heuristics. With these it has been possible to solve the

an efficient way.

Many interesting issues for future work arise from our MPRASE framework. For example, it will be very inte

ing to investigate solution techniques for other problem incarnations with resource models that incorporate mo

one dimension of capacity and to extend our models towards a stochastic edge. Also, a parameter sensitivity

for the problems discussed in this paper is planned as future work.
30

opic

rview.

ices.

QoS
.ps.gz.

urce
ions

twork
’99),

VBR

rnet
tions

First.
References

[1] W. Fang and L. L. Peterson. Inter-AS Traffic Patterns and Their Implication. InProceedings of Global Internet
Workshop at GLOBECOMM’99. IEEE, December 1999.

[2] Cooperative Association for Internet Data Analysis (CAIDA). Visualizing Internet Topology at a Macrosc
Scale, 2001. http://www.caida.org/analysis/topology/as_core_network/.

[3] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an Ove
Informational RFC 1633, June 1994.

[4] D. Black, S. Blake, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for Differentiated Serv
Informational RFC 2475, December 1998.

[5] U. Black. ATM: Foundation for Broadband Networks, 1995. Prentice Hall, Englewood Cliffs.
[6] J. Schmitt, M. Karsten, and R. Steinmetz. On the Aggregation of Deterministic Service Flows.Computer

Communications, 24(1):2–18, January 2000.
[7] J. A. Cobb. Preserving Quality of Service Guarantees in spite of Flow Aggregation. InProceedings of the 6th

International Conference on Network Protocols (ICNP’98), pages 90–97. IEEE, November 1998.
[8] J. Schmitt, O. Heckmann, M. Karsten, and R. Steinmetz. Decoupling Different Time Scales of Network

Systems, 2001. Currently under submission. ftp://ftp.kom.tu-darmstadt.de/pub/papers/SHKS00-1-paper
[9] L. C. Wolf and R. Steinmetz. Concepts for Resource Reservation in Advance.Multimedia Tools and

Applications, 4(3):255–278, May 1997. Special Issue on State of the Art in Multimedia Computing.
[10] M. Karsten, N. Berier, L. C. Wolf, and R. Steinmetz. A Policy-Based Service Specification for Reso

Reservation in Advance. InProceedings of the International Conference on Computer Communicat
(ICCC’99), Tokyo, Japan, pages 82–88, September 1999. ISBN 1-891365-05-3.

[11] O. Schelen, A. Nilsson, J. Norrgard, and S. Pink. Performance of QoS Agents for Provisioning Ne
Resources. InProceedings of the Seventh IEEE/IFIP International Workshop on Quality of Service (IWQoS
London, UK, pages 17–27. IEEE/IFIP, Jun 1999. ISBN 0-7803-5671-3.

[12] F. S. Hillier and G. J. Lieberman.Operations Research. McGraw-Hill, 1995.
[13] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.Numerische Mathematik, 1(1):269–271,

January 1959.
[14] M. Grossglauser and S. Keshav. RCBR: A Simple and Efficient Service for Multiple Time-Scale Traffic.IEEE/

ACM Transactions on Networking, 5(6):741–755, December 1997.
[15] H. Zhang and E. Knightly. RED-VBR: A Renegotiation-Based Approach to Support Delay-Sensitive

Video.Multimedia Systems Journal, 5(3):164–176, May 1997.
[16] N. Semret, R. R. Liao, A. T. Campbell, and A. A. Lazar. Peering and Provisioning of Differentiated Inte

Services. InProceedings of the 18th Annual Joint Conference of the IEEE Computer and Communica
Societies (INFOCOM’00), pages 414–420. IEEE, March 2000.

[17] R. Wollmer. An Airline Seat Management Model for a Single Leg Route when Lower Fare Classes Book
Operations Research, 40(4):26–37, 1992.
31

	Multi-Period Resource Allocation at System Edges (MPRASE)
	Abstract

	1 Introduction
	1.1 Motivating Example: Decoupling Different Time Scales of Network QoS Systems
	Figure 1: Combined local and global admission control.

	1.2 Outline

	2 MPRASE - Generalization & Taxonomy
	2.1 Generalized Problem Structure Model
	Figure 2: MPRASE problem structure.
	2.1.1 Customer
	2.1.2 Provider
	2.1.3 Resource
	2.1.4 Cost
	2.1.5 Edge
	2.1.6 Intermediary

	2.2 MPRASE Problem Incarnations
	Table 1: MPRASE problem incarnations.
	2.2.1 MPRASE Solution Strategies

	2.3 Mathematical Programming Models for MPRASE
	2.3.1 The Single Provider Problem (SPP)
	M1 Single Provider Problem - SPP
	Minimize (1)
	(2)
	(3)
	(4)
	(5)

	2.3.2 Multi-Provider Allocation Problems
	M2 Multi-Provider Allocation Problem - MPP
	Minimize (6)
	(7)
	, (8)
	, (9)
	, (10)
	, (11)
	, (12)
	, (13)
	, (14)
	M3 Capacitated Multi-Provider Allocation Problem - cMPP

	, (15)

	2.3.3 Single Provider Problems with Flexible Demand
	M4 Single Provider Problem with Degraded Quality - SPPDQ
	Minimize (16)
	(17)
	M5 Single Provider Problem with Admission Control - SPPAC

	Maximize (18)
	(19)
	(20)

	2.3.4 Single Provider Token Bucket Allocation Problem
	Token Bucket characteristics
	Figure 3: Token-Bucket curve
	Figure 4: Two example data flows
	Figure 5: Flow B running out of tokens at point P
	Figure 6: Token-Bucket curve in discrete time
	Figure 7: Two example data flows in discrete time
	Figure 8: Aggregation of the two data flows

	Pricing
	Figure 9: Bucket depth and needed bandwidth

	Model
	M6 (Single Provider Token Bucket Allocation Problem)
	Minimize (21)
	Minimize (22)
	(23)
	(24)
	(25)
	(26)
	(27)
	(28)
	, (29)

	3 Tackling the Single Provider Problem
	3.1 Optimality Conditions
	: (30)
	(31)
	(32)
	: (33)

	3.2 Exact Algorithms
	3.2.1 Full Enumeration
	3.2.2 Branch and Bound with Linear Programming (LP) Relaxation
	M1’ LP Relaxation of M1 (SPP)
	(34)
	Bounding
	Branching

	3.2.3 Shortest Path (SP) Algorithm
	. (35)

	3.2.4 Dynamic Programming (DP)
	Figure 10: Dynamic programming algorithm for SPP.

	3.2.5 Assessment of Execution Times
	Table 2: Execution times for exact SPP algorithms (in sec).

	3.3 Heuristics
	3.3.1 LP Heuristic (LH)
	3.3.2 Merge Heuristic (MH)
	Figure 11: Waste of variable costs.

	3.3.3 Split Heuristic (SH)
	Figure 12: Merge heuristic.
	Figure 13: Split heuristic.

	3.3.4 Incomplete Branch and Bound
	3.3.5 Another heuristic can be easily implemented by stopping the branch and bound algorithm if i...
	3.3.6 The merge and split heuristics can also be used to further improve the results of other heu...
	Figure 14: Sample capacity demand curve.
	Table 3: SPP simulation results.

	4 Extension to the Multi-Provider Problem
	4.1 SPP-Based Heuristics for the Uncapacitated MPP
	4.1.1 Static Cheapest Provider Heuristic (SCPH)
	4.1.2 Dynamic Cheapest Provider Heuristic (DCPH)
	Figure 15: Provider usage of the different algorithms for the uncapacitated MPP.

	4.2 Adaptation of the Heuristics for the Capacitated MPP
	Figure 16: Provider usage of the different algorithms for the capacitated MPP.

	4.3 Other Heuristics for the MPP
	4.3.1 LP Heuristic (LP)
	4.3.2 Merge Heuristic (MH)

	4.4 Simulations for Qualitative Assessment of the Heuristics
	Table 4: Results for the uncapacitated MPP.
	Table 5: Results for the capacitated MPP (high capacity providers).
	Table 6: Results for the capacitated MPP (low capacity providers).
	Table 7: Execution times of MPP heuristics.

	5 Related Work
	6 Conclusion & Outlook
	References

