
Energy-efficient Web Service Invocation on Mobile Devices:
The Influence of Compression and Parsing

Ronny Hans, Manuel Zahn, Ulrich Lampe, Ralf Steinmetz
Multimedia Communications Lab (KOM)

Technische Universität Darmstadt
Darmstadt, Germany

Email: {firstName.lastName}@KOM.tu-darmstadt.de

Apostolos Papageorgiou
Network Research Division
NEC Laboratories Europe

Heidelberg, Germany
Email: apostolos.papageorgiou@neclab.eu

Abstract—In recent years, there has been a rapid growth
in the number of smartphone applications, many of which
rely on Web services as key building blocks. Unfortunately,
the use of such applications and services requires substantial
amounts of energy, which is specifically problematic in the
context of battery-constrained mobile devices. In this paper,
we examine the potential for energy-efficient mobile service
consumption through fine-grained experiments. Our results
indicate that energy savings of up to 21.5% may be achieved
through the sophisticated use of compression, while the choice
of an appropriate parsing strategy may yield savings of up to
53.4%. The results of our work facilitate the development of
more energy-efficient, service-based mobile applications.

Keywords-Mobile applications; Service orientation; Web ser-
vices; Energy consumption; Energy savings

I. INTRODUCTION

In 2012, the global smartphone shipments reached 700
million units, which marks an increase of about 43%
compared to the previous year [1]. According to the research
firm DisplaySearch, sales are expected to exceed one billion
units in 2016 [2]. In line with this development, hundred
of thousands of new applications are being developed for
the different cellular platforms. For example, the number of
applications in the Google Play Store1 corresponded to more
than 800,000 in early 2013. As a consequence, virtually any
desired functionality can be found in the form of an app
today.

An essential part of distributed applications are Web ser-
vices, which constitute a popular implementation of Service-
Oriented Architectures (SOAs). Web services are software
artifacts designed for machine-to-machine communication,
which interact via a network [3]. They provide a wide range
of functionality and can be composed to more complex
applications. Web services are accessed by different clients
using open and standardized interfaces [4].

The basis for more and more complex software applications
is capable hardware, which, as well, developed rapidly
in recent years. Current smartphone models feature fast
Central Processing Units (CPUs), variable communication

1http://play.google.com/

interfaces, like Wireless Local Area Network (WLAN), Third-
Generation Cellular Network (3G), or Long Term Evolution
(LTE), and multiple sensors, such as Global Position System
(GPS) or acceleration detectors [5].

Unfortunately, the development of batteries cannot keep
up with these rapid advancements in smartphone technology.
Based on technical progress, the battery capacity, i. e., energy
supply, increases by about 4% per year. However, the
average useable time between two charges of a cellphone is
predicted to reduce by 4.8% annually because of increasing
utilization [1]. Hence, batteries can be seen as the major
bottleneck in mobile devices, and due to the mobility aspect
of smartphones, it is almost impossible to increase the battery
in size.

In case of Web services, which are accessed via Internet,
wireless interfaces are required. However, frequent use of
these interfaces causes a major part of energy consumption
within smartphones [6], [7]. Compared to the standby time,
the battery lifetime is only a fraction if such interfaces
are used. For example, an Apple iPhone 5 provides up to
225 hours of standby battery life, but only 8 hours with
permanent 3G or LTE usage [5].

In this work, we analyze the influence of compression and
parsing mechanisms on energy consumption when invoking
Web services from a mobile device. For that purpose, we
conduct empirical measurements using common WLAN and
3G networks, based on the prototypical implementation of a
mobile Web service client.

The remainder of this paper is structured as follows: We
describe the methodology and the implementation of our
experiments in Section II. In Section III, we provide the
results of our experiments and a detailed discussion of
practical implications. Afterwards, in Section IV, we give
an overview of related work. Finally, we conclude with a
summary and outlook in Section V.

II. EXPERIMENTAL METHODOLOGY AND
IMPLEMENTATION

In the following, we describe the constraints, methodology,
and implementation of our experiments to ensure complete

http://play.google.com/
rst
Textfeld
Ronny Hans, Manuel Zahn, Ulrich Lampe, Apostolos Papageorgiou, Ralf Steinmetz: Energy-efficient Web Service Invocation on Mobile Devices: The Influence of Compression and Parsing. In: Proceedings of the 2nd International Conference on Mobile Services (MS 2013), p. 1-6, Institute of Electrical and Electronics Engineers (IEEE), June 2013. ISBN 978-0-7685-5029-9. 




traceability. As outlined in the introduction, we focus on
two different optimization methods to reduce the energy
consumption for Web service invocation, namely, different
compression and parsing mechanisms.

For the measurements of energy consumption, we use
a Symbian-based Nokia E71 smartphone. To monitor the
energy consumption, we apply the Nokia Energy Profiler in
version 1.22. At first glance, the Nokia E71 may appear a bit
old-fashioned in comparison to contemporary smartphones.
However, due to the fact that, e. g., modern Android smart-
phones do not come with reliable built-in power meters, we
decided to use the Nokia smartphone.

To enable comparability of each single measurement, the
experiments were performed under comparable circumstances
and procedures. This includes identical phone conditions,
such as no unnecessary background applications and no
superfluous activated components. Furthermore, we ensured
identical network conditions, such as the same SIM card
and WLAN access point, and conduct all measurements
within a defined time frame and at the same location. By
waiting a specified normalization period, potential inactivity
timers were considered in performing the test invocations.
In order to account for random outliers, each measurement
was repeated three times, and the individual results were
subsequently averaged.

For the experiments, we developed a Java 2 Micro Edition
(J2ME) based test program for the Symbian platform. It is
capable to invoke different Web services and to present the
results on the smartphone display. The Web service Global
Weather3 from WebserviceX.NET4 has been chosen as test
object. Thereby, we used the method GetCitiesByCountry to
retrieve all French cities. Including protocol overhead, the
response has a size of 16 KB.

A. Web Service Invocations with Compressed Messages

The amount of data which is transferred between the
mobile device and a Web service determines the timespan
that a wireless interface remains in an active and high energy
state. The higher the amount of data, the higher the energy
consumption. By using compression techniques, the amount
of data and thus the energy consumption could be reduced.
Furthermore, with a lower amount of data, less data packages
for data transmission are required, which results in a minor
package loss [8] and consequently, a lower ratio of package
retransmissions.

In return, more computation power is necessary, which
results in additional energy consumption. Due to the fact
that mostly text-based Extensible Markup Language (XML)
files are used for Web services, compression could play an

2http://www.developer.nokia.com/Resources/Tools_and_downloads/
Other/Nokia_Energy_Profiler/

3http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=
56/

4http://www.webservicex.net

important role in reducing the amount of data. According to
Johnsrud et al., two different compression techniques could
be applied for Web services invocations: Generic compression
and XML-aware compression [9].

The objective of generic compression mechanisms is
the reduction of arbitrary documents. Prior to processing,
such documents have to be decompressed first. XML-aware
compression methods were specifically developed for XML
documents. There are methods available that preserve the
structure and hierarchy of the XML information. Instead of
a human-readable text format, such methods usually use a
machine-readable format to store the information [9].

In our experiments, solely the SOAP body payload of the
server response message was compressed. This approach has
the advantage of the SOAP header remaining uncompressed
and processable, as suggested by Johnsrud et al. [9] and Tian
et al. [10]. Doing so, proxy servers or other intermediate
servers, e. g., for load-balancing or authorization, are capable
to handle such SOAP messages without adding additional
functionality. Besides, the payload of the server response
is usually responsible for most of the traffic, whereas the
volume of the header is negligible.

For these experiments that focused on compression mech-
anisms, we extended our initial test program with a decom-
pression and compression functionality. Three compression
algorithms have been implemented: Range Coding (RC) via
a free Java implementation5, WAP Binary XML (WBXML)
via kXML6, and ZIP via jazzlib7. For ZIP compression, we
used the highest ZIP compression level.

The compression ratios of the different algorithms are
shown in figure 1. RC achieves the worst results with an
average compression ratio of 59.7% (i. e., a reduction in size
of 40.3%), WBXML performs slightly better with 47.5%.
The ZIP compression performed best with 12.6%.

Usually, Web service hosts generally do not support
compression. Hence, we simulated the traffic using com-
parable invocations. The payloads of these invocations
are similar to the compressed payloads. For example we
simulated RC compression of French cites (which gives a
message size of 5, 461 Bytes) by requesting Mexican cities
(with a message size 5, 412 Byte). Subsequently, the actual
server response was discarded and instead, a hard-coded,
compressed response was processed, which had been stored
on the smartphone.

B. Web Service Invocations with Different XML Parsers

Information exchange between Web services is normally
based on XML messages, more precisely on SOAP. Such
messages require parsing, which results in high computational
effort [11]. As a consequence, during Web service requests,

5http://www.winterwell.com/software/compressor.php
6http://kxml.sourceforge.net/
7http://jazzlib.sourceforge.net

http://www.developer.nokia.com/Resources/Tools_and_downloads/Other/Nokia_Energy_Profiler/
http://www.developer.nokia.com/Resources/Tools_and_downloads/Other/Nokia_Energy_Profiler/
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56/
http://www.webservicex.net/ws/WSDetails.aspx?CATID=12&WSID=56/
http://www.webservicex.net
http://www.winterwell.com/software/compressor.php
http://kxml.sourceforge.net/
http://jazzlib.sourceforge.net


0

0.2

0.4

0.6

0.8

1

2 5 10 20 50 160

C
om

pr
es

si
on

ra
tio

Payload size [KB]

RC
WBXML

ZIP
No compression

Figure 1. Message compression ratios, by payload size and compression
mechanism.

the CPU has an important influence on the energy consump-
tion. Further, during the processing of SOAP messages, the
whole Web service invocation is delayed, which results in a
longer active state of wireless interfaces [10], and hence, also
increased battery drain. Thus, the performance of the used
parser influences the CPU load and therefore, the energy
consumption.

Ray and McIntosh [12] distinguish between two parsing
strategies: Tree-based and stream-based parsing. When
following a tree-based strategy, the parser builds the entire
document and stores it in memory. Only after finishing this
process, access to the actual information is possible. In con-
trast, using a stream-based strategy, the parser directly allows
callbacks to the programming code during the processing of
XML documents.

According to Knudsen, three principal types of parsers can
be differentiated [13]: A model parser parses a document
completely and stores a binary representation in memory.
Only after the process is finished, the information can be
accessed. Hence, model parsers follow a tree-based parsing
strategy. A push parser also parses a document completely,
but notifies a listener within the underlying application when
it encounters specific parts of the document. Lastly, a pull
parser processes just a small portion of a document controlled
by an application, which requests the next parts in a piecewise
manner. Both push and pull parses pursue a stream-based
strategy.

In our experiments, four different parsers have been used:
kXML (push parser), a modified version of tinyXML8 and
nanoXML9 (both model parsers), and ASXMLP10 (pull
parser). The parsing measurements were performed with
deactivated wireless interfaces. Each parsing measurement

8http://sourceforge.net/projects/txml
9http://devkix.com/nanoxml.php
10http://asxmlp.sourceforge.net

consisted of ten consecutive parsing processes of a 10 KB
SOAP message.

Furthermore, we analyzed the influence of the element
depth within a SOAP document regarding the energy con-
sumption. Thereby, we took a file of constant size and varied
the depth of elements from one to three.

III. EXPERIMENTAL RESULTS

In this section, we present the results of the energy
measurements for the previously described experimental
settings.

A. Web Service Invocations with Compressed Messages

Initially, we ran a test series of ten continuous Web
service invocations with compressed messages. We expected
a decrease in transfer energy due to smaller message sizes. In
return, we expected an increase in computation energy due
to decompression of the compressed messages. This increase
should be quantitatively lower than the decrease, hence
yielding energy savings. A continuous invocation should
enhance this effect.

However, the UMTS results refuted our assumption.
The compression algorithms caused an increase in energy
consumption of about 3.1% for WBXML, 4.9% for RC, and
even 22.1% for ZIP. The results show that the more the
decompression algorithm utilizes the CPU, the more energy
is required.

An in-depth examination of individual measurements
with and without compression explains the higher energy
consumption. In the light of the longer processing time at
decompression, the next invocation will be delayed for exactly
this time span. Therefore, the wireless interface remains
longer in high power mode. With continuous invocations,
these delay time spans will be accumulated. The inactivity
timers will be activated later and the energy consumption
increases due to longer energy intensive states. Exemplary,
this is shown in Figure 2 for a measurement without
compression and with ZIP compression.

The second test series focused on non-recurring invocation.
Thereby, we determine the payload size at which a single
Web service invocation with compression is energetically
reasonable. With a single invocation the decompression time
should be irrelevant regarding the wireless interface, because
the inactivity timers should be triggered immediately after
the data transfer. Figure 3 shows a comprehensive picture of
the UMTS energy consumption measurements.

Up to a payload size of 20 KB, the energy consumption
stays at 44 Joules with and without compression. At 50
KB payload size, the energy saving with compression is
substantial. While the compression algorithms remain at
44 Joules, the energy amount without compression increases
to approximately 52 Joules. The tendency shows that the
compression algorithm with the best compression ratio
achieves the lowest energy consumption. With a payload

http://sourceforge.net/projects/txml
http://devkix.com/nanoxml.php
http://asxmlp.sourceforge.net


0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130

E
le

ct
ri

c
po

w
er

[W
]

Time [s]

ZIP
No compression

Figure 2. Electric power over time using UMTS, by compression
mechanism.

40

45

50

55

60

2 5 10 20 50 160

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

Payload size [KB]

RC
WBXML

ZIP
No compression

Figure 3. Average energy consumption using UMTS, by payload size and
compression mechanism.

size of 50 KB and 160 KB, energy savings in the orders of
16.6% and 21.5% can be realized, respectively. In absolute
terms, this corresponds to 8.6 Joules and 12.5 Joules.

At payload sizes from 10 KB to 160 KB, the test series with
WLAN shows no notable differences between compression
and no compression, as shown in Figure 4. The energy
consumption exhibits a minor upward tendency with growing
payload size. These findings confirm previous results: Once
the WLAN connection is established, the data transfer is
relatively energy-efficient [14], [15].

B. Web Service Invocations with Different XML Parsers

The energy consumption measurements with different
parsers were performed with a tenfold repetition of a parsing
process. The parsers differ from each other: The higher the
processing time, the more energy is needed. Table I outlines
this correlation. If a parsing process is triggered, the CPU is
working at full capacity.

If we take a closer look at the underlying parser im-
plementation concepts, the push parser (kXML) and pull
parser (ASXMLP) have notably lower energy consumption

0

0.5

1

1.5

2

2.5

3

10 20 50 160

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

Payload size [KB]

RC
WBXML

ZIP
No compression

Figure 4. Average energy consumption using WLAN in conjunction with
small intervals, by payload size and compression mechanism.

Table I
AVERAGE PROCESSING TIME AND ENERGY CONSUMPTION, BY PARSER.

Parser Processing time [s] Energy consumption [J]

kXML 93.5 58.29
tinyXML 197.5 122.90
nanoXML 106.25 66.09
ASXMLP 92.50 57.18

than model parsers (nanoXML and tinyXML). While kXML
and ASXMLP exhibit almost the same energy consumption,
15% respectively 115% additional energy is needed for
nanoXML and tinyXML. Vice versa, using ASXMLP instead
of tinyXML yields energy savings of 53.4%. tinyXML is
designed for simplicity and small size, rather than for speed of
processing11. This could be an explanation for the high energy
demand. Generally, the evaluation indicates that stream-based
parsers are to be preferred over model-based parsers.

Additionally, we conducted measurements depending on
the number of elements per item (i. e., city in the result
list) within the XML file. Like before, we measure the
energy consumption depending on different parsers and with
a tenfold repetition of the parsing process. In this context,
we varied the number elements per city from one to three. To
keep the SOAP file at a constant size of 10 KB, we injected
additional characters for each item. On the one hand, the
results confirm the previous results regarding the efficiency
of the parsers. From two elements onwards, we receive the
same order as before, namely ASXMLP in lead, with kXML,
naoXML, and tinyXML trailing. On the other hand, the
results show that a high nesting depth should be avoided
when using XML files.

IV. RELATED WORK

A large body of research exists with a focus on energy
consumption and energy savings in mobile devices. However,

11http://www.grinninglizard.com/tinyxml

http://www.grinninglizard.com/tinyxml


0

20

40

60

80

100

120

140

1 2 3

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

XML element depth

kXML
tinyXML

nanoXML
ASXMLP

Figure 5. Average energy consumption, by XML element depth and used
parser.

only a few papers specifically focus on Web services. With
respect to the impact of compression, some works exists, but
there focus is on performance aspects, such as latency, rather
than energy consumption. To the best of our knowledge, no
scientific works explores the influence of different parsers
on energy consumption in mobile devices.

Tian et al. [10] analyze how mobile devices can benefit
from compression of Web services messages, especially when
a poor connection like second-generation General Packet
Radio Service (GPRS) is used. They pointed out that Web
services transmit four to five times more data than traditional
dynamic Web applications do. Therefore, compression could
help to reduce the additional traffic. In return, additional CPU
time is required for decompression. In their experiments,
Tian et al. find that compression reduces the time interval
between the initial request and the presentation of the result
for poor connections. This holds true for connection types
such as GPRS. For better connectivity, such as Bluetooth or
WLAN, no significant improvement in response time was
found. Because of the negative influence of compression on
server performance, the authors propose a dynamic approach,
were clients have different option to request compression,
and recommend dynamic compression on low bandwidth
connections.

Johnsrud et al. [9] focus on compression to reduce of
transmitted data and the time it takes from the user interaction
until the result is shown on the mobile device. Thereby, they
had a closer look to two different compression techniques.
The used the generic ZLIB compression method and the
XML-specific binary encoding Efficient XML (EFX). With
these two techniques, they compressed XML payloads up to
a size of 24 KB. Further, they analyzed the effects within
different wireless technologies, namely UMTS, GPRS and
EDGE. Regarding the reduction of transferred information,
EFX achieve slightly better results than ZLIB. Still, with both
algorithms, the amount of data can be reduced substantially.
Thus, if the network usage is charged by number of bytes

transferred, costs could be reduced. Regarding the response
time, the best relative results with respect to time reduction
are achieved using GPRS. In the case of UMTS, the effect of
compression is quite small, because the the high bandwidth
results in a comparatively small transfer time, compared to
a relatively large processing, coding, and encoding time for
the SOAP payload.

Werner et al. [16] implement a new parser and compressor
for SOAP messages, which replaces XML tags with binary
identifiers. For that purpose, they implement a push-down
automate. This mechanisms leads to lower memory and
CPU utilization. The evaluation results show a possible
compression of all XML files, independent of their size
and structure, to a size of 1% to 15% percent of the original
file.

Barr and Asanovic [17] pointed out that the transmission
of a bit via wireless interfaces can require over 1, 000
times more energy than a 32-bit computation. To reduce
energy consumption the authors analyzed different families
of compression algorithms and recognize that compression
may cause an increase of energy consumption when data is
compressed before sending. They found out that the choice
how and whether compression should be applied depends
on hardware aspects, like CPU, memory, and network
connection, but also on software factors like compression rate.
Because these factors change in new generations of devices
and applications, the authors stress that a permanent re-
evaluation compression mechanisms is required. Further, Barr
and Asanovic explain that compression and decompression of
data have different demands regarding energy consumption.
Based on this observation, the authors recommend to use
asymmetric compression and decompression instead of a
single tool for both.

In summary, to the best of knowledge, this work is the first
to empirically examine the energy consumption of mobile
Web service invocations, based on various compression and
parsing mechanisms and under different network conditions.
Thus, our work not only provides valuable recommendations
to practitioners on optimizing the energy consumption of
mobile applications, but also points to future research
directions in this area.

V. CONCLUSION AND OUTLOOK

Energy is a scarce resource in mobile devices, and the
current technical development indicates that in the foreseeable
future, there will not be a substantial improvement in
battery capacity. Hence, the knowledge of energy-aware
application development is crucial. In this paper, we provided
a comprehensive study on optimizing the energy-efficiency
in mobile Web service-based applications.

As first contribution, we analyzed the reduction of en-
ergy consumption through the use of different compression
algorithms. For Web service invocations, compression can
reduce the energy consumption. The reduction depends on



used wireless interface, number of consecutive invocations,
and message sizes. For single invocations using UMTS,
we demonstrated possible energy savings of up to 21.5%,
whereas consecutive invocations in UMTS can even lead to an
increased consumption of up to 22.1%. However, our results
also indicate that compression has no substantial influence on
energy consumption if WLAN is used as network connection.

As second contribution, we examined the reduction of
energy consumption through the use of different parsers.
Certain options in the parsing methodology may yield energy
savings of up to 53.4%. Moreover, stream-based parsers are
to be preferred over model-based parsers. With respect to
elements describing a single value within a XML file, a high
nesting depth leads to a longer and more energy-intensive
parsing process. For example, for the parser kXML, using
one instead of three elements in depth leads to energy savings
of 41.7%.

For future work, we can identify a couple of starting
points. For example, additional experiments with Web service
invocations in combination with compression would be
insightful, such as utilization of LTE, variation of the
signal-strength, or additional efficient compression methods
like Efficient XML Interchange (EXI). Another potential
extension exists in the repetition of the test invocations with a
more powerful smartphone. In this context, the main objective
could be to determine the CPU speed at which continuous
Web service invocations with compression are energetically
reasonable.

ACKNOWLEDGMENTS

This work has partly been sponsored by E-Finance
Lab e. V., Frankfurt a.M., Germany (www.efinancelab.de).
The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreements no. 285220 and
318201.

REFERENCES

[1] S. Analytics, “Cellphone Energy Gap is Widening,”
https://www.strategyanalytics.com/default.aspx?mod=
pressreleaseviewer&a0=4656, April 2009.

[2] Displaysearch, “Smartphone Shipments to Pass One Billion
in 2016, According to NPD DisplaySearch,” http://www.
displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/120912_
smartphone_shipments_to_pass_one_billion_in_2016.asp,
September 2012.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion,
C. Ferris, and D. Orchard, “Web Services Architecture,” http:
//www.w3.org/TR/ws-arch/, February 2004.

[4] I. Melzer, Service-orientierte Architekturen mit Web Services.
Heidelberg: Spektrum Akademischer Verlag, 2010.

[5] A. Inc., “Apple - iPhone 5 - View all the Technical Spec-
ifications,” http://www.apple.com/iphone/specs.html, March
2013.

[6] G. P. Perrucci, F. H. Fitzek, G. Sasso, W. Kellerer, and
J. Widmer, “On the Impact of 2G and 3G Network Usage
for Mobile Phones’ Battery Life,” in Proceedings of the 15th
European Wireless Conference (EWC 2009), 2009.

[7] T. Pering, Y. Agarwal, R. Gupta, and R. Want, “CoolSpots:
Reducing the Power Consumption of Wireless Mobile Devices
with Multiple Radio Interfaces,” in Proceedings of the 4th
International Conference on Mobile Systems, Applications,
and Services (MobiSys 2006), 2006.

[8] N. Apte, K. Deutsch, and R. Jain, “Wireless SOAP: Optimiza-
tions for Mobile Wireless Web Services,” in Special Interest
Tracks and Posters of the 14th International Conference on
World Wide Web (WWW 2005), 2005.

[9] L. Johnsrud, D. Hadzic, T. Hafsoe, F. T. Johnsen, and K. Lund,
“Efficient Web Services in Mobile Networks,” in Proceedings
of the 6th IEEE European Conference on Web Services
(ECOWS 2008), 2008.

[10] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller,
“Performance Considerations for Mobile Web Services,” Else-
vier Computer Communications Journal, vol. 27, no. 11, pp.
1097–1105, 2004.

[11] J. Sharkey, “Google I/O 2009 Developer Conference: Cod-
ing for Battery Life,” http://www.google.com/events/io/2009/
sessions/CodingLifeBatteryLife.html, May 2009.

[12] E. T. Ray and J. McIntosh, Perl & XML. Sebastopol: O’Reilly,
2002.

[13] J. Knudsen, “Parsing XML in J2ME,” http://www.oracle.com/
technetwork/systems/index-155764.html, March 2002.

[14] N. Balasubramanian, A. Balasubramanian, and A. Venkatara-
mani, “Energy Consumption in Mobile Phones: A Measure-
ment Study and Implications for Network Applications,” in
9th ACM SIGCOMM Conference on internet Measurement
Conference (IMC 2009), 2009.

[15] A. Rice and S. Hay, “Decomposing Power Measurements for
Mobile Devices,” in Proceedings of the 2010 International
Conference on Pervasive Computing and Communications
(PerCom 2010), 2010.

[16] C. Werner, C. Buschmann, Y. Brandt, and S. Fischer, “Com-
pressing SOAP Messages by using Pushdown Automata,” in
Proceedings of the 2006 International Conference on Web
Services (ICWS 2006), 2006.

[17] K. Barr and K. Asanovic, “Energy Aware Lossless Data Com-
pression,” in Proceedings of the 1st International Conference
on Mobile Systems, Applications, and Services (MobiSys 2003),
2003.

All online references were last accessed and validated in
March 2013.

www.efinancelab.de
https://www.strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=4656
https://www.strategyanalytics.com/default.aspx?mod=pressreleaseviewer&a0=4656
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/120912_smartphone_shipments_to_pass_one_billion_in_2016.asp
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/120912_smartphone_shipments_to_pass_one_billion_in_2016.asp
http://www.displaysearch.com/cps/rde/xchg/displaysearch/hs.xsl/120912_smartphone_shipments_to_pass_one_billion_in_2016.asp
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-arch/
http://www.apple.com/iphone/specs.html
http://www.google.com/events/io/2009/sessions/CodingLifeBatteryLife.html
http://www.google.com/events/io/2009/sessions/CodingLifeBatteryLife.html
http://www.oracle.com/technetwork/systems/index-155764.html
http://www.oracle.com/technetwork/systems/index-155764.html
rst
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



	Introduction
	Experimental Methodology and Implementation
	Web Service Invocations with Compressed Messages
	Web Service Invocations with Different XML Parsers

	Experimental Results
	Web Service Invocations with Compressed Messages
	Web Service Invocations with Different XML Parsers

	Related Work
	Conclusion and Outlook
	References



