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Abstract 
Providing guaranreed QoS necessarily requires alloca- 

rion of scarce resources. Ir is conceivable rhar ar least ar 
system edges scarcity of resources, exposed in rhe form of 
non-negligible (virrual) cosrs, will prevail ro necessitare 
explicir allocation of resources as opposed ro pure overdi- 
mensioning. An example of rhis logic is consrirufed by fhe 
Diflerenriaied Services (Dimerv) archireciure. Ofren such 
resource allocarion decisions are done on a multi-period 
basis because resource allocation decisions ar a certain 
poinr in time may depend on earlier decisions und rhus it 
can iurn our sub-oprimal ro look a f  decisions in an isolaied 
fashion. Therefore, in ihis Paper, we investigare a fairly 
large und diverse ser of (network) QoS problems all of 
which deal wirh ihe problem of multi-period resource allo- 
carion ar sysrem edges. We devise a taxonomy for rhe clas- 
sijication of rhese problems und introduce a common 
marhematical framework under which rhese problems can 
he rackled. The ultimare goal of our work is ro srrive for 
solrtrion fechniques rowards rhe generalized class of prob- 
lems such rhar rhese are applicable in a number ojscenar- 
ios which have so far nor been regarded in an integrated 
jashion. 

1. Introduction 

Decentralized organization has always been at the heart 
of the Intemet's philosophy. Actually. this is one of the key 
explanations for its success in a world of increasing dereg- 
ulation. The decentralized organization is exhibited by the 
fact that the lnternet consists of multiple independent pro- 
viders that usually operate so-called autonomous systems 
which interwork with each other by peenng agreements. Ir 
is interesting to note that both the number of ASes as well 
as the average number of ASes a given AS is peenng with 
is increasing at a fairly high rate. The number of ASes rose 
from 909 in 9/95 to 4427 in 12/98 and 7563 in 10100 [1.2]. 
Similarly, the average peenng degree, i.e., the number of 
providers a certain provider has peenng agreements with, 
rose from 2.99 in 9/95 to 4.12 in 12198.11 is also very nota- 
ble that a single provider may Peer with up to 1000 other 
providers [I]. 
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From these obse~ations it becomes obvious that for the 
efficient and dynamic provision of QoS in the lnternet there 
is a good potential for optimization of resource allocations 
at provider edges. In particular, this optimization of 
resource allocations becomes a competitive factor for Inter- 
net providers. However. such an optimization can only be 
done on a multi-period basis, i.e., by making decisions 
based on earlier decisions about resource allocations at 
peenng providers. In this Paper. we Want to deal with a 
general problem class called multi-penod resource alloca- 
tion at system edges (MPRASE) for which the peenng pro- 
viders have been the motivating scenario, although some 
other network QoS problems also fit into this problem class 
as we will discuss later on. 

1.1 Motivating Example: Decoupling Different 
Time Scales of Network QoS Systems 

Different time scales of providers' network QoS systems 
may arise due to different QoS architectures like RSVPllnt- 
Serv (Resource reSerVation Protocoll Integrated Services) 
[3], DiffServ (Differentiated Services) [4], or ATM (Asyn- 
chronous transfer Mode) [SI being used. Choosin~ differ- - - - - 
ent QoS architectures results from serving different needs, 
e.g., for an access and backbone provider. An access pro- 
vider that has a comparatively moderate load and directly 
connects to end-systems may favour a fast time scale sys- 
tem responding immediately to the end-systems requests. 
A backbone provider that connects access providers 
respectively offers transit services is generally faced with a 
drastically higher load of individual transmissions, so that 
reaction on the time scale of individual requests is usually 
not possible and a slower time scale system needs to be 
enforced. A realistic configuration for access and backbone 
providers may be, e.g., that access providers use RSVPIlnt- 
Sem to suit their customers' needs while a backbone pro- 
vider uses DiffSem with a Bandwidth Broker (DiffServI 
BB) to allow for some dynamics but on a slower time scale. 
This scenano is shown in Figure 1.  

Here it is also very obvious why a BB is generally not 
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Figure 1 : Combined local and global admission control. 

able to react toindividual RSVP requests that are amving 
at edge devices between access and backbone provider. 
Because if it did, the BB would need to operate at a 
throughput of requests that is proportional to the square of 
the number of access providers it serves - that is not scal- 
able. To see this, assume each of N edge devices would 
have M (new or modified) RESV messages for each other 
edge device in a given time penod and would query the BB 
for each of these requests. Then the BB would have to deal 
with N X ( N  - I )  X M requests in the same period. Note 
that the problem is not solved by spatial aggregation 
approaches like, e.g., [6] or [7] since for each of the M 
RESV messages the aggregate would have to be rear- 
ranged. Here a decoupling of the different time scales is 
necessary. The decoupling can be achieved by building 
"depots" of capacity which stabilize the fluctuations of the 
"nervous" demand curve for backbone capacity by individ- 
ual requests. From another perspective, the decoupling 
technique'can also be viewed as introducing a combined 
local and global admission control for the DiffServIBB net- 
work. Global admission control is only invoked whenever 
local admission control at an edge device runs out of 
resources in its capacity depot. In such a case. local admis- 
sion control on an edge device tries to obtain more 
resources from the global admission control represented by 
the BB. This scheme allows to trade off resource efficiency 
for a more stable and long-term capacity demand presented 
to the BB. 

Note that the slow time scale of an underlying QoS sys- 
tem may not express itself in being unable to process 
requests for QoS at short time scales but by the fact [hat 
significant setup costs are incurred for QoS requests 
betheen different administrative domains. Such a scheme 
of QoS tariffing is an instance where a QoS strategy of a 
network provider restricts the capabilities of the employed 
QoS architecture. A possible reason for this may be, e.g., 
that the charging and accounting system is not able to deal 
with a large number of individual requests since this 
involves a lot of operational costs. 

In conclusion, we have here a certain instance of the gen- 
eral problem class of multi-period resource allocation at 
system edges. 

1.2 Outline 

In the next section, we generalize the above presented 
example problem and extend it along several dimensions of 
a conceptual component model by which we try to capture 
all the different facets of the MPRASE problem structure. 
We show how the different characterisiics of the compo- 
nents and iheir combinations lead to known network QoS 
problems. We thus establish the incentive to treat the gener- 
alized problem in a framework that has the potential to 
solve all MPRASE problems in an integrated fashion or at 
least establish relationships between different problem 
instances which may be helpful when approaching a cer- 
tain problem, e.g., by making use of an exisiing algonthm 
for a certain problem as part of a solution strategy of 
another (more complicaied) problem instance. 

In Section 3, we then look at the most basic problem, the 
so-called single provider problem (SPP). We devise exact 
algorithms for its solution as well as some heuristics since 
it turns out to be fairly compute-intensive. Techniques Tor 
the SPP could be the basis for a solution strategy to ihe 
example problem described in Section 1.1 and in fact that 
is what has been proposed and evaluated in 181. This consti- 
tutes an example where a relation between the different 
problem instances captured by our general model is used. 
In this Paper. however, we try to exploit the SPP along a 
different dimension: the number of providers. Therefore, in 
Section 4, we turn to the so-called multi-provider problem 
(MPP). The MPP constitutes a really hard problem, how- 
ever by using our techniques for the SPP we are at least 
able to devise heuristic approaches towards the MPP. To 
evaluate our techniques we carry out extensive simulations 
to compare the different alternatives. 

In Section 5, we review related work and discuss how 
our approach differs from respectively extends former 
work. In Section 6, we summarize our findings and draw 
some conclusions. 

2. MPRASE - Generalization & Taxonomy 

In this section, we introduce a general structural model 
which tries to capture all the different facets of multi- 
period resource allocation at system edges (MPRASE) 
problems. This model then allows us to derive a taxonomy 
along its components which establishes the relations 
between the different problem incamations. 

2.1 Generalized Problem Structure Model 

Figure 2 shows the overall structural model of the gen- 
eral class of MPRASE problems. Obviously. there are cus- 
tomers which generate requests towards several providers. 
These two groups are separated by a system edge on which 
an intermediary instance is located. The intermediary tries 
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Figure 2: MPRASE problem structure. 

to mediate between the two by selecting providers on ihe 
one hand and enforcing adrnission control of the customers 
on the other hand. Note that the logical separation of the 
intermediary instance from customer and provider does not 
necessarily imply that i t  rnay not belong to either customer 
or provider prernises. The requests are originated by the 
custorners which desire a certain arnount of resources 
offered by the providers. Furthermore, requests incur cer- 
tain costs at the providers which need to be accounted for 
by customers. Several requests are generated in the Course 
of time, thereby. reacting upon the dynamics of customers' 
demand. Let us now look at the different components of the 
structural model for MPRASE. 

2.1.1Customer.The customer component of the 
MPRASE model captures the nurnber of customers, i.e., if 
a single or multiple customers are considered. and the flex- 
ibility of the demand. i.e., whether demand rnay be dissat- 
isfed or be served with a degraded quality. 

2.1.2 Provider. The provider model encornpasses the nurn- 
ber of providers and whether they are modelled as having 
limited or unlimited capacity. While the latter is unrealistic 
it can be a sirnplifying. yet valid assurnption for the case 
where supply exceeds dernand with very high probability. 

2.1.3 Resource. This cornponent rnodels the resources, i.e.. 
whether they are one- or multidimensional or whether they 
are provided on a deterministic or statistical basis. In this 
paper. we focus on one-dimensional resource models. i.e., 
on capacity rnanagement. in order to keep the problern 
cornplexity manageable. However, in [9] we also extend 
our MPRASE models towards a [wo-dimensional resource 
model motivated by the token bucket mechanism. Further- 
more, we make no particular assurnption on the kind of 
guarantee with which resources are provided, i.e., whether 
they are statistically or deterministically available. There- 
fore, an allocation in our context does not necessarily mean 
an isolated, exclusive access to resources for a customer 

that made it. 

2.1.4 Cost. The cost rnodel seizes the cost structure for 
allocation requests, 1.e.. whether these incur certain fixed or 
transactional costs or whether the number of requests is 
just bounded and how variable costs for resource alloca- 
tions are rnodelled. e.g., linearly or non-linearly. 

2.1.5 Edge.The edge rnodel encornpasses the nature of 
knowledge about capacity demands at the system edges. 
i.e., whether deterministic or statistical knowledge about 
future demands is available or if total uncertainty needs to 
be assumed. In our work here. we focus on deterministic 
knowledge at system edges because methods for this case 
may be used as basic methods for other edge models, as is 
demonstrated in [8]. Furthermore, the deterministic edge 
model is not totally unrealistic as it applies to advance res- 
ervation scenarios as described in (10. 1 I ]  and may play an 
important role in DiffServ-based scenarios as described in 
r l q i  

2.1.6 Intermediary. Note that the intermediary is the com- 
ponent where solution techniques towards MPRASE prob- 
lems are conceptually located. Therefore. this component 
does not capture problem characteristics but characteristics 
of the solution techniques, e.g., whether these are stnving 
for the exact solution or whether they are just heuristics 
which could again be classified in construction and 
improvement techniques. 

2.2 MPRASE Problem Incarnations 

The above dimensions. which are largely orthogonal to 
each other, span a large space of MPRASE problern incar- 
nations. Sorne of these - the ones considered in this paper 
in varying detail - are given in Table 1.  The darkly shaded 
rows of the table represent problems we treat in detail in 
this paper, whereas the lightly shaded are solely modelled 
in the next section and the white rows are not investigated 
here due to space restriction. However, the interested 
reader is referred to [8, 91 for the latter MPRASE problern 
incarnations. Nevertheless. the table shows MPRASE 
problem incarnations where each cornponent is varied at 
least once (indicated by bold entries). This illustrates our 
basic goal of treating MPRASE problems in an integrated 
fashion by making their relations explicit and using that 
knowledge for solution approaches. 

2.3 Mathematical Programming Models for 
MPRASE 

As a common frarnework for the general MPRASE prob- 
lem class we make use of mathematical prograrnming 
(MP) techniques (13). From our point of view, MP tech- 
niques provide a good tool to model this problem class as 
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well as they allow for a common set of standard solution 
techniques for the different problem incarnations. In the 
following MP formulations of MPRASE problem incarna- 
tions we try to illustrate this point. 

2.3.1 The  Single Provider Problem (SPP). Let us first 
look at the single provider allocation problem (SPP). The 
customer has capacity demands b, that must be fully satis- 
fied at every discrete time interval I = 1, ...,T. As the edge 
model is deterministic, the demand is known in advance for 
all periods. Capacity is requested from a single provider 
who is charging a fixed costs f ,  for every allocation and 
variable allocation costs C, per reserved capacity unit and 
period. A new allocation is constituted by a change in the 
allocated capacity. Using two types of variables and a num- 
ber of parameters, this problem can be formulated as model 
MI.  

The objective function (1) minimizes total costs. (2) 
ensures that demand is fully satisfied in each period. (3) 
and (4) force z, to one whenever X, and X,-, differ, i.e.. a 
new resource allocation takes place. Note that z, will be set 
to 0 in all other cases automatically because of the non- 
negative entryf, in the objective function. 

M1 Single Provider Problem - SPP 

Variables: 
X, Amount of reserved capacity in period r = I , . . . .  T. 
z,  Binary variable. I if a allocation is made at beginning of 

period r = 1. ..., T and 0 otherwise. 
Parameters: 

b, Demanded capaciiy in period r = l.....T. Demand is as- 
sumed to be greater than 0. 

f, Fixed allocation costs. costs per allocation. We assurne 
positive costs (f, > 0). 

C, Variable allocation costs. costs per rrservrd capacity unit 
per period. 

xo Allocation level before the beginning of the first period. 
M M is a sufficiently high number (e.g.. max ( b , ) ) .  

T T 

Minimize ~ f , i ,  + pc,x, ( 1 )  

I =  I I =  I 

subject to 

X, 2 b, Vt = I,  ..., T (2) 

X , - X , - ~ I M . Z ,  Vt = I,  ..., T (3)  

X , - ~ - X , L M ~ Z ,  Vr = I ,  ..., T (4) 

z,E (0, 1)  V I  = I ,  ..., T (5) 

2.3.2 Multi-Provider AUocation Problems. In this sec- 
tion, we present the multi-provider allocation problem in 
an uncapacitated and a capacitated version of it. Let us 
assume that there is more than one provider offering capac- 
ity to the customer. We assign index j = 1, ..., J to the differ- 
ent providers. Based on M1 we can model this problem 
with M2. 

This model mainly differs from M I  in the additional 
index j. Furthermore, we now have to model the case that 
in a certain period no capacity is allocated at a certain pro- 
vider. This is captured by the introduction of demand 

defect variables, dj„ and the constraints (10) and (I I ) .  
Here, E needs to be chosen small, e.g., 
E = I/(max{b,)), whereas M and L need to be chosen 
large, e.g., M = max(b,) and 
L = I /(min{b,l b, > 0) ) .  

In the next step we use additional Parameters, k,,, to 
model by (15) that each provider j can offer only a limited 
amount of resources k,, in period t .  This leads to model M3, 
the capacitated MPP (cMPP). 

2.3.3 Single Provider Problems with Flexible Demand. 
Above, we have assumed that the provider(s) had to sat- 



M 2  Multi-Provider Allocation Problem - M P P  

Variables: 
X,, Amount of allocated capacity in interval r from provider j. 

z,, I if an allocation for provider j is made at the beginning of 
period r and 0 otherwise. 

djr I if allocation for providerj drops to 0 in interval i and 0 0th- 
envise. 

Parameters: 
b, Demanded capacity in interval r = 1, .... T. Demand must be 

fully satisfied in each period. 
f j ,  Fixed allocation costs. i.e.. cost for an allocation in period r 

from providerj. we assume f ,, > 0. 
C,, Variable costs. i.e.. costs per capacity unit per period (specif- 

ic per provider and period). 
x. Allocation level before the beginning of the first planning pe- 

'O "od. 
I T J T 

Minimize X X f ,,( i i i  - d,,) + 2 X C,, X,,  (6) 
J =  l l = l  J =  I # =  I 

subjrct to 
J 

~ ~ , , > b ,  ~ t  = I ,  ..., T (7) 

I =  I 

x , , - x , , ~ - , ~ I M ~ ~ , ,  vj  = I .  ..., J .  Vt = I, ..., T (8) 

x ~ , ~ - . , ,  M z ,  J = I . J V  = 1, . T (9) 

d,, + E X , ,  I I J = 1, . J ,  f = 1, . T (10) 

L ( x , ,  + X„,-„)  2 dir V j  = 1, ..., J .  Vt = I ,  .... T (I I )  

d „ ~  { O . 1 1  j = . J .  V  = I .  T (12) 

z,, E {O, I } J  = 1 J .  V  = I , . . .  T (13) 

x i i  1 0 j = I ,  J .  t  = 1 . .  T (14) 

M 3  Capacitated Multi-Provider Allocation 
Problem - c M P P  

Minimize (6) 
subject to (7)-( 14) and 

V j  = I ,..., J , V t  = I ,.... T 

isfy customers' dernand at all times. Now we describe a 
related SPP formulation where this is not the case, i.e., we 
have a different customer model. The demand can be dis- 
satisfied (leading to degraded quality for the custorner). yet 
for dissatisfying dernand the interrnediary has to take pen- 
alty costs into account. Those can be either real costs or 
opportunity costs because he risks to loose customers. This 
model as well as other models with flexible demand are 
discussed in [9]. 

3. Tackling the Single Provider Problem 

After the preseniation of the general MPRASE frame- 
work, we now Want to investigate different solution tech- 
niques for the simplest possible problem incamation: the 

M4 Single Provider Problem with 
Degraded Quality - SPPDQ 

Variables: 
s, Unsatisfied demand in period i. 

Parameters: 
C: Penalty costs per unit of dissatisfied demand in period r. 

T T T 

Minimize f ,z, + e,x, + C>, (16) 

, = I  , = I  , = I  

subject to (4). (5) and 
X ,  + S,  2 b, Vi = 1, ..., T (17) 

uncapacitated single provider problem at a deterministic 
edge. From simulative experiments as well as  theoretical 
o b s e ~ a t i o n s  it turns out that even this problern is not abso- 
lutely trivial although we are able to devise reasonably effi- 
cient exact solutions as well as computationally 
inexpensive, yet qualitatively satisfying heuristic tech- 
niques. Besides the value of having a solution for the SPP. 
these techniques are also ihe base componenis for devising 
techniques for more advanced problems. This will be dem- 
onsirated in Section 4 where we iackle the MPP by reusing 
solution techniques for the SPP. 

3.1 Exact Algorithms 

At first we Want to look at techniques that guarantee to 
produce an optimal solution for the SPP. 

3.1.1 Branch a n d  Bound with Linear  Programming 
(LP) Relaxation. A standard approach to solve ihe single 
provider problem SPP is to use a mixed integer problem 
solver in order to solve model M1. A typical algorithm for 
solving a mixed integer LP model is a branch and bound 
algorithm that uses the L P  relaxed problem M I '  of M1: 
M I '  L P  Relaxation of M 1  (SPP) 

n i e  binary condition (5) is dropped from MI and replaced by 
O < z , < l  VI = 1, .... T (18) 

The resulting problem can be easily solved with ihe sim- 
plex algoriihm. The solution of M1 ' is a lower bound to the 
optimal solution of M I .  Branching can be done by fixing 
the highest not yet fixed I, to 1 in the first and to 0 in ihe 
second subproblem. 

An example problem with only 50 periods took already 
33 minutes to be solved'. Problems with more than 100 
periods could not be solved within several days. The reason 
for this is that the structure of the problem does not make it 
very amenable to branch and bound algonthms since z ,  are  
often sei to very low values greater 0 resuliing in a vast 
underestimation of fixed costs which leads to very loose 
bounds. Therefore, we strived for rnore efficient. yet still 

' .  All experiments have been performed on a 400 MHz Pen- 
iium 11 processor. 



' exact algorithms for the SPP. 

3.1.2 Dynarnic Programming (DP). 
Let (tI, t2) be the edge from vertex t, to vertex r ~ .  The 

costs (or length) of edge ( r , ,  r2) are defined as 

C(< , .  I , )  = f,, + C,. m a x ( b , l r ~  (1,. .... r 2 ) ) .  

With this, the problem can be solved efficiently with a 
dynamic programming algorithm which has a complexity 
of O(T' ) (see Figure 3). . 
I Preparation: I 

Prepare an empty array cMin and an empty array pred, each 
wiih Tentries. 

Start: 
cMin(1) = C(!,. 1,) 

pred(1) = I 
Iteration r = 2. .... T: 

cMin(r) = min(C(i, I )  + cMin(i-1) l i = 1. ..., r )  
pred(1) = rirgmin(C(i. r)  + cMit~(i- 1 )  I i = 1 ,  .... r )  

Resuli: 
cMin(T+l) contains the minimal cosis while array prea 
storrs the hops towards that solution. 

Figure 3: Dynarnic programming algorithm for SPP. 

3.1.3 Assessment of Execution Times. Table 2 shows the 
execution times for all of the exact algoriihms for iwo dif- 
ferently sized problem instances. 

Algoriihm ( B&B 1 DP 1 
- 

Table 2: Execution tirnes for exact SPP algorithms (in sec). 

3.2 Heuristics 

While the last section introduced exact solutions for the 
SPP, which while ihey provided fairly good performance 
still required a certain computational effort that might be 
prohibitive in scenarios where there is either a large num- 
ber of periods to be planned for or where there is only an 
extremely limited arnount of time available for computa- 
tion as, e.;., if the resource allocation is done in response to 
signalling messages and thus affects setup latencies. There- 
fore, we now Want to investigate heuristic techniques 
which do not guarantee an optimal solution but allow very 
fast allocation decisions. A further reason for investigating 
heuristics becomes obvious when we extend the SPP tech- 
niques towards the MPP in Section 4 where we then need 
to solve a potentially large number of SPPs. 

simplex algonthm), any z, # 0 is set to 1 wherever neces- 
sary (that is, where X, and xfil differ). This leads to a rela- 
tive high number of allocations since fixed costs are 
systematically underestimated by allowing continuous 2,. 

3.2.2 Merge Heuristic (MH). - 

The merge 
cap./sec - - - - allocaiion heuristic siarts C dernand 

with a sevarate 
allocation for I allyiionJ 

1 

I I each period and was,e , aIlocath2, 
then tries to 
rnerge two suc- 
cessive alloca- 
tions into one i f  
the saved fixed 
costs of the Figure 4: Waste of variable costs. 
allocation are 
less than the waste of variable costs (see Figure 4 for an 
illustration of this). 

3.2.3 Split Heuristic (SH). The split heuristic Starts with a 
single allocation and then tries for all periods io split exist- 
ing allocations if the fixed costs for the new allocation are 
less than the saved waste of variable costs. 

3.2.4 Combined Heuristics (CH[x,y]). The merge and 
split heuristics can also be used to further irnprove the 
results of other heuristics. In our simulations we therefore 
iterated through merge and split in sequence until no fur- 
[her improvement could be achieved (CH[MH, SH]). 
Moreover. we also tried the combination of merge and split 
based on the result of the LP heuristic (CH[LP,MH,SH]). 

3.3 Simulat ions for  Qualitative Assessment of t he  
Heuristics 

In order to evaluate the performance of the heuristics we 
ran a simulation over 100 random problem instances, each 
with T=1000. fixed costsf, E [200,800] drawn from a uni- 
form random distribution once and then set equal for all T 
periods. Variable costs C, are drawn from [3,5] and remain 
equal for 1) periods; p is drawn from [10.20]. 

The demand is 2m 

calculaied by 
superposing a ?'*' 

number 0f $150 

requests (for L 
exampie repre- ' lM 

senting individ- M 

ual requests from 
3.2.1 LP Heuristic (LH). The LP heuristic is solving the several users) '0 zoo ux, 

I 

xoo 1x0 

LP relaxation M1' of Section 3.1.1 to determine the with their interar- ~i~~~~ 5: sample capacity ,jemand 
amount of allocated capacity. After solving M 1'  (using the rival time mod- 

elled by a poisson distribution (h = 4) and their duration 



LP 554317 22.34% 8.37% 6.12% 39.07% 2.62 J24 0. J52 

CH[MH.  SHJ J69723 3.85% 0.74% 1.80% 5.34% 9.81 56064 0.005 

CHV-P. MH. SHI 460.104 1.77% 0.70% 0.39% 3.75% 8.93 J1918 0. J52 

Table 3: SPP simulation results. 
modelled by an exponential distribution (p = 20)~ .  For cal- results can be achieved by integrating LP with MH and SH. 
culating the requests' capacity demand we draw from a In conclusion, the best resulis are achieved hy 
uniform random distribution from one out of three possible CH[LP,MH.SH], yet the most attractive trade-off between 
intervals [2,8]. [10.20] and 135,501 representing small. cost performance and execution time is probably achieved 
medium and high capacity requests. The interval itself is by MH or CH[MH,SH]. 
selected for each request wiih a probability of 40%. 30% 
and 30%. Figure 5 shows a sample problem generated in 4. Extension to the Multi-Provider Problem 
this way. 

Tahle 3 shows the results generated by the simulations. After the raiher extensive trealment of the SPP, we now 

Here, allocation length denotes the average duration of a fo exiend our investigations alOng Ihe provider Inodel 

a[loca[ion arid waste is the total waste of variable b~ assuming Inore Ihan One provider. i.e., we mOve to Ihe 

costs for a Single SPP instance (as illustrated i n  Figure 4). MPP. Note that the MPP also Inodel single provider 

As very simple alternative heunstic arid to have refer- that offers multiple tariffs among which can be chosen, 

ence we also used we called [he heuristic e.g., tariffs cornprising different fixed and variable costs 

(PH) which ,,,des allocation the highest which do not dominate each other. In line with our argu- 

capacity demand over all periods, Expectedly, PH per- me" for taking an integraled view On problems 

formed very poorly compxed 10 the other techniques, A We "pproach Ihe MPP b~ Irying l0 Iake advantage from Ihe 

much better performance at very low execution time is techniques developed for lhe 

achieved by the merge heurist ic (MH): average i t  In Section 2.3.2, we have modelled two different ver- 

imposes less than 5% additional costs relative 10 the opti- sie" "f the MPP, an uncapacitated arid ca~acitated One. 

arid reduces execution by factor of 4500. l-he Here, we Want to take a look ai both of them. The uncapac- 

conceptually very similar  spl , t  heurist ic (SH) is consider- itated MPP represenis a situation where a cusiomer's 

ably less effective. Looking at ihe allocation length shows demand is relatively small com~ared 10 the ~ r0~ ide r . s  sup- 

ihe reason: i t  overdoes its job by splitting too often, result- P I Y  such [hat the resulting ~roblem consists mainly i n  the 

ing i n  too short allocation lengths arid thus incurring hxed selection of the cheapest provider. The capacitaied MPP 

costs more although of variable cosis is (cMPP), on the other hand. rather deals with a good mixing 

roughly equal to MH. of providers to achieve low total costs. 

The LP heuristic performs only marginally better than Ihat Ihe Problem complexity of is much 

SH, although i t  consumes considerably more time, l-his is higher than that of SPP. First, the demand of each period 

due to i t s  chxacteristic of fixed costs can be satisfied by 2'- ' different combinations of provid- 

whic., is also expressed in  very low arid small  alle- ers and second, if two or more providers are selected to sat- 

cation lengihs. isfy the demand of one period there is a high nurnber of 

N ~ ~ ~ ,  let us how these results may be improved by sensible shares between these. This higher complexity is 

the combination of heuristics as descnbed in  3,2.4, also illustrated by the execution times of applying the stan- 

The combination of MH and SH leads expectedly to better branch arid bOund "Iver rnode' M2. * 
results than the techniques in isolation. Yet, even better T=20 arid J=4 already took 1920.8 seconds to solve 

while the corresponding SPP with T=20 only took 1.2 sec- '- We have to admit that parameter choicr is raiher arbitnry onds. For any larger MPPs execution times were no longer 
(albeit sensible) due io lack of empirical data. Howcver. we reasonahle. With this complexity in mind we go directly for 
have experimrnted w i h  oiher values wiihoui changing ihr 
resulis in a significani manner. heuristics and try to use our knowledge about ihe SPP. 



1 I 
4.1 SPP-Based Heuristics for the Uncapacitated 
MPP 

4.1.1 Static Cheapest Provider Heuristic (SCPH). A 
straightforward approach to tackle the uncapacitated MPP 
is to transform it into J SPPs, one for each provider and 
each with the full demand. The SPPs can then be solved by 
any of the algorithms discussed in Section 3. After solving 
the J SPPs we select the provider of the SPP with the least 
costs. That means we obtain a solution where one provider 
is used for all periods. 

In our simulations, we use DP io solve the SPPs because 
it yields the optimal results.for the SPP at affordable execu- 
tion time. Alternatively, we use the peak heuristic to see 
how non-optimal solutions for the SPP will affect the result 
for the MPP. 

4.1.2 Dynamic Cheapest Provider Heuristic (DCPH). 
One drawback of 

SCPH is that it D ,  
SCPH 

X .  

i does not allow pro- p;! 

vider changes. p3 

1 Using a technique + 
similar to the .."-W. 

uLrn 
dynarnic program- 
ming algorithm -.- 
from Section 3.1.2 p3 

we can eliminate t 
this characteristic Optimai Solution 

of the SCPH. The 
resuiting algo- " 
nthm is called P3 

dynmic cheapest Figure 6: Provider usage of the differ- 
provider heuristic ent algorithms for the MPP. 
(DCPH). This is 
also illustrated in 
Figure 6. 

We use the 
same algorithm as 
in Section 3.1.2, 
but the minimal 
costs C(rl, t2) for 
satisfying the 
demand between 
two periods tl and 
tz are obtained by 
solving J inde- 
pendent SPPs for 
the interval [tI, f2] 

and choosing the 
cheapest pro- 
vider. Unlike the 
DP algorithm 
from 

SCPH 

t 
DCPH - - - - -- 

t 

PI 
Optimal Solution - 

p.2- I 

7 

Figure 7: Provider usage of the differ- 
ent algorithms for the cMPP. 

Section 3.1.2, this algorithm does not necessarily lead to 
the optimal result as it does not allow for a constellation as 
depicted for ihe optimal solution in Figure 6. Again, we 
have the freedom of selecting any of the SPP algorithms for 
solving the sub-SPPs. In our simulations, we choose again 
DP and PH. 

4.2 Adaptation of the Heuristics for the 
Capacitated MPP 

If the capacity of one provider is not enough to satisfy 
the whole demand we can no longer simply select a single 
provider in SCPH and DCPH but have to combine several 
providers. We do this by first cropping the dernands in each 
SPP to the capacity of the according provider. We then 
solve the SPPs for all J providers and seleci the provider 
that has the minimum costs per satisfied demand. The over- 
all demand is then reduced by the capacity served by the 
selected provider and the procedure is repeated until no 
more demand remains unsatisfied. Example allocations are 
shown in Figure 7. 

Please note that the non-zero demand assumption in sec- 
tion 2.3.1 can now no longer be held and model M 1 as well 
as the heuristics of Section 3.2 had to be adapted to cope 
with periods of no demand. 

4.3 Other Heuristics for the MPP 

4.3.1 L P  Heuristic (LP). Of Course, we can again use the 
results of the LP relaxation for M2 and M3 to obtain a solu- 
tion for MPPJcMPP. 

4.3.2 Merge Heuristic (MH). We adapted the merge heu- 
ristic to the multi-provider case and to the capacity con- 
straints and combined it with DCPH and LP in order to 
investigate whether it can improve their solutions. 

4.4 Simulations for Qualitative Assessment of the 
Heuristics 

In order to evaluate the MPP heuristics descnbed above 
we ran a simulation over 50 MPP instances sirnilar to the 
simulations in Section 3. Because of the much higher com- 
putational complexity we reduced the number of periods T 
from 1000 to 100. We used 10 providers and three different 
levels of capacity: first the uncapacitated MPP, second a 
cMPP with the capacity of each provider drawn from 
[30%, 50%) of the maximum demand over all periods, and 
third a cMPP with provider capacity drawn from [15%. 
35%]. 



Table 4: Results for the uncapacitated MPP. 
The results for the uncapacitated MPP simulations are 

displayed in Table 4. Here, the total number of providers 
denotes how many of the providers were selected at least 
once by a heuristic whereas average number of providers 
expresses how many providers were on average simulta- 
neously active. 

Table 5: Results for the capacitated MPP 
(high capacity providers). 

identically, although the SPP heuristics are very different. 
Even if using the simple PH as SPP solver the resulis are 
very good (in contrast to SCPH(PH)). The explanation for 
this behaviour is that the use of the dynamic programming 
paradigm as provider selection strategy makes the use of 
dynamic programming as SPP strategy unnece~sary.~ Note 
that MH is ineffective for DCPH because within its range 
(i.e., only one provider at a time) the solution is already 
optimal. The LP heuristic shows the same behaviour as in 
the SPP case and can again be further improved by MH. 

In Table 5 and 6 
the results for the 
cMPP with high 
respectively low 
capacity providers 
are given. Now 
DCPH with DP is 
significantly bet- 
ter than with PH. 
Since more pro- 
viders are involved 
at the same time Table 7: Execution times. 
there is now 
potential for more intelligent SPP strategies such as DP. 
Not surprisingly, the number of providers in the low capac- 
ity provider case is higher. 

To make recommendations for the MPP heuristics we 
also have to take into account the execution times of the 
different alternatives as given in Table 7. While DCPH(DP) 
exhibits the best cost performance it needs considerably 
more time than the other heuristics. If execution time plays 
a crucial role then SCPH(DP) is a good choice. 

5. Related Work 

It is difficult to find directly related work since our 
MPRASE approach is very general and other work mainly 
treated individual MPRASE problem incarnations in isola- 
tion. Yet, interestingly. work done in the field of renegotia- 
ble services, e.g. [15,16] . anives at very similar algorithms 
to caiculate renegotiation schedules for stored video trans- 
missions which furtherly emphasizes the general structure 
of the MPRASE framework for problems found in the 
domain of providing network QoS. However, the ernphasis 
of [15,16] is on the definition of renegotiable services and 
not so much on algorithms and their evaiuation whereas 
this is the main focus of our Paper. 

Relating to the analysis of dynamic provisioning in a 

Table 6: Results for the capacitated MPP multi-provider environment (in particular a Diffsew envi- 
ronment), the work described in [I71 gives very interesting (low capacity providers). 
insights into the global behaviour of such a system by 

DCPH is obviouslv and exvectedlv sienificantlv better . 
than SCPH, however all DCPH-based heuristics perform T h i s  is due io the faci hat under the funher constnini of 

using only one provider ai a time DCPH is an exact algorihrn. I 



' game-theoretic observations. Yei, our perspective is rnore 
local from a single systern's point of view and how to opti- 
mize resource allocations for its purposes. It would cer- 
tainly be interesting to investigate how providers using 
optimized resource allocation strategies as proposed in our 
work would interoperate from a global point of view. 

In [8], we dealt with ihe SPP under uncenainty and made 
use of the deterrninistic edge SPP in an adaptive heuristic 
scheme which is based on past optimal resource alloca- 
tions. This constitutes another exarnple of utilization of the 
MPRASE framework in that it links different probiem 
incarnations together. In general, MPRASE problerns with 
an uncertain edge model show similarities to capacity man- 
agement problems from other dornains like air-line reserva- 
tions or hotel booking in which usually yield managernent 
techniques are applicable, e.g. [18]. In contrast to yield 
rnanagernent, however, we view the MPRASE problems 
from the perspective of an intermediary acting on behalf of 
the customer (in rnost models) and not so much frorn the 
provider's perspective as is the case with yield manage- 
ment. 

6. Conclusion & Outlook 

This paper has dealt with a s o  far largely neglected class 
of network QoS problems related to resource allocation at 
system edges over multiple time periods. We developed the 
MPRASE model to classify and descnbe this class of prob- 
lems and to analyse their mutual dependencies and rela- 
tionships. Next, we have established a solution frarnework 
for MPRASE based on mathematical prograrnming rnod- 
els. The most basic MPRASE problern (SPP) has been 
dealt with extensively by developing and evaluating a vari- 
ety of exact as well as heuristic techniques. The algorithrns 
perform fast and well. We have then shown how to extend 
the SPP along one dirnension of MPRASE (the provider 
rnodel) towards the MPP and how to apply the SPP tech- 
niques to this extension. Since the MPP is a very cornplex 
problem we concentrated on the development and evalua- 
tion of heuristics. With these it has been possible to solve 
the MPP in an efficient way. 

Many interesting issues for future work arise from our 
MPRASE frarnework. For example, it will be very interest- 
ing to investigate solution techniques for other problem 
incarnations with resource models that incorporate more 
than one dimension of capacity and to extend our models 
towards a stochastic edge. Also. a Parameter sensitivity 
analysis for the problems discussed in this paper is planned 
as future work. 
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