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Abstract—The Software-defined Networking paradigm became
widely accepted in academia as well as the industry in the last
decade. The logically centralized control-plane provides simple
mechanisms to support efficient monitoring as proposed in a
plethora of works recently. However, existing works simplify the
control-plane to a single entity whereas it is proven that the
control-plane must be implemented physically distributed.

To this end, we lately proposed DISTTM, a system to increase
the efficiency while monitoring flows in distributed control-planes
by eliminating redundant measurements of shared flows. The
system is based on a centralized coordinator that introduces a
single-point-of-failure and is vulnerable to network partitioning.
To overcome this shortage, we propose a distributed algorithm
to assign redundant measurement responsibilities to single con-
trollers and share information among controllers in the work in
hand. In an evaluation, we show that we decrease the number
of measurements strongly and improve the load fairness among
controllers through the collaboration of networks.

Index Terms—Software-defined Networking, Flow Monitoring,
Distributed Algorithms, Distributed Control Plane

I. INTRODUCTION

Since the Software-defined Networking (SDN) [1] paradigm

was proposed in 2008 from the Stanford University, it gained

popularity in academia and finds its way into the industry.

SDN relives the idea of centralized control, placed on the

control-plane, of the forwarding network, denoted data-plane.

Thereby, it provides a variety of advantages such as simple,

flexible network management and open-standard hardware,

combined with new techniques, e.g. to monitor the network

using easily accessible flow-level counter. In future networks,

network state monitoring plays a key role reasoned by the

increasing demand on adaptability. Nevertheless, as monitor-

ing has only passive impact on the productivity of a network,

it is required to be non-invasive and economic with respect

to the available resources.

A variety of works propose intelligent mechanisms to effi-

ciently monitor Software-defined Networks on the different

SDN layers. Improvements regarding the measurement on

the data-plane [2]–[4], the process of collecting it [5], [6]

and general purpose monitoring frameworks [7], [8] were

made. The mentioned approaches focus on the work within

a simplified version of SDN, namely with a single controller.

However, a control-plane consisting of a single controller

introduces a single point of failure with all its disadvantages

Fig. 1: The flow in the data-plane is monitored redundantly

in each network part controlled by different controllers of a

distributed control-plane.

regarding failsafety and scalability and is, therefore, not a

feasible solution for almost any type of network.

The control-plane within a domain that holds a logically

centralized controller must be implemented using a physically

distributed network of collaborating controllers [9]–[13]. Sub-

sequently, not a single controller controls the full network

but each part of the network is controlled by a different

controller of the distributed control-plane. In such scenarios,

flows usually traverse not only one part of the network,

but multiple adjacent networks. As sketched in Figure 1 the

existing monitoring approaches do not cover such scenarios

and leave this responsible to the control-plane implementation.

In a previous work, we propose DISTTM [14], a distributed

system to eliminate the redundancy in such situations. To

this end, DISTTM defines the behavior of controllers within

a distributed control-plane and their interaction to assign

monitoring responsibilities to a single controller in contrast

to monitoring in over and over again. DISTTM, furthermore,

provides different schemes to ensure load fairness based on

different strategies such as, e.g., the ratio of flows monitored

by a controller. We were able to show a significant reduction

of monitoring costs compared to a non-cooperative solution

with redundancy.

However, DISTTM introduces a centralized coordinator that

is selected from the set of participating controllers. The coor-

dinator gathers monitoring interests and calculates which con-

troller is responsible for a measurement based on the fairness

strategy. By using a central coordinator, the system becomes

vulnerabel to failures of this coordinator and network parti-

tioning. Subsequently, in this work we propose an algorithm
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for decentralized assignment of monitoring responsibilities in

scenarios where flows traverse multiple networks controlled

by a distributed control-plane. By analogy with DISTTM we

measure the traffic of all flows in the network to fill a traffic

matrix per controller. The proposed algorithm lets controllers

advertise for a flow monitoring responsibility after waiting a

generated backoff time. The first controller that distributes its

advertisement wins the election and takes the responsibility.

We use the generated backoff to ensure fairness among the

controllers, a controller generates a rather high waiting time

when its portion of responsibilities is high compared to the

other controllers. As a matter of course that a high backoff

waiting time leads to a lower responsibility of winning an

election. Furthermore, we add a mechanism to avoid collisions

in terms of simultaneously sent advertisements.

In the evaluation, we show a reduction of monitoring costs

by tracking the number of measurements plus the overhead

generated from the coordination and statistic sharing. Further-

more, we show in the evaluation an improvement of the load

fairness among controllers.

The remainder of the paper is structured as follows: Sec-

tion II discusses background and works that are relevant for

the work in hand on monitoring in SDN, particularly the

estimation of traffic matrices as comprised in this work, and

works on collaboration among networks. Section III briefly

recaps the proposed DISTTM system. Further on, Section IV

presents the design of the algorithm developed in this work.

Finally, Section V shows the evaluation of the proposed

approach while Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we discuss basic backgrounds and works

related to our paper. First, we give a brief overview on monitor-

ing approaches designed for the context of SDN. Afterwards,

we particularly focus on traffic matrix estimation approaches

while the scope is opened to legacy networks as well. Finally,

the last subsection presents works towards collaboration of

networks and therewith consensus protocols.

A. Monitoring in Software-defined Networks

Software-defined Networks provides new techniques for

the control to access meta information from the for-

warding network. The centralized controller can, e.g., use

byte/packet/lifetime on flow or port level using protocols

such as the widely accepted OpenFlow [15] protocol. Works,

such as OPENSKETCH [2], DCM [3], and FLEXAM [4]

provide custom data-plane implementations to further extend

the possibilities to access meta information efficiently. With

the development of P4 [16] even more sophisticated techniques

can be developed and leveraged. Using the mentioned tech-

niques eases the monitoring process and reduces the overhead

since it is directly integrated in the control-loop between the

controller and the network.

Subsequently, a plethora of works propose approaches how

to monitor equipped with such techniques efficiently in the

SDN context. Yu et al. [5] propose FLOWSENSE, a sys-

tem that utilizes OpenFlow specific control-messages, namely

FlowRemoved messages, dispatched when flows are removed

to capture the bandwidth utilization with zero additional costs.

Zhang [6] develops a mechanism denoted OPENWATCH to

dynamically adapt flow rules so that it allows timely and

spatial zooming and aggregation to optimally gain accurate

meta-information of traffic. Despite these exemplary specific

approaches, a number of more generic monitoring frameworks

were proposed [7], [8].

With regard to this work, Yu et al. [3] tackle the problem

of redundant flow measurement due to coarse grained rule ag-

gregation. They develop a mechanism using two-stages Bloom

filters that can monitor individual flows without requiring a

single rule for each flow. In contrast to our work, Yu et al.

focus on the elimination of redundant measurements among

switches within a single network and not on controller level.

B. Network Traffic Matrix Estimation

A traffic matrix is a collection of primitive metrics for

each ingress-to-egress node pair of a network [17], [18]. The

primitive metric stored within the matrix’s cells can vary

from traffic amount to end-to-end loss. Potential use cases

include usually long-term management tasks such as capacity

planning, network provisioning, and load balancing policies.

However, traffic matrices can also support security tasks like,

e.g. anomaly detection [17].

Due to the high amount of information captured in traffic

matrices, traditionally monitors use samples and statistical

assumptions to estimate the matrix [19], [20]. However, with

the advent of SDN and the infrastructure it provides, direct

measurements become feasible. OPENTM [21] proposes a

traffic matrix estimator for OpenFlow networks. In this work,

the system keeps track of active flows using input from the

routing application. For each active flow, it selects a switch

on its path to query the desired statistic. The authors propose

different metrics to select the measurement point to optimize

different targets such as a balanced load among the switches

or the highest accuracy.

The DISTTM [14] system provides an extension of

OPENTM for traffic matrix generation in SDNs and elim-

inates redundant measurements through coordination among

controllers of adjacent networks. DISTTM is the basis of this

work and subsequently discussed in detail in the next section.

C. Network Collaboration and Consensus Protocols

As single controllers are not capable of managing large-

scale networks, there is a consensus that the logically cen-

tralized SDN control-plane must be implemented physically

distributed. To this end, a number of works develop infrastruc-

tures and architectures to build distributed control-planes [9]–

[13]. The works concentrate on different aspects such as

consistent common information bases [9], communication

channels among controllers [12], or hierarchical infrastructures

to reduce load on single entities [13]. Only Phemius et al. [11]

mention monitoring as part of the architecture in their system
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Fig. 2: Flow fA traverses only the network of controller

CA, while flow fB , fC traverse all three networks and, thus,

must be monitoring at all three controller. Flow fD traverses

the networks of CB and CC and is, therefore, measured

redundantly in CB and CC [14].

denoted DISCO. However, they limit to monitoring of inter-

network links used for inter-controller communication instead

of generally monitoring traffic or the data-plane as such.

Levin et al. [22] discuss advantages and complexity when

introducing physical distribution in control-planes.

Despite general collaboration between controllers for net-

work management in distributed control-planes there is only

little investigation with regard to monitoring in multi-controller

and multi-network environments, respectively. For legacy net-

works, Terzis et al. [23] proposed collaboration for bandwidth

brokers in different domains to allocate resources optimally.

Consensus protocols are distributed algorithms developed to

agree on common decision in the context of a distributed sys-

tem. Two prominent consensus protocols are PAXOS [24] and

RAFT [25]. RAFT was developed to overcome the complexity

of PAXOS, yet, solves the identical problem. It divides the

consensus problem into three subproblems: Leader election,

log replication and safety. PAXOS and RAFT could be used

to agree on a leader and distribute state afterwards. However,

the complexity and functionality both protocols provide ex-

ceeds our requirements for a per-measurement decision by far

and would introduce unnecessary overhead. Nevertheless, the

algorithm proposed in this work is inspired by RAFT.

III. BACKGROUND: DISTTM DISTRIBUTED TRAFFIC

MATRIX GENERATION

In this section we describe the fundamentals of the

DISTTM [14] system that we extend in this work. Despite

the fundamentals, we outline the limitations and justify the

need of the work in hand.

A. Fundamentals of DISTTM

As already broached in the introduction, redundant flow

measurements introduce unnecessary costs in networks con-

sisting of multiple sub-networks managed with a distributed

control-plane. Flows that traverse multiple adjacent networks

get measured in every network they traverse using naive,
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Fig. 3: Flow diagram showing the workflow of DISTTM: After

a threshold of new inter-network flows a coordination is exe-

cuted with the central coordinator in a focal position and leads

to assignment of flow measurements without redundancy [14].

traditional approaches, e.g., to generate a traffic matrix [21].

To eliminate redundancy, we lately proposed DISTTM [14], a

collaborative system for flow measurements with distributed

control-planes.

The DISTTM system generates a per-controller traffic ma-

trix for every managed network. The system fills the cells

of the traffic matrix with the amount of traffic in bytes.

This metric serves as an example and is exchangeable with

other metrics that merely remain stable over the flow’s path.

Variations in the metric, e.g. due to congestion, must be

captured using other techniques [26]. First, every controller

updates the matrix using locally performed measurements. To

this end, the DISTTM system mimics the behavior described in

the OPENTM approach proposed by Tootoonchian et al. [21],

thus, it communicates with the routing application to get

informed on new flows. Occurring flows trigger a periodic

measurement task for the respective flow with a configurable

frequency. As already solved in OPENTM, we do not cover the

switch selection in this work and use, for the sake of simplicity,

a randomly selected switch on the flows path. Regarding the

example depicted in Figure 2, controller CA measures flow fA,

fB , and fC as all of them traverse its network. Furthermore,

also controller CB and CC measure flow fB and fC since both

traverse all networks. Flow fD traverse networks of CB and

CC , which naturally measure the flow. As a consequence, fA
is measured once, fB , fC three times, and fD twice although

the amount of traffic can be assumed merely stable. DISTTM’s

goal is to eliminate the redundant flow measurements, so that

the total number of measurements per period reduces from

nine to four in this example.

In its original design DISTTM intents one of the participat-

ing controllers as the coordinator. Figure 3 shows the behavior

described in the following. Whenever a controller exceeds a

certain number of new measurements, denoted coordination

threshold, it requests a coordination at the coordinator. The

coordinator itself gathers new measurement information from

all participating controllers and calculates a fair distribution of

responsibilities among the controllers. The assigned respon-

sibilities are dispatched to each controller. In addition, this

responsibility assignment messages include the information
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about controllers that are also interested in the corresponding

flow measurements. Subsequently, controllers measure only

the flows they got assigned and receive measurements for other

flows that traverse their network from other controllers of the

federation. Given the example of Figure 2, the coordinator

might assign fB to CA, FC to CB , and fD to CC . fA is

not included in the coordination process as it only traverses

one subnetwork. After that procedure, every flow is measured

only in one network. The load is balanced fairly among the

controllers according to different strategies; and measurements

are shared on the control-plane. If the number of flows

increases, the costs for coordination and exchanged statistics

on the control-planes become lower than the cost produced for

redundant measurements as shown in the evaluation [14].

DISTTM included four basic exemplary fairness strategies:

(i) Fair Controller Distribution: the number of measurement

responsibilities is fairly distributed among controllers; (ii)

Fair Domain Distribution: the number of measurement re-

sponsibilities is fairly distributed among domain assuming

that multiple controllers can be part of different domains;

(iii) Fair Switch Distribution: the number of measurement

responsibilities is fairly distributed among controllers based

on the number of switches in their network; algorithm (iv)

Random Distribution: the measurement responsibilities are

assigned randomly to one of the participating controllers. The

evaluation show of DISTTM shows a proof-of-concept for

the given fairness strategies.

B. Limitation: Relying on Central Coordination

As already mentioned earlier, the main limitation of

DISTTM is the introduction of a central coordinator. The

dependency on a single controller implies all vulnurabilities

that usually occur with a single point of failure (SPOF):

First, if the central coordinator breaks, the full concept of

coordination cannot be applied further. In addition, in the case

of network partitioning, only the parts of the network that are

still connected to the coordinator can participate any longer.

Despite this, although it might be negligible, there is additional

load on the coordinating controller reducing the offload effect.

To solve this issue of having a central coordinator, in

this work, we develop a distributed coordination algorithm

that assigns measurement responsibilities among participating

controllers robustly.

IV. DECENTRALIZED COLLABORATIVE TRAFFIC MATRIX

ESTIMATION

In this section, we describe our approach to distribute mon-

itoring responsibilities in multi-subnetwork SDNs without a

centralized coordinator for the example of flow measurements

to generate a per-controller traffic matrix. First, we briefly re-

cap the initial isolated generation of traffic matrices, described

in the next subsection, which is avoided by decentralized

coordination. Last, we discuss our approach to fairly distribute

the load on involved controllers.

A. Isolated Traffic Matrix Generation

The isolated flow monitoring works analog to the

OPENTM [21] and, thus, the DISTTM [14] approach: The

monitoring module interacts with the routing module that

informs about flows arriving and vanishing from the network.

For this, we define a flow as all packets processed with the

same flow table entry. This definition is sufficient to capture

all traffic within a network as long as the controller does not

aggregate rules on a switch-level basis but a network-level

basis. Once a new flow occurs, the traffic matrix generation

application creates a new periodic measurement task and

measures the traffic at a randomly selected switch on the flow’s

path. It uses the measurement results to update the table entry

for the ingress-to-egress switch pair of the corresponding flow.

The procedure is always applied so that the controller

generates the traffic matrix even if the coordination algorithm

fails and as long as the coordination is not finished.

B. Decentralized Calculation and Assignment of Measurement

Responsibilities

This subsection covers the main contribution of the work

in hand. It describes the distributed algorithm performed to

assign responsibilities for redundant measurements to single

controller within the federation.

Whenever the routing application informs our monitoring

about a new flow, first, the controller starts measuring the

flow by itself as described in the previous subsection. Fur-

thermore, the application launches the algorithm to find out

whether the flow is measured redundantly and to solve this

deficiency. Hence, for each flow one instance of the algorithm

runs. We split the algorithm into three states that it may

traverse: (a) backoff ; (b) piggybacked; and (c) measure state.

As Figure 4 indicates, the algorithm first visits the backoff

state upon the arrival of a new flow and after starting periodic

measurements for this flow.

a) Backoff state: In the backoff state, each controller

generates a random backoff time within a defined period. After

that, a controller naps for the given backoff before it enters

the next state. If the backoff time is over without interruptions,

the algorithm jumps into the measure state (cf. Figure 4).

However, if a controller receives an advertisement for the

corresponding flow during the backoff time, the algorithm

leaves the backoff time early and jumps in the piggybacked

state.

b) Piggybacked state: By default, the controller does

barely anything in the piggybacked state as it is “carried”

from another controller - except informing the carrying con-

troller about his interest beforehand (cf. send confirmation()

in Figure 4).

As a controller reaches a state through a received adver-

tisement for a flow measurement from another controller,

it always accepts the first offer. To do so, the controller

sends a confirmation to the advertising controller including

information about its interest in the measurements and its

identity. After that, it stops its own measurements of the

corresponding flow and the algorithm idles.
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Fig. 4: State diagram showing the states of the algorithm:

for a new flow the backoff state is reached; afterwards the

algorithm goes to the measurement state or the piggybacked

state depending on whether an measurement advertisement has

been received or not.

In that state, the controller performs no measurements for

this flow. However, as the controller that took over the mea-

surement responsibility informs other interested controllers

periodically on updates for the measurement, the traffic matrix

gets updated implicitly using these statistic updates.

c) Measure state: If the backoff state was not interrupted

with an advertisement, the algorithm reaches the measure state.

In the measurement state, the controller assumes it is the first

one to reach this state and takes over the responsibility to

measure the corresponding flow. To this end, in advertises

itself by dispatching an advertisement message to all other

controllers including a unique flow identity, e.g. the 5-tuple,

and its identity.

As each controller starts measuring each flow before the

algorithm starts, there is no need for interaction regarding

the measurements. Nevertheless, the measurements must be

shared with interested controllers. In the measure state, the

controller maintains a list of interested controllers per flow

measurement, which is filled using the confirmation messages

the other controllers dispatch when reaching the piggybacked

state. Thus, after each measurement the controller checks if

another controller is interested in the results and, if so, it

inserts the value in a buffer available for every other controller

as shown in Figure 4.

This controller flushes these buffers using the same period

as it measures. Flushing a buffer means that it checks for every

controller whether statistic updates are available. If there are

statistics available, it sends them as batch to the interested

controllers. Certainly, as multiple statistics are packed as batch

in a single packet the costs to share measurements between

controllers is lower than measuring each flow redundantly

even for low numbers of flows.

C. Fairness Enforcement Efforts

The proposed algorithm includes a mechanism that tries to

enforce fairness among controllers regarding their load. In the

backoff state, the algorithm delays its offer (instantiated in

an advertisement message) to measure the flow on behalf of

all controllers. The generated backoff time allows to increase

and decrease, respectively, the probability to be selected.

Hence, we propose an exemplary mechanism to adjust this

backoff time.

In order to estimate how much a controller is loaded

compared to the other controllers, the algorithm considers the

ratio of own measurement tasks and all measurement tasks.

Therefore, each message dispatched to another controller

contains the current number of a controller’s measurement

responsibilities. Subsequently, each controller knows the total

number of measurements conducted from other controllers.

First, we calculate a reference value bref for the backoff using

bref = F ·m2

assigned ·mtotal
−1. (1)

Larger numbers of assigned measurements (massigned) in-

crease this value much more than smaller values for massigned

due to the square. Furthermore the value is set relative to

the total number of measurements (mtotal) and a configurable

factor (F ) is applied. By default we set F = 3s.

Furthermore, we pick a random number from a continuous

uniform distribution between 0 and 1 and scale the reference

backoff value by this factor. This is done to avoid having

two controllers pick a close-by backoff. However, in early

stages of the evaluation it turned out that the fairness was

not satisfying as the influence of the randomly picked factor

was higher than expected compared to the influence of the

reference value. To solve this, we propose to rather pick a

random backoff from a Gaussian distribution with µ = bref
as mean and σ2 = 0.1 · bref as variance. Thus:

b ∼ N (bref , 0.1 · bref ) (2)

with b being the final backoff waiting time. Subsequently, the

backoff time is randomly picked close to the reference value

that considers the number of own measurements in comparison

with the total number of measurements.

D. Collisions

As discussed lately controllers might pick backoff times

that are close to each other, in particular, if the number of

measurements is fairly distributed among them. It might hap-

pen that a controller CA dispatches an advertisement message

as its backoff time elapsed and before another controller CB

received the advertisement, CB’s backoff time elapsed as well

and it dispatches another advertisement message. We call such

a situation a collision.

To solve a collision, we introduce rounds of the algorithm

identified by sequence numbers. The algorithm always starts

using the sequence number 1. Once a controller detects a colli-

sion, which might happen at similar times in all controllers that

calculated a close-by backoff time, the following procedure,
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indicated with italic (orange) text in Figure 4 is performed.

Each controller detecting a collision let the algorithm move

back to the backoff state after increasing the sequence number

for this flow. Back in the backoff phase, the algorithm behaves

as already known from this phase and, thus, calculates a new

backoff time. We do not increase the new backoff time as

known from CSMA/CA that uses exponential backoffs, as

the number of involved participants is limited. Again, the

first controller to send an advertisement is responsible for the

measurement and shares them with all controllers that confirm

their interest. All messages for the flow containing a lower

sequence number are ignored. Controllers, that have already

confirmed their interest to a controller, subsequently having

the algorithm in the piggybacked state, might confirm their

interest to the new controller advertising for the flow if the

advertisement contains a higher sequence number. Hence, once

a controller is in the piggybacked state it never leaves it, but

might confirm to another controller.

If a controller fails, other controllers do not receive further

statistic updates. After two subsequently missing updates of

a flow, the controllers go back into to backoff state after

increasing the sequence number and re-elect the monitoring

responsibility assignment.

V. EVALUATION

This section covers the evaluation of the developed algo-

rithm. We evaluate the system against the cost reduction and its

fairness among the participating controllers. First, we briefly

describe the evaluation environment including the developed

prototype and the evaluation methodology. Afterwards, we

show results of the conducted measurements.

A. Evaluation Environment

We evaluate the distributed monitoring approach using

Mininet [27] as network emulator running on a simula-

tion server (Ubuntu 16.04 x64 server; 24 Intel(R) Xeon(R)

cores @ 2.60 GHz; 128 GB Memory). To control the network

and performing the traffic matrix generation using our pro-

posed approach, we use a Floodlight OpenFlow controller1.

We implement the monitoring and all required functions as

Floodlight modules. In addition to the traffic measurement

module that fills the traffic matrix, we develop a module to

execute the algorithm, hence, for the collaboration with other

controllers. The module uses a developed communication

module between all controllers using out-of-band channels.

Furthermore, we add modules to detect hosts and peering-

points with other network-parts as well as a module to perform

shortest-path routing among multiple sub-networks based on

a built-in topology detection module.

As topology for our evaluation, we use a distributed data-

center scenario. In such as scenarios multiple data-centers

belonging to the same domain are interconnected with each

other. However, each data-center is controlled by a controller

each. As topology, we followed [28] that use the following

1Project Floodlight: Floodlight OpenFlow Controller
http://www.projectfloodlight.org/floodlight/, [Access: Oct 25, 2018]

topology: In the highest layer, so-called Fat-Cat switches are

interconnected as ring. In the next layer, multiple cluster

switches are interconnected as ring again. Each cluster switch

is connected to all Fat-Cat switches. A data-center has multiple

clusters, whereas the clusters are not connected with each other

except through the Fat-Cat layer. In each cluster, multiple racks

are connected with a rack switch per rack. Again, each rack

switch is connected to all cluster switches within the cluster.

The cluster switch has a number of servers connected to it.

In our evaluation, we use three small datacenters connected

through their first Fat-Cat switch linearly. Each datacenter has

two Fat-Cat switches, two clusters with two cluster switches

each and two racks in each cluster. We substitute all servers

in a rack into a mininet host.

We generate flows that randomly occur between randomly

selected racks of different datacenters. The flows use small

bandwidth normally distributed around a mean of 0.5 MBits

(scale of 0.1 Mbits). Note, that the actual traffic load does

not influence the metrics gathered in this evaluation and, thus,

is kept low to avoid high load on the evaluation machine.

The traffic is generated using iperf2. The racks produce flows

with an exponentially distributed inter-arrival time with a scale

of 1.0, thus, as Poisson process. We assume that scaling up

the number of flows linearly influences the evaluation results.

The flow duration is changed as independent parameter. The

monitoring module measures each active flow with a frequency

of 1/5s, which is also used as statistic sharing frequency.

B. Evaluation Methodology

We repeat the evaluation so that we have for each metric

at least 30 measurements, e.g. while measuring the costs per

controller we conducted 10 runs with one data point per

controller (3 controllers). Each run had a runtime of 4 minutes

plus a 45 seconds startup phase.

We capture three metrics for the evaluation. First, the num-

ber of statistic requests requested per controller per evaluation

run to show the elimination of redundant measurements. Fur-

thermore, the total costs in terms of statistic requests, statistic

replies, advertisement messages, confirmation messages, and

statistic update messages between controllers show the total

monitoring costs. Lastly, to evaluate the fairness we again use

the ratio of measurements per controller relative to the total

number of measurements conducted in the network.

C. Evaluation Results

In the following, this subsection describes the results of

the conducted evaluation to show (i) a proof-of-concept for

the decentralized redundancy elimination algorithm, (ii) the

relative cost reduction in our scenario compared to the naive

non-cooperative approach, and (iii) the impact on the fairness

among controllers.

2iPerf - The ultimate speed test tool for TCP, UDP and SCTP
https://iperf.fr/, [Access: Oct 25, 2018]
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(a) Required statistic requests per controller per evaluation run while
changing the mean flow duration.
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(b) Costs for all monitoring related messages including the coordi-
nation process per controller per evaluation run while changing the
mean flow duration.

Fig. 5: The evaluation depicted in Subfigure (a) shows a reduction of statistic requests performed from controllers when

redundant measurements are eliminated using the proposed algorithm. Furthermore, Subfigure (b) shows a strong reduction of

total costs required for the monitoring when the cooperative approach is used. Both figures indicate that longer flow durations

increase the gap between the costs required for the cooperative and the naive approach.
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Fig. 6: Distribution of the ratio of measurements conducted

per controller. The figure indicates that the fairness can be

improved and controllers with focal positions can be relieved

from unproportional load using the proposed algorithm.

1) Eliminate Redundancy through Decentralized Coordina-

tion: In Figure 5a, we find the number of statistic requests

dispatched per controller per run on the y-axis. On the x-axis,

we compare different mean flow durations on a logarithmic

scale. The shown flow duration is the average in seconds

of a normal distribution with scale of 5 seconds. The figure

shows that the average number of dispatched statistic requests

strongly decreases using the cooperative approach, shown in

blue without hatches, compared to the naive approach, shown

in orange with hatches. While we increase the average flow

duration, we observe that the number of statistic requests in-

creases for both the cooperative and the non-cooperative case.

This barplot shows that the system takes away a noticeable

number of statistic requests from the overall monitoring. As

flows are monitored redundantly as long as the coordination

has not been finished and due to the occurrence of flows

only between two networks the number does not decrease

to a third of the naive solution.

D. Total Monitoring Cost Reduction

Figure 5b depicts the cost in terms of the number of

messages used for all monitoring related communication per

controller per run on the y-axis. The x-axis shows again the

mean flow duration in seconds. As seen in the figure, the total

cost to monitor the network traffic and set up the traffic matrix

in each controller reduces strongly when coordination among

controllers is used to eliminate redundant measurements. For

each of the box combinations, the median number of messages

for monitoring without coordination, shown in orange with

hatches, is higher than the upper quartile when using the

proposed coordination, shown in blue without hatches. Fur-

thermore, we observe that the monitoring cost have a higher

variance without coordination.

Looking at the median, we observe that the cost reduction

increases by increasing the flow duration. On the one hand,

considering short flows, the influence of the coordination

algorithm is relatively higher in comparison to the statistic

gathering cost reduction. On the other hand, for long flows

the costs for coordination take a minor role compared to the

cost reduction by eliminating redundant measurements. Hence,

the approach improves when it measures long flows.
1) Fairness among Network-Parts: As the higher variance

in the monitoring costs already indicates it, the fairness among

the controllers cost is not optimal using a non-cooperative. Due

to the focal position of the middling datacenter (remember

that we had three datacenter linearly connected), it sees a

higher number of flows compared to the outer datacenters

as we randomly select flow endpoints from the datacenter

racks. Figure 6 shows that such a scenario increases the

load on the controllers that sees more flows than the other

controllers do. The figure shows the distribution of the ratio

of measurements per controller. As the orange line indicates,

after approximately 2/3 there is a shift in the distribution,

meaning that one controller conducts a much higher number of

measurements compared to the others. Using the cooperative
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approach and its fairness attempt that takes the ratio of

measurement responsibilities into account leads to a fairer

distribution as indicated with the blue line. Although the

number of measurements per controller is not perfectly equal

we are able to eliminate the harsh shift.

In the evaluation we show that the number of statistic

request and the total costs can be reduced when redundant

measurements are eliminated using the proposed algorithm.

Furthermore, we show that the fairness, namely the ratio of

measurements conducted by each controller, can be improved

with the cooperative approach.

VI. CONCLUSION

In this work, we develop a distributed algorithm that

allows a decentralized coordination between controllers of

a distributed-control plane to assign redundant measurement

tasks to a single controller in order to remove the redundancy.

Based on a prior system denoted DISTTM that estimates

a per controller traffic matrix while eliminating redundant

measurements, we propose a sequel to this without the need

for centralized controller. The proposed algorithm uses partly

randomly generated backoff times to ensure load fairness

among all controllers with respect to the number of assigned

measurement tasks.

An evaluation study showed the proof-of-concept of mon-

itoring cost reduction and an investigation of the flow du-

ration showed that monitoring longer flows benefits more

from the eliminated redundancy. Furthermore, we measured

an improvement of the load fairness among controllers when

using the proposed algorithm.

We left the development of further strategies to calculate the

backoff time in order to achieve even better fairness to future

work. Also, the algorithm benefits from further investigation

regarding the optimal selection of system parameters such

as the reference backoff time or the measurement-sharing

interval.
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