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Abstract 
The hrernet consisrs of a variety of inrerronnecred heremgeneotrs nenvorks 

monoged by independenrpmviders. At rke edgrs berween /wo tieiworks resources 
a w  ollocared. In rhis pupe,: we presenr a Jramewurk und iaronomy Jor pmblems 
ur rhese edges like udmission conrml u~tdptuvidrr selecrion; we coll rltem mulri- 
period resource allocarion problems ur system edges (h4PRASE). We look ur sev- 
eml pmblem inmrnariotts oJtltis fmmework attd show rhai niony of iliose pmb- 
lenzs - incll«ding weil-known pmblems in rhe an. ofnemrking - um sub- ur dun/ 
pmblenis ofench orlier und ihn1 ir is irseful ro n.mr rhent in (in ittregrured Justt- 
ion.' 

1. Intrnduction 
The lntemet consists o f  a variety o f  interconnected heierogeneous nehvorks 

(autonomous Systems, AS), managed by multiple independent pmviders. Both 
ihe number o f  ASes as well as the average number o f  ASes a given AS is peering 
with is increasing at a fairly high rate. The nuniber o f  ASes rose from 909 in  9/95 
10 4427 in 12/98 and 7563 in  10/00 [17. 181. Similarly, the average pcering 
degree. i.e., the number o f  providen a cenain pmvider has peering agreements 
with, mse fmm 2.99 i n  9/95 to 4.12 i n  12/98. I t  is also very noiahle thai a single 
provider may peer with up io  1000 other providen [I 71. 

The highest cosi factors o f  lSPs are peering costs and line costs [33]. For tlie 
i n c ~ s i n g  number o f  peering agreements resourccs have to be pronsioned. I n  
particular, an optimizaiion o f  resource allocaiions becomes a compeiitive factor 
for lnternet providers. I n  this paper, we deal with a general pmblem class called 
multi-period resource allocation at system edges (MPRASE) for which ihe F r -  
ing providers have been the inoiivating scenario. although some other network 
Quality o f  Service (QoS) problenis also fit in10 this problem class as we wi l l  dis- 

' Thia work k bem pmd) rpnwrcd by ik DFN (gcrman rcrctrdi nawrk pmvidn. 
wwu dln dc) 8s pnn af ilic LFTSOoS projcci (W- lclsqos ocl 

Figure I :  MPRASE problem stmcture 

which we call the providers. Note ihat the cusiomen can bc end-usen or them- 
selves pmviders for other cusiomers (ai another edge). There is a ihird party 
involved, the inrermediory instance thai is locaied at the edge. The interrnediary 
tries to niediate behveen the two by selecting providers on the one hand and 
enforcing admission conuol o f  the customers on the other hand. Note that the 
logical separation o f  the intennediary instance from customer and provider does 
not necessarily imply ihat i t  may not beloog to either cusiomer or provider pre- 
mises, in  fact, this wi l l  usually bc h e  case. I f  the intermediary is, e.g.. imposing 
admission contml, he wi l l  usually belong io the provider's premises. 

Allocating the resources to saiisfy the customers demand incurs ceriain cosrs 
whicli need io be accounied for by the cusiomers. These cosu can be real (mone- 
iary) costs, computational costs, purely ficiive I calculaiory cosls or a mix of 
those. 

The demand changes over ihe time so ihat resources might be reallocated. Let 
us now look at the different componenls 1 submodels o f  the stmctural model for 
MPRASE. 

cuss later on. 
At  first we present an overview o f  ihe MPRASE pmblem framework and a tax- 

onomy for the MPRASE problems thai can be used to efficiently identify. clas- 
sify and mathemaiically describc a resource allocation problem at a provider's 
edge. 

The MPRASE problems include problems in the area of admission control. 
reservation in advance, renegotiable services. token buckei fitting. provider selec- 
tion and RSVPnntServ [6] over DiflServlBandwidth-Bmker 13.21 problems. We 
present a iiumber o f  these problems in  varying detail atid show thai ii is very use- 
ful to treat ihem in an integraied manner as algoriihms can be reused and com- 
plex problenis relaxed towards simpler pmblems o f  the framework. 

I n  section 2 we present ihe MPRASE framework and its taxonomy. I n  seciion 3 
we present iwo selected absrraci problem incarnations fmm tlie framework, the 
fint is very complex and basically encompasses all the pmblems discussed laier 
in  ihis paper. The second is the smallest non-trivial MPRASE pmblem incarna- 
tion which is discussed in  detail as i t  is the basis for many o f  the other problems 
discussed in  ihis paper. Section 4 then presenis some uncenain MPRASE prob- 
lem incamations while in  section 5 several detenninistic ones are presented. We 
conclude with a summary and an outlook in  section 6. 

2. The MPRASE Framework and Taxonomy 
In  this section, we introduce a general stnicniral model which tries to CapNre 

all the different facets of MPRASE problems. This model allows us to derive a 
(axononiy along its components. 

2.1 Generalized Problem Structure Model 
Figure I shows the overall stmctural model o f  the general class o f  MPRASE 

problems. On one side, there are cusloniers that have a ceriain demand for nei- 
work resources. These network resources are provided by the opposite side. 

2.2 The 6 Submodels 
2.2.1 Customer. The cusiomer model o f  the MPRASE model captures the num- 
ber o f  cusiomers, i.e.. wheiher a single or multiple customen are considered, and 
the flexibility o f  ihe demand, i.e., whether demand may be dissatisfied or be 
served with a degraded quality. I n  the case that multiple customen exist ihe total 
demand D is the sum o f  the individual customers' demand that is D = C;- d , .  
With an admission conirol mechanism the number o f  served cusioniers n is 
becoming variable while with degraded quality the amount of the demand d, o f  a 
customer i that is satisfied by ihe pmvider becomes flexible itself. 

Parameter 1 Value 1 Abbrev. 

Nunther ofCusiomersl sinele Cusromerl I 

The taxonomy for ihe customer model is displayed in  Table I. We describe ihe 
cusiomer submodel by specifying both parameters o f  Table I. The abbreviation 

N 

- 
. - 

Fleribili~y oJDema~d 

(sarisfied 0 ur 100%) 

degraded qualip 
(satiSfied b e ~ e e n  0 und 100%) 

"-" i n  that table means that iliis value does not need to be specified, ii is ihe 
default. A simple cusiomer model consisiing o f  a single customer with inflexible 
demand would therefore be expressed by "I" while a model containing multiple 
cusiomen that accept degraded quality are identified with "NDQ" or "N, DQ. 

mtrlliple Cuslomerr 

inflexible 
(sotisfied 100%) 

dissatisfied/udmission conrml 
AL 

Table I : Customer Model 

I /imire<ll CUP[ 
Table 2: Provider Model 

22.2 Pmvider. The provider model encompasses ihe number o f  providers and 
whether hey are modelled as having limited or unlimited capacity. While the lai- 
ter is unrealistic i t  can be a simplifying, yet valid assumpiion Tor the case where 
supply exceeds demand with very high probabiliiy. 

Parameter 

Ntrniber ojPmviders 

Cawnrv  

Value 
single Pmvider 

multiple Pmviders 

unlintired 

Abbrev. 

I 

N 



The iaxonomy Tor the pmvider model is displayed in Table 2. A simple pm- 
vider model with a single pmvider that has unlimited capaciiy would therefore be 
expressed by "I" while a model wntaining multiple customen with limited 
resources are identified with "NCap" or "N. Cap". 

2.2.3 Resource.Tbis component models the resources. i.e., whether they are 
one- or multidimensional or whether they are provided on a deterministic or sta- 
tistical basis. 

Parameter 1 Value I Abbrev. 
Dintensionsl one-dimensional Resourcel I 

1 srarisrical( Slor 
Table 3: Resource Model 

A onedimensional deterministic resource like guaranteed bandwidth is 
expresscd by "I", a token bucket would be described by "NT'". The taxonomy is 
summarized in Table 3, we specify abbreviations for some well-known multi- 
dimensional resource models in Table 4. 

arameter 
ßirfer + Rare Token Biicker 

n-Level Token-Birckcr 
(n=2 equols a TSPEC) 

Leaky ßncker 
Table 4: Some Multi-Dimensional Resource Models 

2.2.4 Cost. The ws i  inodel seizes the cost structure for allocation requesu, i.e., 
whether these incur cenain setup or transactional cosis or whnher the number of 
requests is hounded and Iiow variable cosu for resource allocations a n  modelled. 
e.g., linearly or non-linearly. Please note that costs do not have to be moiietary 
costs, they can also reflect impiited or fictivd calculatory wsts. Please noie, too, 
that pmfit is in eNect negative cosu and is thus included in the cost model. Tlie 
term "cost" is also used if we refer to purely technical constraints. 

Table 5 specifies the diNerent types of costs that can be used, Table 6 specifies 
the properlies of those cost iypes. A budget constraint means the following: Tor 

This ir bccsusc ilwe rnodci Ihe pmbtcm rnsihcmtically we n a d  ihe same kind ofrariable to 
mcarurc Ihe niimber oirallaationr independmt oiwhether wc u x  it Tor enleuiating resl fix4 
ms<a or 83 a lcchniul mnstnint: See e.g. M I. 

the related cost ierm that only a limited budget is available which can not be 
exceeded. This can also be used in a plain technical context: lf all senip costs are 
I and the budget is N we only allow a maximum of N reallocations/allocaiions. 
With a time constraint we describe that - again using the setup costs as example - 
there has to be a cenain time interval between two reallocations. 

To specify the cost model in the taxonomy we list all existent cost terms plus 
the necessary addiiions for each cost term. Linear fixed and variable allocation 
cosis are described by "FV" while "F-V.," would denote linear fixed setup costs 
that are equal Tor all periods and non-linear changing variable costs. 

If all cosi terms of the cost model are to be optimized (minimized) this is indi- 
cated by "*". A combination of the cost model "FbUdSV" with intermediary 
model "V" means that only the variable costs are to be mininiized. the fixed setup 
costs only have to remain below their budget constraint. 

2.2.5 Intermedlary. Note that the intermediary is the component wliere solution 
iechniques towards MPRASE problems are conceptually located. Mathemati- 
cally speaking, it captures the iarget fiinction of the optimization problem that is 
described by the taxonomy. 

2.2.6 Edge. The edge model encompasses ihe nature of knowledge about the 
problem parameters ai the system edge. Determinisiic knowledge means that we 
know the exact values of the parameter for all periods. If the knowledge is sto- 
chastic, we do not know the exact value of the parameter for the future periods 
but have some knowledge of statistical nature about it, e.g., the pmhability distri- 
bution. Discrete stocliasiic means that the parameter set is chosen from a number 
of known swnarios. And we speak of ioial uncertainty if no assumptions about 
the parameter can be m d e .  

For the iaxonomy we specify the parameten that are not deterministic and 
describe their uncenainiy with a small index (S, D or T). So if every Parameters 
is deterministic instead of tlie futiire demand which is totally uncenain we would 
write "DT". If all parameters are deterministic we write "*". 

Parameter 
Parr o / rh~  Target Function 

2.3 The Complete Taxonomy 
We can now describe each MPRASE pmblem incamation by describing all of 

Table 7: lntermediary Model 

Value 
AI1 Cosr Terms 

Individual Cosf Terms o/rhe 
Cosf 

Abbrev. 
1 

EKU.R.C ... 

Abbrev. 

F 

Paranieta 
Fixed Cosrsper allacarion / 

reallocafion (= Sertrp Cosrs) 

Variable Cosrsper amounr o/allocared 
resoiirces Der firtie 

Value 

Non-Exisrent 

Erivi~nt 

Non-Exisrenr 

Variable Cosrsper amounr a/reqrresred buf 
not satisfied wources pe r  time 

a. Finic fixcd uutt Tor ihe firn -od and infinite fwcd m s  Tor ali otha rrricds. lüis eflcc- 

Variable Casrs per  
served cirsrome# 

iiwly phibnu rc.lloc.tions arid ihus iimpiifms Le mlung probim. Wc introducc ihis spcciil 
notatim k u l r  Lir simpiificauon urll bc uscd quiic onen in the MPRASF p<oblms bclov. 

Exisrenf 

Non-Exisrenr 

Existent 

b. This will in many pmbiema bc anegaive I n  mdclling the profit pcrservcd cwtomcr 

U 

R 

Table 5: Cost Model Elements 

Non-Exisfenr 

Exisrenr 

Parameter ! Val ue 1 Addition 
Linearim l Linear1 

P 

Non-Linear and ~onvexl  ci 

Non-Linear arrd Concawl cv 

I - .  , .  . I  Cosrs can v o v  behveenl I ~ t m e  aepenaenr cosrs 

1 Total Uncerrainry 1 TI 
Table 8: Edge Model 

difer&r periods 1 

Cosr-Conswaini 

the six components as follows: 
Customer I Pmvider ( Resource I Cost I Intermediary I Edge. 
lIIII(FVI*I* thus describes the MPRASE problem incarnation with one cus- 

tomer, one provider, a one-dimensional resource, linear fixed setup and variable 
cosis that are tobe minimized under deierministic knowledge. 

3. Selected Abstract MPRASE Problems 
We now present two abswct problem incarnations from the MPRASE frame- 

work. The first is very complex and enwmpasses all problems discussed later in 
this paper while the second is the smallest non-trivial problem of the framework. 
We concentrate on the discussion of the sewnd problem as the resulis come in 
handy later for the other MPRASE problems. 

3.1 General Model: Maximizing Social Welfare at the Edge 
3.1.1 Problem Formulation. The overall goal at an edge between a number of 
ciisiomen and providen is to maximize social welfare. Thus we fint look at a 
very general but rather complex MPRASE problem incamation which models an 
edge between a number of customers and a number of providers where the inter- 
mediary's goal is to maximize social welfare. 

We assume that there is a considerable number of ciistomers, the intermediary 
perfoms admission wntrol on them. Additionally ihe providen are allowed to 
dissatisfy a pan of the cusiomen' demand (degaded quality). although doing 
this imposer costs on them. Thus the customer model is .,NAC!w''. 

Therc are multiple pmviders with limited capaciiy; the provider model is there- 

I Cosrs remain equal for allperiodsl 

Table 6: Cost Model Additions 

Cosrs are irnconsrmined 
Budger constrairrr 

Eme constraifrt 
budg 
time 



fore ,Na; We use a ioken bucket as resource model: . .N~'  ". There are fixed 
setup costs for each (re)allocaiion. As a technical limii for the reallocaiions there 
is a minimum time thai Iias to pass between io reallocations at ihe same provider. 
There are variable cosis imposed for ihe ioken bucket Parameters, degraded qual- 
ity leads to cosis as well as rejecting cusiomers leads to lost profit. The cost 
model is thus .,FFii,VRC". The intermediary tries to maximize social welfare 
and thus embraces all cosis (.,"') and for ease of description we look ai the deter- 
ministic vcrsion of the problem, leading to ,*" as edge model. 

In ierms of our taxonomy the problein is described by 
N*c,c.oc> I N c . ~  INT" I FFttlnrVRC I * I *. 
It is formulaied in MLP (Mixed Integer Programming, 1321) form as MI. The 

social welfare is the total uiility of the providers and the customers. ii is maxi- 
mizcd in (I)  and consists of ihe profii for accepting customer i minus L e  wsis for 
the resource allocation, wnsisting ofthe fixed setup cosis and the variable cosis 
for the token bucket raie and depih, minus the costs Tor degraded quality. 

For M I we assume tliat all the cosi ierms are non-negative and ihai ihe profiipi 
of customer i is lower than C,C,c:b,, so that there is an incentive io impose 
admission contml. 

In MI the constrainis (3) io (6) force sW 10 I wlienever a reallocaiion is made. 
indicated by a change in rci, andlor <lil, Constraints (7) and (17) set the variable 
U,, to the unsatisfied demand bui not smaller than zero. (8) updates Iv,, the iokens 
in ihe buckei at ihe end of period rare the ones lefi from last period plus the cur- 
rent raie minus ihe tokens used to saiisfy demand as expressed by vii, (9) makes 
sure thai there are never more tokens in the bucket than ihe bucket depih at the 
end of the period. The provider's maxinium rate and bucket depih is accounted 
for by (10) and (I I). (12) is the iechnical constraint thai makes sure thai realloca- 
tions can only occur once every AT periods. (13) io (19) are the non-negativity 
and binary consiraints for the variables. 

3.1.2 Solution. As M I is a MIP pmblem it can be solved with siandard MIP solv- 
ing techniques like branch and bound wiih LP relaxaiion (321. This is however 
not necessary. A huge System edge between customers and providers as assumed 
in MI cannot be solved centrally in ihe Inieniei because of ihe sealability issues 
involved. There is no central iniermediary in the Iniernet that could ever manage 
all requests from the customers. Proposals like [46] that rely on a central interme- 
diary (there called broker) are generally regarded as unrealisiic appmaches. 

The goal of MI must be aimed ai wiih distributed algoriihms. Therefore we do 
not intend to look for algorithms ihat solve M I, instead we use MI to sliow ihat a 
number of problems in the liierature are actually subproblems of MI. Thus we 

M I  Bislc MPRASE Model 
(Variables and Parameters) 

Indices: 
i Index for custoniers i = 1. .... 1 

j Indcx for providersj = I. ..., J 

r Index for poriods r - I.  .... T 
Variables: 

rij, Allocatcd tokcn buckct ratc Tor custonieri by pmvidcr] in period r. 
du, Allocated tokeu buckct depih forcustonicr i by providcrj in period I. 
Iu, Amouni of buckcls lcll in token buckct of customer i ai providcr] at thc end of pe- 

riod I. 

s p  Auxiliary binary variable for accoiinting the setup wsts. Sei 10 I ifcustomcr i real- 
locatcs resources (biickct rate andlor dcpth) at providcrj in pcriod r and to 0 othcr- 
wisc. 

al Binary variable. sct to 0 ifciisiomcrj is rejcctcd by thc admission wnbol and to I 
othcrwisc. 

vu, Amouni of demand by ciistomerj in period r that is satisfied by providcr]. 
U;, Amount of unsatisfied dcmand of customcrj in pcriod I. 

Parametcn: 

b,, Demand of custonicr 1 in period 1. 
C;, Sciup costs of providcrj in pcricd 1. 
C) Costs per allocatcd rate of pmviderj in puiod I. 

cL, Costs pcr allocatcd buckct dcpth of providcrj in period 1. 

C,, Costs per unsatisfied demand (degraded qiiality) ofcustonier i in pericd 1. 
d Maximum total rate svailable at pmviderj in pcriod I. 4 Maximum total buckct depth available at providcrjin period 1. 

p, Profit for awpting customer i. 
riio = 0. Rate allocated Tor customer i at providcrj beforc the fint period. 
dun = 0. Buckci dcpth allocated Tor ciistomer i at providcrj before ihc first period. 
IqO = 0. Tokns in thc buckct of customer i at pmvidcrj bcforc thc fini period. 
M Mis a siimciently high ntimber (max{b„lVi, r )  ). 
AT Time interval hat niiist pass bcween two (re)allocations. 

prove the generality of tlie MPRASE framework and show ihat ii is sensible to 
look ai ihese problems at Systems edges in an integrated fashion. 

3 .13 Modelling Subpmhlems. To change the customer model to .,I" Parameter 
I in M I has io be sei to I. Dropping the .,AC' (admission control) in the customer 
model is reflected by forcing all ai 10 I in (19). Dropping ihe .PP' (degraded 
quality) is reflected by setting all C: 10 infinity. Changing the provider model to 
providers wiih unlimited capacity is done by setiing all G, and C, to infinity. 
To change ihe pmvider modcl io .,I" JIias to be set to I. 

If the one-dimensional resource model ..I" shall be used instead of a ioken 
bucket model all C, have to be sei io rero. To drop .,F,,,,,; from tlie cost model 
AThas 10 be sei 10 zero. If we only allow one allocation in the tirst period and for- 
bid all reallocations .P in the cosi model has io be replaced wiih F,. This is 
done by setiing the setup cosis C;, to infinity for all bui ihe first period. 

Many of the possible subproblems of M I are modeled and solved in the fol- 
lowing parts of ihe Paper. 

3.2 The Single Provider Problem (SPP) 
3.2.1 Problem Formulation. While M1 is the mosi complex and comprehensive 
MPRASE problem discussed here, the single provider problem is ihe mosi sim- 
ple non-trivial MPRASE problem. In terms of ihe MPRASE taxonomy it is 
IIIIlIFVI*I*. There is one customer that has one-dimensional capacity demands 
b, ihat must be fully saiisfied ai every discrete time inierval I = 1 ,....7: The edge is 
deterministic. Capacity is reqiiested from a single provider who is cliarging a 
fixed seitip cosi C: for each allocation and variable allocation cosis C: per 
reserved capacity unit and period. A new allocation is consiinited by a cliange in 
the allocated capacity. Allocated capacity is available in the period the allocation 
is made and in all subsequeni periods untü the nexi allocation is made. Note thai 
the allocated and not the actually used capacity causes the cosis. 

3.2.2 Exact Solution Algorithm. At firsi we wani to look at techniques ihat 
guarantee to produce an optimal solution for the SPP. 

3.2.2.1 Branch and Bound wltb Llnear Programming (LP) Relaxation. 
A standard approach to solve ihe single provider problem SPP is io use a mixed 

integer problem solver in order to solve M2. A typical algorithm for solving a 
mixed integer LP niodel is a branch and bound algoriihm ihai uses the LP relaxed 
problem M3 of M2: 

The resulting pmblem can he easily solved wiih the simplex algorithin. The 
solution of MZ' is a lower bound 10 the optimal soluiion of M2. Branching can be 

M1 Bislc MPRASE Model 

Maximize CP,~, - C C C c i , s I 1 ,  - ~ C C c ; , r l 1 ,  (1) 
i j i  I I 

- C CCc;,dIJ ,  - C C c ; , l l i ,  (2) 
1 1 1  i , 

subject 10 

r ~ j r - r ~ j t -  I 5 M .  SIJ~ Vi, V j ,  Vr (3 ) 

'IJ, - I - ~ I J ,  5 M . Sr], Vi, V j ,  VI (4) 

d y , - d ~ l , - t S M . % ~ ,  Vi, V j ,  Vr ( 5 )  

drjt- 1-<11j, 5 M .  SI], v i ,  '/J, t i r  (6) 

I1i, albll-Cvy, Vi. V( (7) 
J 

11jt 5 - I + rijr - 1'1jt t l i .  vr (8) 

111, 5 41, Vi, V j ,  Vr (9) 

C'.'/> C;, v j ,  V1 (10) 

Cd,/t C; Vj .  VI (1 1) 
I 

I 6 AT 

C Sl~r I Vi, V j ,  V1 = I ,..., T-AT (12) 
< I 

r ~ j t  2 0 Vi, V j ,  Vr (13) 

d11tz 0 Vi, 'dj. Vr (14) 

~ i j ,  E (0. I 1 Vi, V j ,  Vr (15) 

Iij12 0 v i ,  v j ,  vr (16) 

U,#  2 0 Vi, Vr (17) 

vy, 2 0 'di, v j ,  'dr (18) 

a i ~  {O, 11 Vi (19) 



M2 Single Pmvider Problem - SPP 

Variables: 

r, Amount of reserved capacity in period r = I .  ..., T, 
s, Binary variable. I ifa allocation seNp is made at beginnins 

of period i  - I, ..., Taod 0 othcmisc. 
Parameters: 

b, Demandcd capacity in pcriod r = I .  .... T. Danand is as. 
sumed to be grcater than 0. 

C: S e ~ p  costs in period t. 
C: Costs per allocated rate in period I. 

r,, Allocalion levcl before the bcginning of ihe fint period. 
M M is a suficiently high number (e.g., max (b,)).  

T T 

Minimize x c : s ,  + x c : r ,  

< I  1 . 1  

r - r , ,  Vi = I ..... T 

s,E (0, 11 Vi = I. ..., T 

M3 LP Relaxatlon 01 M1 (SPP) 

The binaiy wndition (5) is dropped h m  MI and replaced by 

O < s . <  l Vi = I .  .... T (6) 

done by fixing the highest not yet iixed s, to I in the firnt and to 0 in the second 
subproblem. 

Even for this very simple MPRASE problem incarnation an example with only 
50 periods took already 33 minutes to be solved'. Problems with more than 1M) 
periods could not be solved within several days. The reason for this is that the 
stmcture of the problem does not make it very amenable to braoch and bound 
algorithms since s, are onen sec to very low values greater 0 resulting in a vast 

A l l  cxprimcoir have ban p r i d  rn n 400 Milz Pcniium I1 pmeeuor uaing lhc 
commcreial MIP Solver CPLEX [I I I. 

seiup latencies. Therefore. we now Want to investigate heuristic techniques which 
do not guarantee an optimal solution but allow very fast allocation decisions. A 
funher reason for investigating heuristics becomes obvious when we extend the 
SPP techniques towards other MPRASE problems later in this paper when we 
sometimes end up having to solve huge numben of SPPs. 

3.23.1 LP Heuristic (LH). The LP heuristic is solving the LP relaxation M3 of 
Section 3.2.2.1 to determine the amount of allocated capacity. Aner solving M3 
(using the simplex algorithm), any s, t 0 is set to I wherever necessary (that is, 
where r, and rr., direr). This leads to a relative high number of allocations since 
fixed costs are sysbmatically iindercstimated by allowing continuous s,. 

3.2.3.2 Merge Heuristic (MH). The 
merge heuristic stans with a separate 

- - - - altocation 
- demand 

allocation Tor eacli period and then $ 
tries to merge two ~"ccessive aiioca- #O0gono- -, 
tions into o ie  if the saved fixed costs 
of the allocation are less than the 
waste of variable costs (see Figure 3 
for an illustration of this). 

3.2.3.3 Split Fieuristic (SH). The . ~ 

split heuiistic staris witli a single allo- 
urnc 

cation and then tries for all periods to Fißure 3: Of variable 

split existing allocations if the fixed costs Tor the new allocation are less than the 
saved waste of variable costs. 

3.2.3.4 Combined Heuristics (CH[x,yl). The merge and split heuristics can also 
be used to f~iriher improve tlie results of other Iieuristics. In our simulations we 
therefore iterated through merge and split in sequence until no hinher improve- 
ment could be achieved (CH[MH, SH]). Moreover, we also tried the combination 
of merge and split based on the result of the LP heuristic (CH[LP,MH,SH]). 

3.2A Evaluation. In order to evaliiate the perfomance of tlie heuristics we ran a 
simulatioti over 100 random problem instances, cach with T-1000, fixed costs 
C: E [200,800] drawn from a uniform random distribution once and then sei 
equal for all T periods. Variable costs C: are drawn from [3,5] and remain equal 
forp pe r iods ;~  is drawn from [10.20]. 

underestimation of fixed wsts which leads to very loose bounds. Therefore, we 
strived for more efficient, yet still exact algorithms for the SPP. 

3.2.2.2 Dynimlc Pmgramrnlng (DP). 
Let (1,. ir) be the edge froin vertex r l  to vertex I> The costs (or length) of edge 

(iIi -) are defined as 
I, 

c ( r „ i 2 )  E C:,+ z c : . r n o x ( b , l r ~  {I  ,,..., 1 ~ 1 ) .  (7) 
1 .  <, 

With this, the problem can be solved efficiently with the following algorithm 
which uses the dynamic programming paradigm [I] and has a complexity of 
O(T> ) (see Figure 2). 

I Prcparation: 
Prepare an empiy array rMin and an empty array pred, each 
with Tennies. 

Stan: 
cMin(1) = q i r .  ri) 
pred( I) = l 

Iteration r = 2. .... T: 

cMin(T+I) contains thc minimal costs while array prcd 
stores the hops towards that solution. 

Figure 2: Basic Dynamic Programtning (DP) Algorithm. 

3.2.2.3 Assessment 01 Executlon Times. Table 9 sbows the execution times for 
all of the exact algorithms for two differently sized pmblem instances. 

Table 9: Execution times Tor exact SPP algorithms (in sec). 

3.2.3 Heuristic Solution Algorlthms. The last section introduced exact solu- 
tioiis for the SPP, whicb while they provided fairly good performance still 
required a cenain computational effon that might be prohibitive in scenarios 
where there is either a large number of periods to be planned for or where there is 
only an exmmely limited amount of time available for computation as, e.g.. if 
the resource allocation is done in response to signalling messages and thus affects 

The demand b, is calculated by super- 
posing a number of requests (Tor exam- 
ple representing individual requests 
from several usen) with their interar- .e„, 
rival time modelled by a Poisson distri- .$ l j l '  ' , , ,{ IiiJ llji!lj 
bution (L = 4) and their duration U'm 

modelled by an exponential distribution 
(F = 20)~.  For calctilating the requests' 
capacity demand we draw from a uni- , ,m . . 

,,,,,V 

form random distribution fmm one out Figure 4:  Sample demand 
of three possible intervals 12.81, 110.201 
and [35,50] representing s ial l ;  medium and high capacity requests. The interval 
itself is selected for each request with a probability of 40%, 30% and 30%. Fig- 
Ure 4 shows a sample problem generated in this way. 

Table 10 shows the results generated by the simulations. Here, allocation 
length denotes the average duration of a single allocation and waste is the total 
wasie of variable costs for a siiigle SPP instatice (as illustrated in Figure 3). 

As a very siniple alternative heuristic and to have a reference value we also 
used what we called the peak heuristic (PH) which makes a single allocation with 
the highest capacity demand over all periods. Expectedly, PH performed very 
poorly compared to the other techniques. A niuch better performance at very low 
execution time is achieved by the merge heuristic (MH): on average it imposes 
less than 5% additional costs relative to the optimum and reduces execution time 
by a factor of 4500. The concepiually very similar split heuristic (SH) is consid- 
erably less effective. Looking at the allocation length shows the reason: it over- 
does its job by splitting too often, resulting in too shori allocation lengths and 
thus incurring fixed costs more ollen although waste of variable costs is roughly 
equal to MH. 

The LP heuristic performs only marginally bener than SH, although it con- 
sumes wnsiderably more time. This is due to its characteristic of underestimating 
fixed cosu which is also expressed in a very low waste and small allocation 
lengths. 

Next, let us see how these results may be improved by the combination of heu- 
ristics as described in Section 3.2.3.4. The combination of MH and SH leads 
expectedly to better results than the techniques in isolation. Yet, even bener 

' Wc have io dmii ih.1 piramclcr choiec is rathnrrbitmry (slbeii scnribte) due 10 laek o l  
cmpitiut dita. Itowevcr, wc havs cxperimenicd wilh othn vplun wißoui chnnging ihe 
reautlr ina signilicant manner 



results can be achieved by integrating LP with MH and SH. 4.1.2 Modeling Uncerlainly. lf there is no uncenainty with regard to a parame- 
In conclusion, the best results are achieved by CH[LP,MH.SH], yet the most ter ihe value of that parameter is known at the time the decision is made. We lhen 

anractive trade-off between cosi performance and execution time is probably call that parameter dererministic. M2 was an example for a model which has only 
achieved by MH or CH[MH.SH]. deterministic parameters. 

3.2.5 Related Work. The deterministic single provider problem is treated in 
more detail in [27] and 1261. The algorithms for the single provider problem are 
extremely usehl for many other MPRASE problems and are reused several times 
in the following chapien. 

4. Selected Uncertain MPRASE Problems 

4.1 Background on Uncertain Optimization Models 
Many decisioiis and optimizations in the areas of network design. traffic engi- 

neering and other resource allocation problems are based on uncenain data due to 
the relatively long timescales on which these mechanisms operate. In this section 
we derive several fairly general strategies for dealing with uncenain problems of 
the MPRASE framework. 

4.1.1 Stoehastic Propramming. We will use methods from stochastic program- 
ming in this section. Stochastic programming deals with optimization under 
uncenainty and was introduced in 1955 by Danizig [12]. Good overviews on sto- 
chastic programming are given in [38, 63. 73, 241. Many economical problems 
are solved using stochastic programining; e.g., a case study that uses stochastic 
programming for capacity planning in the semiconductor industry can be found 
in [39]. 

4.1.2.1 v p e s  of Uneerlalnty. Parameters like future bandwidth demand which 
form tlie basis for a decision or optimizaiion process can be and in practice onen 
are uncenain. Several degrees of uncenainty can be disiinguished Tor a parame- 
ter: - Total uncercainry: Nothing is known about which values the parameter will 

take. The best thing one can do in this case is io try to react flexibly and learn 
from past values the parameter took. Section 4.3 gives an exaniple for an 
MPRASE problem under total i~ncenainty and presents an efficient and flexi- 
ble self-learning algoriihm. 
Slochastic irncerfairily: The exact value the parameter will take is not knoum 
but the decision maker knows the probability distribution of the Parameter 
and can thus make some predictions about the parameter. [I61 and [54] are 
typical works ha t  deal with stochastic uncertainty for bandwidth allocation 
problems from a provider's point of view by assuming sources with on-off 
traffic. 
Discrvre srochasric iincertainfy: The parameter is drawn from a discrete sei of 
values, each value has a cenain probability. The Set is typically modelled as a 
number of scenarios. This approach is discussed below in more deiail as it is 
the approach taken in Section 4.2. 

av avl srddevl min ntax av av 

Opiiniiini (DP) 11 4523041 n.o.1 n.a.1 n.a. n.o. 

Aleorithm 

4.1.2.2 Modeling Uncertainly with Scenarios. The idea of modeling uncer- 
tainty with scenarios has its roois in scenario analysis [49,47]. Scenario analysis 
is a method for long-range planning under uncenainty. Conformant and plausible 
combinations of the realizations of all uncenain Parameters yield a number of 
scenarios. These scenarios form the basis for the following decision process (e.g., 
a production plan is based on the assumption that one of the three scenarios will 
occur: "prices and demand go up", 'prices MI slightly and demand remains 
equal". "demand goes back and prices fall heavily"). An application example and 
literature o v e ~ i e w  is given in [39]. 

However, describing uncenainty with a range of scenarios also makes sense for 
short- and mid-range planning and is oAen used for stochastic programming 138, 
12, 631 as it has some cmcial advantages over using a parametrized probability 
distribution: 

It is easy and intuitive for the decision maker to create the scenarios. they 
could also be created automatically [22]. 
Scenarios are easy to analyze, their plausibility can be approved easier than by 
creating a mathematical probability distribution. 
Scenarios are flexible, every kind and number of possible events can be easily 
accounted for in the scenarios. 
Finally, scenarios can be used as a discretization of probability distributions 
for numerical algorithms. 

Costs I Relative deviation fmm opiimum casis I I lcngth Wasic 

SI1 

LP 

CHIMH. SH] 

CHILP. MH. Slll 

4.13 Robustness. The notion of robust plans stems from decision theory [63]. 
Decision makers are typically evaluated ex post by how good their proposed plan 
performed in reality (i.e., in the scenario that actually occurred). As they can 
loose their job and career when their plan performs badly in the occurring sce- 
nario and this typically outweighs ihe praise if tlie plan performs well, clever 
decision makers are risk-avene io a cenain degree and biased towards robust 
plans. A robust plan is a plan iIiat is judged positive in most of the scenarios and 
does not perform too badly in any of the scenarios. 

1 
Time (scc) 1 

4.1.4 Strategies Tor Dealing wlth Uneertalnty. 
In the following huo sections we examine w o  MPRASE problems that aci 

under varying degree of uncertainiy to demonstrate various shategies that deal 
with uncertainty. 

Table 10: SPP simulation results. 

568759 

554317 

469723 

460404 

4.2 VPN Provisioning 
4.2.1 Problem Formulation. In this section, we look at a customer that needs a 
considerable, varying amount of network resources (e.g., bandwidth) over long 
timescales, for example for a provider provisioned vinual private network (See 

25.93% 

22.34% 
P- 

1.77% 

IETF working group ppvpn, [9, 211). potentially in support of business-critical 
applications. The demand fluctuates heavily over the course of a day with peaks 
in the late morning and ailernoon hours and far lower demand in the niglit houn 
as well as over the course of the week with ups on the weekdays and downs on 
the weekend. 

Previous research work [23,43,74,25] has shown that it is generally favorable 
Tor botli customer and provider to allow renegotiation of bandwidth allocations. 
The customer saves costs during phases of low demand and the provider can 
make better use of the capacity of the network. Among other findings, the simula- 
tions in this section coniirm that without renegotiation the costs increase consid- 
erably (at least hy a factor of 3 in our settings). A lot of research in tlie area of 
vimial private networks is done to increase the flexibility of VPNs [14, 41, 36, 
35,481, a trend which will make renegoiiations easy and wmmon. 

On the downside, for business critical applications renegotiation can be a dan- 
gerous meclianism because customen are given no guarantees that they obtain 
die higher amount of bandwidth they need for their peak demands as the provider 
could run out of resources in such times leading to a rejection of the request. 

This problem can be avoided if renegotiaiion is combined with reservation in 
advance. Customers can now request their increased bandwidth ahead of time. 
They can thus avoid the risk of running out of bandwidth for business critical 
applications. We show in this section tliat they will usually still save cosis. So 
there are strong arynients for ciistomen to use reservation in advance. 

On the other hand with reservation in advance the provider has a better progno- 
sis of ihe utilization of the network in advance which may allow him in turn to 
potentially allocate bandwidth more efficiently at funher providers, yet the latter 
recunion is not in the scope of this Paper. We assume that if there is not enougli 
bandwidth for a reservation in advance that either the provider allocates the miss- 
ing bandwidth at another pmvider or the customer clianges providen. 

In the VPN pmvisioning problem we take the viewpoint of a (e.g., VPN) cus- 
tomer that reserves bandwidth (e.g., for one of the mmks of his VPN) in advance 
at a provider (e.g., offeriog a bandwidih-assured VPN Service). The problem for 
the customer is that its deniand forecast is necessarily iincertain. 

The VPN provisioning problem is the MPRASE problem incarnation 
lIIIIIWI*IDD as it deals with an uncenain edge (discrete stochastic demand) 
between one customer and one provider, uses a one-dimensional resource model 
and a linear cost model with fixed and variable costs. Our prior discussion of the 
SPP M2 Comes in handy now, as the VPN provisioniog problem is quite similar 
to it. The differente is the uncenain parameter b, for period r =1....,7: Using ihe 
scenario model from Section 4.1.2 we assume that we have a number S of scenar- 

10.43% 

8.37% 

3 . 8 5 % 1 1 7 . 8 0 %  

0.70% 

12.96%! 73.65% 3.72 

2.62 -- 
9.81 

8.93 

6.12% 

0.39% 

39.07% 

5.34% 

3.75% 

63295 

424 

56064 

41918 

0.010 

0.452 

0.005 

0.452 
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ative deviation from the optimal costs are depicted in Figure 6: 
The robustness was evaluated based on the wont case performance of the strat- 

egies. The RER strategies show the best wont-case behavior, followed by SCC 
and DSUo.*. The RER and SCC strategies are more robust concerning the varia- 
tion of their Parameters a respectively C than DSU. 

DED and DSU with lower or higher surplus perform very badly, as does DWC 
and CC. Those shategies cannot be considered robust. this is iniportant for the 
DWC strategy whicli is based on the worst case demands and thus never leads 10 
pcnalty costs. But iis basic plan is still much more expensive than the wmbina- 
tion of penalty and the planned wsts  of the other strategies. Only when tlie pen- 
alty costs are sei higher than 100 times the variable wsts the DWC strategy 
performs acceptably. Thus the DWC strategy cannot be rewmmended for a wide 
range of parameter sets of the bandwidth allocation problem. 

DED and DSU with low surplus factor are also not robust. Only ifthe surplus 
factor of DSU is set correctly iis performance is acceptable; it can thus not really 
be considered robust. 

SCC and RER can be considered robust. SCC bases iu  calculations on quan- 
tiles of the demand distribiition and thus uses more information fmm the demand 
distribution than the surplus strategies DSU which explains the better perfor- 
mance. RER perfonns very gwd,  obviously the fine-grained control over the risk 
makes it more robust than the deterministic sirategies. 

Next, the general performance is evaluated based on the average performance 
over a number of simulation runs with higher uncertainty. The ranking in perfor- 
mance is quite similar to the ranking regarding robustness above. The RER and 
SCC strategies pe r fon  bestand can be rewiiimended. 

DSU again only performs well if the surplus factor is sei correctly. DED and 
DWC as well as CC perform relatively badly and cannot be rewmmended. 

The conclusions from the experimenu are that the RER strategy should be 
used. The recourse costs should be sei similar to the estimated (calculatory) pen- 
alty costs of unsatisfied dernand for best performance. However, the suategy is 
robust against a wrong Setting of the recourse costs, it still performs very good as 
long as the recoune costs are in the Same order of magnitude as ihe estimated 
penalty costs. 

If the computational complexity of RER is too high. SCC can alternatively he 
used, it performs a little worse but still better than all other strategies and is easy 
to compute. 

The experiments allocating resources once per week without renegotiation lead 
to about 3 times higher costs than ihose yielded by RER or SCC. This shows 
again (hat renegotiation can save a considerable amount of costs. We have 

duction program [29]. 

4.3 Decoupling of Time-Scales 
While the last problem was an cxample for a problem with (discrete) stochastic 

uncertainty we now discuss one with total uncertainty. We present a framework 
to solve such pmblerns that is useful beyond MPRASE. 

4.3.1 Problem Formulstion. Different time scales of QoS systeins may arise 
due to different QoS architectures like RSVPAntServ (Resource reSerVation Pro- 
tocol/ lntegrated Services) [6], DiNServ (Differentiated Services) [3]. or ATM 
(Asynchronous transfer Mode) [4] being used but may also be due to different 
QoS strategies followed by providen even if they employ the Same QoS architec- 
ture. Chwsing different QoS architectures as well as different strategies results 
from serving different needs, e.g., for an access and backbone provider. An 
access provider thar has a comparatively moderate load and directly wnnecis to 
end-systems may favor a fast time scale system responding immediately to the 
end-systems requests. A backbone provider that connects access providen 
respectively offen transit services is generally faced with a drastically higher 
load of individual transmissions, so ihat reaction on the time scale of individual 
requests is usually not possible and a slower time scale system needs to be 
enforced. 

When different time scales are in operation in heterogeneous network QnS sys- 
tems. it is simply not possible to query the underlying QoS system each time an 
overlaid system is altering its state. Here, the system operating on a faster time 
scale needs tobe  smoothed when overlaying it onto a system that operaies only 
on slow time scales. 

A realistic wnfiguration for access and backbone providers may be. e.g., that 
access providen use RSVPnnlSew to suit their customers' needs while a back- 
bone provider uses DifiServ with a Bandwidth Broker (DiflServmB) to allow Tor 
some dynamics but on a slower time scale. This scenario is shown in Figure 7. 

Here it is also very obvious why a BB is generally not able to react to individ- 
ual RSVP requests that are arriving at edge devices between access and backbone 
provider. Because if it did. the BB would need to operate at a throughput of 
requests that is proportional to the Square of the number of access providers it 
serves - that is not scalable. Here a decoupling of the different time scales is nec- 
essary. The decoupling can be achieved by building "depots" of capaciiy which 
stabilize the fluctuations of the 'hervous" demand curve for backbone capacity 
by individual requests. From another penpective, the decoupling technique can 
also be viewed as introducing a combined local and global admission control for 

F i y r e  6: Relative Deviation from the minimal costs 

explained why reservation in advance is viial to avoid ihe risk of not getting 
enough bandwidth in peak periods. Even if that is not the case reservation in 
advaiice can be better than short-term reservations: short term reservations will 
typically be priced higlier because they leave the provider with a much higher 
plantiing uncenainty and the risk of undenitiiizing Us resources. Thc results 
show that if shon-term allocations are priced only 15 to 20% higher than long- 
term reservations the latter wmbined with a robwt algorithm are cheaper than 
the optimal short-term allocations. 

4.2.4 Relsted Work. In [72], service provisioning for distributed communication 
networks with uncertain data is studied. Several service provisioning models are 
presented that account Tor several types of uncertainty. However, no efficient 
solution algorithms are presented and no simulations are carried out. Another 
related work is [IS], here a service provider offers computational services and 
tries to niaximize profits. In our work we consider a network service and take tlie 
penpective of the customer. Some of the methods presented in this paper were 
also successfully applied to a different problem domain. the planning of a pro- 

Figure 7: Combined local and global admission control. 

ihe DifiServlBB network. Global admission wntrol is only invoked whenever 
local admission control at an edge device tuns out of resources in its capacity 
depot. In such a case, local admission control on an edge device tries to obtain 
more resources from the global admission control represented by the BB. This 
scheme allows to trade off resource efficiency Tor a more stable and long-term 
capacity demand presented to the BB. 

This problem of decoupling different timescales is the MPRASE problem 
incarnation I(I(lJFVI*IDD. it is siinilar to the SPP M2 but acts under total uncer- 
tainty. In the next section we present a flexible, self-learning, and powerful heu- 
ristic scheme. 

4.3.2 Solution Strategies. Acting under total uncertainiy we propose the use of 
an adaptive heuristic as a way 10 learn the statistical properties of the system in an 
on-line fashion. The scheme we propose is highly useful in an environment 
where there are unpredictable. but rather long-term fliictuations in die demand for 
capacity. In general, the adaptation to behavior that would have heen "good" in 
the past is the best a heuristic technique can do under complete uncertainty. 

The question what is "good" behavior can be assessed by comparing the out- 
wnie of an on-line heuristic with the optimal solution of the SPP that results by 
looking back at the past n periods. 

We now first present ihe adaptive algorithm framework and next a heuristic 



h(0) that fits into this framework. The combination of both is then evaluated by 
means of simulation. 

4.3.2.1 The Adaptive Framework Let us assume tliat we have a parametrized 
heuristic h(i3) for the on-line dewupling problem and ihat we use an exact algo- 
rithm for the off-line decoupling pmblem. wliicli is the SPP wilh the now deter- 
ministically known demands of the last n periods. There are essentially two 
difierent modes of adaptation that can be directed by good behavior as achieved 
by the wst-minimal cover of the past CDC: 
Adaptation In Action Space. In this mode. the heuristic's parameter (vector) 0 
is adapted such that the behavior of the CDC cover produced by applying the 
heuristic deviates as little as possible from the optimal cover with respect to some 
characteristic as, e.g., the number of reallocations. 
Adaptation in Performance Space. In tliis mode the heuristics parameter 
(vector) 0 is adapted such that the cost of the solution pmduced by applying the 
heuristic h(0) deviates as little as possible from lhe optimal cost obtained for the 
SPP. 

Both adaptation modes have three Parameters: 
The frequency of adapfarion determines how often the adaptation of the heu- 
ristics Parameter is carried out. 
The time windaw ofadapfarion determines the length of the past period hat  is 
taken in10 account Tor tlie adaptation. 
Tlie accuracy of adaptalian determines how thomughly the parameter space is 
searched during lhe optimization pmblem for the adaptation. 
We call this adaptation scheme ODAH (Optimum-Directed Adaptive Heuris- 

iic). 

4.3.2.2 An On-llne Heurlstic. Now. a very simple, yet reasonable heuristic is 
introduced lhat deals with the problem under total uncenainty at each period. It is 
called thresholded depot excess (TDE) as it ensures that the capacity depot held 
Tor decoupling is never above a cenain threshold. It is applied in each period: 

If the demand level rises above the current allocated capacity the change is 
always followed (assuming that there is enough capacity at the underlying QoS 
system). Whenever demand decreases, TDE checks whether the step is smaller 
than a cenain fraction a E [0, I] of the old allocation level and if that is the case, 
TDE follows tliis step. 

Of course, the value of parameter a is cmcial for the success of TDE. If a is set 
too high, then TDE is too "newous", and will pmduce too many changes in the 
level of the depot and if it is sei too low, TDE is too "lazy", and will waste a lot 

control path events. Furthermore, the introduction of the watermark technique is 
rather ad hoc, and resembles ihe TDE algorithm without any adaptation. 

One piece of work that explicitly deals with difkrent time scales of access and 
backbone networks on the control paths is [5 I]. Here a backbone QoS signalling 
is pmposed which integrales mechanisms in order to dampen the faster time 
scales of access networks. This mechanism is based on hysteresis and quantiza- 
tion for m f i c  aggregates which are based on sink w e s  towards destinations. Thc 
applied algorithm is to always resetve capacity in multiples of a cewin quantity 
Q. Whenever the resewed capacity level of k X Q is no more sufficienl, il is 
increased to ( k +  I )  X Q and the new quantum is only relinquished when the 
resewed capacity faUs below ( k  - I ) X Q. This is very comparable to the simple 
straiegy of the TDE algorithm. and uses no adaptation. 

4.4 Admission Control Problems 
Admission wntrol is a widely recognized problem at system edges. The basic 

admission control problem is Nllc,p(llPI*ID or with an n-dimensional resource 
model (e.g., token buckeis) NIIC,plNIPI'ID and wnsists of maximizing tlie profit 
(from the accepted customen) from a provider's point of view or the total utility 
from a uaer's point of view. Admission contml is discussed broadly in literature. 
e.g., [7, 16.42.43.45, 55,601. 

5. Selected Deterministic MPRASE Problems 
In this section we discuss several selected deterministic MPRASE problems. 

5.1 Provider Selection 
The basic provider selection pmblem IIN(lJFVI*V and IINcaplllFVVI* could 

be regarded as the dtial problem of the basic admission wntrol problem (Section 
4.4). Unlike the latter it is not treated broadly in literature. Because of this. we 
treat it here in more detail ihan the admission conirol pmblems. 

5.1.1 Problem Formulatlon. Let us assiime that there are a number of providers 
olTering capacity to a Single customer. The customer has 10 decide which or 
which combination of pmviders 10 select and if and when to change the pmvid- 
e n .  

We assign index j = I, ..., J t o  the different pmviden. We can model this prob- 
lem with M5. This model mainly differs from the SPP M2 in the additional index 
j. Furihennore, we now have to model the case that in a cenain period no capac- 
ity is dlocated at a cenain provider. This is captured by the introduction of 
demand defect variables, </I„ and the wnstraints (27) and (28). Here. E needs to 

of capacity. 

4.3.2.3 Combining Both. We now integrale TDE into the ODAH framework so 
that the parameter a is adapted automatically. We call the resulting heuistic 
ODAH-TDE. 

As discussed above, there are two modes of adaptation in the ODAH scheme: 
adaptation in performance space and in action space. In principle, both kinds of 
adaptation are possible for ODAH-TDE. The adaptation in performance space 
works by simply adjusting TDE's parameter a such tliat the difference in costs 
between TDE(a) and the optimal solution of the SPP (sce Section 3.2) is mini- 
mized. This minimization is done by a simple recunive Brid search [I91 thmugh 
the intetval [0.1] for parameter a as there is no simple relationship between u 
and C for a more intelligent search to exploit. See [61] for details. 

For the adaptation in action space, it was decided to use the nuniber of reallo- 
cations as basis for the similarity relation between wven .  so that in this case the 
difference in the number of reallocations is to be minimized. We can use an inter- 
polation search [I91 since a and n have a simple relationship: nrDEea is mono- 
tonically increasing in a. This is, of coune, much more efficient than the 
recursive grid search for the adaptation in performance space mode. See [61] for 
details. 

4.3.3 Evnluitlon. In simulations (described in detail in [61]) we experimented 
with both adaptation modes. Both modes performed very similar but adaptation 
in auion space is more efficient due to the less wmpuie-intensive adaptation 
step. 

The simulation results show that ODAH-TDE generally achieves a good and 
robust performance over all *es of requests. In panicular we experimented with 
different lifetimes of requests, where ODAH-TDE was able to achieve over 90% 
of the cost saving performance of a hypothetical optimal scheme which operates 
under cenainty, i.e., solves the SPP exactly. 

ODAH thus represents a robust scheme for heuristically dealing with the 
sequential decoupling problem under total uncenainty. In particular, it should 
work well even if flow characteristics as the lifetime of requests change since it 
shows good performance for all types of requests in the simulations. 

4.3.4 Relaied W o r k  [70] deals with a two-lier model which consists of an intra- 
and interdomain resource management. BBs are representing each administrative 
domain in the interdomain resource management. Based on measurements, a 
watermark heuristic at edge devices is used to trigger interdomain signalling. In 
contrast to our work, the triggers are based on traffic tneasurements instead of 

M5 Provider Selectlon Problem - PSP 

Variables: 
9, Amount ofallocated capacily in iniewal r from pmviderj. 
sjr 1 if an allocation for pmviderj is made at thc bcginning of 

period r and 0 othenvisc 
9, I if allocation for pmviderj dmps to 0 in intcrval i and 0 

otherwise. 
Parameters: 

b, Demanded capacily in intcrval I = I .  .... T. Demand musi 
be fiilly satislied in cach period. 

C;, Setup costs. i.e., cost for an allocation in pcriod I Froni pro- 
vidcrj. wc assume fJ, > 0 .  

C;, Variable capacily msts. i.e.. costs per capacity unii pcr pe- 
riod (spccific per pmvidm and period). 

rjn Allooation levcl beforc thc bcginning of thc First planning 
period. 

J T J T 

Minimize X C;,( s,, - d],) + Z c ; ,  rl, (23) 
1-18 I / . I r  I 

subjcct 10 

be chosen small, e.g., E = I/(tnax{b,)). whereas M and L need to be chosen 
liirge,e.g.. M = max{b,) and L = I/(min(b,l b,>O)). 
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can be hold while it is waiting for enough tokens to be accumulated. 
However, thesc works look at tbe optimal B for a given r but do not calculate 

the optimal r. 
Keshav [40] proposcs as a heuristic for token bucket dimensioning to choose 

the "knee area" that the Bwl(r) curve shows, outside which small changes in r 
resp. B can only be compensated by greater changes in the other Parameter. How- 
ever, Keshav does not propose a trade-off function with which the preference of r 
and B can be weighted and influenced and he pmposes no algorithrn to find the 
area. Also other works [54] show that the "knee area" is not sbaightforward to 
find for long range dependent traffic. 

5.2.2 Exact Algorlthm. The optimal token bucket (rw, Bopr) for a given stream 
can be calculated as follows: 

The optimal B for a given rate r and 6 # 0 is: 

B„= ~QX(B„,I, B„2) (33) 

(34) 

Bq,2= *~~~~*T[txl - r~v-~l+ I .. U I , )  (35) 

The proof is given in [25]. 
Nexi, the optimal r has to be found. We use a cost function to describe the 

Irade-off between rate and bucket depth. With a linear cost function the bucket 
costs are a function 

Pop, (r) = C,. r + ea.  B„,(r) . (36) 
We can find the minimal costs of this piecewise linear function using a search 

algoritlim similar to ngula falsi which is described in [25]. 

5.2.3 Relnted Work. On tbe fint view the static token bucket dimasioning 
problem resembles lot sizing, lot scheduling and related pmblems [34]. Unfortu- 
nately, the nature of the resources involved is fundamentally different and the 
mathematical structure is different enough that the algorithins and methods do 
not fit. 

Apart from the works mentioned above in 5.2.1 there a n  some works in the 
area of Quality of Service (QoS) dealing with IIIINTBIF,VpIDs and 
IIIINTBJF, V(*l*. Glasmann et.al. present in [20] a simple heiiristic for guess- 
ing the token bucket parameters for video conferencing flows. Tbe heuristic con- 

token bucket parameten on the achieved sending rate are analysed. Thai paper 
operates with different assumptions (TCP instead of real-time traffic) and is thus 
compleinentary to the algoritbms in Section 5.2.2. 

5.3 Renegotiable Services 
5.3.1 Problem Formulation. In Section 5.2 we have sbown how to calculate the 
optimal token bucket (rOp, Bop,) for a given flow of length T. Video streams onen 
have longer scenes witb a relatively high or low hansmission rate. Fitting a single 
token bucket usually leads to a high resource waste during the times with a rather 
low transmission rate. For example. the cost minimal single token bucket for the 
Asterix movie of [58] with c,=l, cB=O.l leads to a solution where the bucket is 
only used in 89 of40000 periods6! 

Fora longer video stream it thus makes sense to allocate a series of token buck- 
ets instead of a single token bucket. But we have to assume that there is a certain 
reservation overhead involved for the setup of each new token bticket and we 
Want to avoid that a token bucket is used for a too shori time period. We account 
for this again by introducing setup cosis which are applied whenever a new token 
bucket is used. Another possibility would have been to allow a new token bucket 
only every n periods. The latter, however, is less flexible and can usually be 
achieved by choosing setup costs adequately, as our results show. 

Please note again that we do not necessarily mean real costs, they can also be 
fictive I calculatory: 

For eacli allocation, independent of its duration, fixed setup costs C' are 
incurred. 
The token rate r induces cosu proportional to height and duration: 
p,(,:~,) = C ' . ~ . T ~ .  
The costs per bucket depth Bare similar: pB(B. r,) = cß . B .  T,. - The 6 .  B tokens in the biicket at the beginning of an allocation induce the 
following costs: pd (6. B) = C'. 6 . B .  

n i e  DTBD can be formulated as a quadratic optimization pmblem (see M7) 
and is ihus generally extremely hard 10 solve cxactly with standard optimization 
iechniques [32]. 

Target function (37) of M7 minimizes all cosu consisting of the setup cosu, 
the costs for the rate, the bucket depth and ihe tokens the bucket is filled with 

sists of setting r to the mean transmission rate of the video and B to the number of 
tokens that are then required to avoid packet dmp. This work does not consider 
the potential trade-off between r and B but shows some realistic values for video 
streams. 

Dowolis et.al. [I31 analytically derive fmm the empirical envelope the optimal 
token bucket parameten. It considers the Irade-off benveen r and B and tries to 
minimize the reserved rate R of an IntServ guaranteed service flow given a delay 
bound. This pmhlem can be Seen as a subproblem of the STBD pmblem in this 
paper with a fixed bade-off which minimizes R. 

Falkner et. al. [I61 use a cost function for token bucket dimensioning with min- 
imum costs from the penpective of a single User. They, however, assume an ATM 
network and on-off traffic which is not known in advance. They solve the result- 
ing non-linear optimization problem with the Lagrangean method. 

Bnino et. al. [8] study tokm bucket dimensioning for aggregate VolP sources 
for the DiflServ Expedited Forwarding service class. Their LBAP is an agsnga- 
tion of independent fluid on-off soiirces. Tbey analyze the efiect of token bucket 
parameters on the non-confonnaoce pmbabiliiy. They, however. do not use a cost 
function or something similar and do not present an algorithm to derive the opti- 
mal pair of token bucket parameters. 

Kulkarni and Gautam siudy in [44] the sizing of K token buckets with admis- 
sion control resp. network utilization in mind. They also fonnulate and solve 
token bticket diniensioning as an explicit optimization problem but their perspec- 
tive is fundamentally different to ours. While we consider minimizing the cosu 
of one customer and expect the customer to choose hisher token bucket parame- 
t en  they do not look at costs but hy minimizing the sum of the rates of K cus- 
tomer's token buckets at the Same time, taking the network's point of view. 

Procissi et. al. analyse in [54] the influence of long range dependence in traffic 
on the dimensioning of token buckets. They use two cost models. one of them 
similar to the one used in this work, to derive an analytical model for estimating 
the token bucket parameten. This model explicitly takes into acwunt tbe long 
range dependency of traffic, the B„(r) curve is obiained for traffic modeled as a 
Fractional Brownian Motion process. As a result they can quite well estimate 
good token hucket parameters for lnternet haffic. They, however, show no algo- 
rithm Tor calculating the optimal parameters for a given trace as we did. 

Natidts [50] describes an efficient algorithm for calculating the optimal cell 
rate P(?) for a given r Tor the ATM generic cell rate algorithm (GCRA). As the 
GCRA can also be described as a continuous-state leaky bucket this is equivalent 
to calciilating the bucket rate Tor a given bucket depth. 

In [59] a token bucket marker is used for TCP sheams and the effect of the 

M7 Dynamic Token Buckel Dimensloning (DTBD) 

iariablcs: 
r, rate in pcriod i = I ..... T. 
B, bucket depth in period r = 1 ..... T. 
,V, numbcrofiokcns in the bticket at the bcginning of ihc pcriod i - /.....T. 
s, binary variable. set to I if thc tokcn bucket parameters (r ,  B,) were changcd at the 

bcginning ofthe period i = I. .... Tand 0 othenvisc. This variablc is neccssary to ac- 
counl for thc sehip costs F. 

Parameters: 
X ,  lokcns iised in period i = I ..... Tto send data. 
C' cost mnicient for the rate r,. 
cß cost coctiicient for the biickct dcpth B,. 

c6 cost mfficicnt forcach token in the biickct at the bcginning ofa ncw allocation pc- 
rid. 

C' lixcd s m p  wsts pcrrcdirnensioning. 
6 bucket staning factor ( 6 E 10, 1 ] ). 

M big cnough wnstani to resemblc infinity nurnerically.c.g. M = 

subject to 

',+.V, 2 %  for all t = I ,  ... ,T (38) 

.v,s(I -s,)B, +s,&B, o r a l  t = 1 , T  (39) 

. ~ , s ( l  -Z,)(Y,+~ +r , - t -X , - i )+~ ,M for all t = 2, .... T (40) 

B,-B,-i SMs ,  for all t =  I, ..., T (41) 

B , _ ,  -B,SMs,  o r a l  t = I T  (42) 

r, - r,- S Ms, o r  I t - 1 . T  (43) 

r,- - r, S Ms, o r  I t - I T  (44) 

o r  I t = I T (45) 

for all t = I, .... T (46) 

" For hiphn CB lhe nurnber afperiods inc-r bul slilt ronaina an a very low Icvel. For Cs-C, ihc 
nvmber ofpcriods only increases io 203 pcriods. 



aRer redimensioning. 
Constraint (38) makes sure there are enoirgh tokens available each period. (39) 

makes Sure there are no more tokens in the bucket than the bucket depth (if no 
redimensioning was perfonned that period - indicated by s,=O) rsp. the buckei 
starting factor (aRer redimenioning). Similarly, (40) accounts for the new and 
used tokens if s,=O, that is no redimensioning was perfonned in tliat period. ARer 
redimensioning (40) imposes no additional limit to y,. 

(41) io (44) force s, io one if the buckei was redimensioned. Redimensioning 
equals a change in B,aiidIor r,. 

(45) and (46) are the non-negaiivity and binary constraints for the variables. 

5.3.2 Solution Algorlthms. The MPRASE algorithms fmm Section 3.2 can 
again be adapted to also solve this problem. Tlie solution is a series of token 
buckets wliich are themselves again the result of a STBD process. The different 
buckets are decoupled. We can solve the single token bucket dimensioning STBD 
problems (See Section 5.2 and [25]) beiween each couple of periods u.v with 

I 5 u < V 5 T and store the optimal TB parameters (C B) and related costs of 
these T(T+I)R problems. We theu have to find the optimal combination of those 
token buckets with a niodified DP algorithm (Section 3.2.2.2). tlie algorithm is 
described in more demil in 1251. 

Because of the relatively high complexiiy of the modified DP algorithm we 
also strive for heuristics. A possible heuristic is to use the exact algorithm above 
and change it so that before we solve the STBD between periods u and V, we have 
a look at the previous solution found for u and V-1: 

If tlie rate r(u, V-1). the token bucket size B(u. * I )  and the number of tokens 
remaining at tlie end of the period V - I y,,(u. V-I) are high enough to satisfy 
the demand of the new period V, then we extend the previous solution by one 
period to include V. This way the parameters are not always optimal but we do 
not have to solve the STBD for each sub-problem. 
Only if the previous parameters and tokens len are not sufficient we solve the 
STBD for (U, V). 

We call this heuristic the dynamic pmgramming heuristic DPH. We also 
adapted MH, SH and CH[SH+MH]' fmm Section 3.2.3 to this problem. 

5.33 Evaluation. Our basic simulations uses the video traces patiems of [ S I .  
These 21 traces are fmm MPEG versions of different types of video sequences 

' . ~ n t  erpetimaitr showcd hat nining wiih SH yieldcd slightly beiier rcsutu. 
7hc simulsiion wu done wih Java .s progmmming tanguagc on 8 PC wiih a 700MHz Peniium Itt 
Pmecuor ind 8 256 M B  RAM. 
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Figure 12. Relative cost difference 

DTBD without renegotiation as a STBD. MH, SH and CH are slower than DPH 
for small T but scale better and are thus faster than DPH for higher T. CH can 
never be faster ihan SH as the first steo of CH is to execute SH. MH alwavs takes 

. 
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longer than SH and most of ihe times even than CH. 
Presumably more imponant than the execution time is the qiiality of the resulu 
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measured by the relative difference in costs wmpared to the optimal cosu 
retumed by the exact algorithm as depicted in Figure 12 and 13. For a single 
token bucket the additional costs are far higher than for a serics of token buckets. 
The difference increases with the number of periods T which is obvious as the 
potential benefit of being able to change token hicket parameters increases with 
7: This also clearly shows that it generally makes sense to use a series of buckeu 
and to look at the token bucket redimensioning problem DTBD as i t  can very sig- 

I 

C 

T 

(movies, cartoons. W, spon, ...). One period represents one group of pictures (1 2 
frames. 0.5 seconds), 2000 periods eqilal little more than 15 niinutes o fa  movie. 
The average bit rate of the movies is 0.536 Mbps. the average peak rate of the 
movies is 3.54 Mbps. The cost coefficients are C' = c6 = I; r ß  = 0.1 and 
C' = 10'. the bucket starting facior is sei to F = 0 . 5 . ~  

The DTBD was solved for different values of Tranging between 50 and 2000. 
We tested the exact algorithm DP and the heuristic DPH. MH. SH and CH. We 
also firied a single ioken bucket (STB) instead of a token bucket series using an 
exact algorithm fmm [25]. We measiired the CPU iinie, tlie numbers of  alloca- 
tions and the relative difference between the calculated cost and the optimal costs 
(yielded hy the exact algorithin) 

0 2W 4Wl 6W 8W.l I1000 12W l4W 1600 1800 21000 
Figure 13. Relative cost difference (logarithmic) 

The following figures I I to 13 are based on the average over the results From 
each of the 21 traces. 

Figure I I .  Computation times (logariihmic) 

By looking at the computation times in Figure I I one first notices that tlie 
exact DP algorithm takes by far the longest tinie to solve as can be expected as it 
has the highest conipulational complexity. The DPH heuristic is much faster tban 
the DP algorithm and scales a little beller. This indicates that in practice it caii 
avoid solving a lot of STBDs because it can extend tlie previous token bucket by 
just one period in most of the cases. The fastest way is of Course to solve the 

nificandy reduce costs by a factor of 2 and more. 
The DPH algorithm on the other hand is always extremely close to the optimal 

solution, resulting in less than 0.25% higher costs. SH perfonns quiie bad. MH is 
better but as can be expected CH is better than SH and MH and mughly 2% away 
from the optimal solution. 

When increasing the setup costs by a factor of 10 the number of allocations 
goes down by a factor ofmughly 3 to 5 as can be seen in Figure 14 which shows 
tliat the seiup cost are an efiective way of influencing the number of used token 
buckets. Even with 10 times higher seiup costs. using a series of token buckets 
instead of a single one the total costs can still be reduced by a factor of 2, tlie 
ranking o i  the algorithms in computation time and performance remains the 
Same, for more details See [25]. 

F iy re  14. Number of allocations for different setup costs 
(logarithmic) 

Insiead of using the MPEG vaces we now use randomly generated trafiic using 
theDiJgn lraffic generator [53, 641 generating three Patterns following a frac- 
tional brownian motion process. The first panern is a piire bmwnian motion pat- 
tem (Hunt parameter H=0.5), the second a fractional brownian motion panern 
with a low autocorrelation of the values (Hurst parameter H=0.7) and the third is 
one with a stmng autocorrelation of the values (Hurst parameter H=0.9). 

The performance of CH and DPH is depicted in Figure 15 and 16. First of all, 
one notices h a t  the perfonnance of the algorithms degrades the lower the Hurst 
parameter is. The performance drop is higher Tor DPH than for MN, if there is no 
autocorrelation in the traffic (H=0.5) CH even yields better results than thc DPH 
heuristic. This can be explained as follows: DPH extends the token bucket of a 



previous calculai ion by one per iod r + l  if the buckei i s  big enough. This exiension 

i s  the bei ier i h e  more the traf f ic o f  r + l  depends on i h e  values r ,  1-1, ... iha i  i s  i h e  

higher the autocorrelation is. 

Figure 15. Performance o f  C H  

for different Hurst Parameters 

Figure 16. Performance o f  D P H  

for different Hurst parameien  

I n  Summary, D P H  has i h e  m o s i  anraciive trade-off beiween compuiat ion t ime 

and i h e  qual i iy o f  the solution. A s  ii is  extremely close t o  the op t imum Tor long- 

range dependeni traffic and orders o f  magni iudes faster ihan  ihe  exact algor i thm 

i t  can be  used insiead o f  ihe  exaci  algoriihm. 

For very high T CH m i g h i  be  aitractive, ioo, as i t  scales bei ier ihan DPH.  For  

shon-range dependeni traffic ii is  better ihan  DPH, too. 

an  iniegrated manner as they have many similarii ies, a l low the reuse of algo- 

r i i hms and i h e  simpl i f icat ion towards easier already solved M P R A S E  problems. 

We encourage readers i o  make use o f  i h e  framework and  taxonomy and p lan  to  

funher investigaie in ieresi ing M P R A S E  problems. 
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5.3.4 Rela ted  Work. 
Renegotiable services are also popular in liierature. T h e  l(lINTBIFVI*(* pmb- 

l e m  is  discussed broadly in [25]. 

There are some works, e.g. [SI, [71], and  [66], iha t  consider opt imal smooihing 

Tor guaranteed service streams. These works  are di f ferent f m m  ih is  w o r k  i n  ihat 

i n  pr inciple ihey  smooth a given siream i o  f i t  i n i o  a token buckei by add ing  a 

playback delay and  us ing  buffers wh i le  i h i s  w o r k  tries io f i t  a single np. mul i ip le  

serial token buckets t o  a given siream. 

W h i l e  ih is  seciion tries io f i t  a series of  token buckets t o  a given siream (561 

iries t o  fit a multi-level token bucket (mult ip le token buckeis s tan ing  a i  ihe  Same 

momeni)  t o  a video siream. 

There are also a number of works  on renegotiable services [23, 74,431. Gross- 

glauer el. al. [23] pmpose i h e  renegoiiable constani bii rate service and show h o w  

ic can be  used t o  increase total  neiwork ui i l izai ion. Knighily and Zhang [74,43] 

exiend ih is  work 10 ihe  rmego i iab le  variable b i t  rate service (RED-VBR). They  

also consider sending an  M P E G  mov ie  known i n  advance. They  show i l iat  wiih- 
out renegotiation Tor certain M P E G  streams o n l y  an  average ut i l izat ion of 25% 

can be  achieved. They  propose a heuristic cal led off- l ine a lgor i ihm t o  calculate a 

series o f  ioken  buckets fo r  the ATM VBR service i h a i  achieve a far higher aver- 

age ui i l izai ion. T h i s  heurisiic needs an  input Parameter iha i  conirols h o w  o t len  t o  

Segment ihe  siream. T h i s  Parameter i s  di f f icul t  t o  sei. O u r  work presenis a n  exact 

algor i ihm and an  extremely close ye i  m u c h  faster heuris i ic insiead. Kn igh t l y  and  

Zhang also preseni a second heuristic (on-line algor i ihm) iha i  does no t  require 

the i raf f ic io be  k n o w n  i n  advance and they propose a n  admission con i ro l  scheme 

Tor renegotiable VBR services. 

6. Conclusion & Outlook 
Th is  paper has described a framework and  iaxonomy f o r  a class of  opi imiza- 

t ion  pmblems related t o  resource al loeai ion at sysiem edges over mu l t ip le  t ime 

periods (MPRASE). T h e  taxonomy consists o f  s ix submodels descr ibing the indi-  

v idual faceis of  the di f ferent p m b l e m  incarnaiions: cusionier, provider. resource, 

cost, edge and intermediary. Each s i~bmode l  can b e  described b y  a s h o n  abbrevi- 

aiion, ihe  combinai ion o f t h e m  then identifies i h e  p rob lem incarnai ion exacily. 

We have presented i w o  absiract M P R A S E  pmblems inc lud ing  i h e  single pro- 

v ider problem (SPP) - ihe  smallesi non-tr iv ial  M P R A S E  problem. 

A n e r  iha i  w e  presenied t w o  uncenain and ihree deienninist ic M P R A S E  prob- 

l e m  incarnaiions and showed iha i  M P R A S E  problems occur o f ten  - al though y e i  

unrecognized - in liierature wh ich  w e  showed i n  a loi o f re la ied  w o r k  Tor i h e  indi-  

v idual problems. W e  also showed iha i  ii inakes sense i o  look  a i  these probleins i n  
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