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Abstract

The Internet consisis of a variety of i ted heterog nerworks
managed by independent providers. At the edges between two networks resources
are allocated. In this paper, we present a framework and taxonomy for problems
at these edges like admission control and provider selection; we call them multi-
period resource allocation problems at system edges (MPRASE). We look ai sev-
eral problem incarnations of this f k and show that many of those prob-
lems - including well-known problems in the are of networking - are sub- or dual
prob'lems of each other and that it is useful to treat themt in an integrated fush-
ion.

1. Introduction

The Intemet consists of a variety of interc d heterogeneous networks
(autonomous systems, AS), ged by multiple independent providers. Both
the number of ASes as well as the average number of ASes a given AS is peering
with is increasing at a fairly high rate. The number of ASes rose from 909 in 9/95
to 4427 in 12/98 and 7563 in 10/00 [17, 18). Similarly, the average peering

cuss later on.

At first we present an overview of the MPRASE problem framework and a tax-
onomy for the MPRASE problems that can be used to efficiently identify, clas-
sify and mathematically describe a resource allocation problem at a provider’s
edge.

The MPRASE problems include problems in the area of admission control,
reservation in advance, renegotiable services, token bucket fitting, provider selec-
tion and RSVP/IntServ [6] over DiffServ/Bandwidth-Broker [3, 2] problems. We
present a number of these problems in varying detail and show that it is very use-
ful to treat them in an integrated manner as aigorithms can be reused and com-
plex prob} relaxed ds simpl bl of the fi rk.

In section 2 we present the MPRASE framework and its taxonomy. In section 3
we present two selected abstract problem incarnations from the framework, the
first is very complex and basically p all the prob di d later
in this paper. The second is the smallest non-trivial MPRASE problem incarna-
tion which is discussed in detail as it is the basis for many of the other problems

degree, i.e., the number of providers a certain provider has peering ag|
with, rose from 2.99 in 9/95 to 4.12 in 12/98. It is also very notable that a single
provider may peer with up to 1000 other providers {17].

The highest cost factors of ISPs are peering costs and line costs [33]. For the
increasing number of peering agreements resources have to be provisioned. In
particular, an optimization of resource allocations becomes a competitive factor
for Intermet providers. In this paper, we deal with a general problem class called
multi-period resource allocation at system edges (MPRASE) for which the peer-
ing providers have been the motivating scenario, although some other network
Quality of Service (QoS) problems also fit into this problem class as we will dis-
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Figure 1: MPRASE problem structure

which we call the providers. Note that the customers can be end-users or them-
selves providers for other customers (at another edge). There is a third party
involved, the imtermediary instance that is located at the edge. The intermediary
tries to mediate between the two by selecting providers on the one hand and
enforcing admission control of the customers on the other hand. Note that the
logical separation of the intermediary instance from customer and provider does
not necessarily imply that it may not belong to either customer or provider pre-
mises, in fact, this will usually be the case. If the intermediary is, e.g., imposing
admission control, he will usually belong to the provider’s premises.

Allocating the resources to satisfy the customers demand incurs certain costs
which need to be d for by the ¢ . These costs can be real (mone-
tary) costs, computational costs, purely fictive / calcutatory costs or a mix of
those.

The demand changes over the time so that resources might be reallocated. Let
us now look at the different components / submodels of the structural model for
MPRASE.

di d in this paper. Section 4 then presents some uncertain MPRASE prob-
lem incamations while in section 5 several deterministic ones are presented. We
conclude with a summary and an outlook in section 6.

2. The MPRASE Framework and Taxonomy

In this ion, we introduce a g | structural model which tries to capture
all the different facets of MPRASE problems. This model allows us to derive a
taxonomy along its components.

2.1 Generalized Problem Structure Model

Figure 1 shows the overall structural model of the general class of MPRASE
problems. On one side, there are customers that have a certain demand for net-
work resources. These network resources are provided by the opposite side,

2.2 The 6 Submodels

2.2.1 Customer. The customer model of the MPRASE mode! captures the num-
ber of customers, i.e., whether a single or multiple customers are considered, and
the flexibility of the demand, i.e., whether demand may be dissatisfied or be
served with a degraded quality. In the case that multiple customers exist the total
demand D is the sum of the individual customers’ demand that is D = Z;' LT
With an admission control mechanism the number of served customers » is
becoming variable while with degraded quality the amount of the demand d; of a
customer / that is satisfied by the provider becomes flexible itself.

Parameter Value Abbrev.
Number of Customers single Customer| 1
- mudtiple Customers N
Flexibility of Demand _ inflexible .
(satisfied 100%)
dissatisfied/admission control AC
(satisfied 0 or 100%)
degraded quality PO
(satisfied between 0 and 100%)
Table 1: Customer Model
The taxonomy for the model is displayed in Table 1. We describe the

customer submodel by specifying both parameters of Table 1. The abbreviation
“" in that table means that this value does not need to be specified, it is the
default. A simple customer model consisting of a single customer with inflexible
demand would therefore be expressed by “1” while a model containing multiple
customers that accept degraded quality are identified with “Npq™ or “N, DQ”.

22.2 Provider. The provider model encompasses the number of providers and
whether they are modelled as having limited or unlimited capacity. While the lat-
ter is unrealistic it can be a simplifying, yet valid assumption for the case where
supply exceeds demand with very high probability.

Parameter ~Value Abbrev.
Number of Providers| single Provider 1
multiple Providers N
Capacity unlimited
limited Cap

Table 2: Provider Modet




The taxonomy for the provider model is displayed in Table 2. A simple pro-
vider model with a single provider that has unlimited capacity would therefore be
expressed by “1” while a model ing multip! t s with limited
resources are identified with “Ne,g” or “N, Cap™.

2.2.3 Resource. This component models the r i.e.,, whether they are
one- or multidimensional or whether they are provided on a deterministic or sta-
tistical basis.

Parameter | Value [ Abbrev.
Dimensions) one-dimensional Resource| 1
multi-dimensional Rexuurte] NTvpe
| Stochastic Behaviour| deterministic| _ o
slalislica/l Slal]

Table 3: Resource Model

A one-dimensional deterministic resource like guaranteed bandwidth is
expressed by “1”, a token bucket would be described by “NTP“. The taxonomy is
summarized in Table 3, we specify abbreviations for some well-known multi-
dimensional resource models in Table 4.

Parameter Value Abbrev.
"~ Buffer + Rate Token Buckel| TB
n-Level Token-Bucket
(n=2 equals a TSPEC)
Leaky Bucker LB
Table 4: Some Multi-Dimensional Resource Models

n-TB

2,2.4 Cost. The cost mode] seizes the cost structure for allocation requests, i.e.,
whether these incur certain setup or transactional costs or whether the number of
requests is bounded and how variable costs for resource allocations are modelled,
e.g., linearly or non-linearly. Please note that costs do not have to be monetary
costs, they can also reflect imputed or fictive/ calculatory costs. Please note, too,
that profit is in effect negative costs and is thus included in the cost model. The
term “cost” is also used if we refer to purely technical constraints. 2
Table 5 specifies the different types of costs that can be used, Table 6 specifi

“Parameter Value Abbrev.

Fixed Costs per allocation

, Non-Existent
reallocation (= Setup Costs)

Existent F

Infinite Setup Costs” s

Variable Costs per amount of allocated|

. Non-Existent
resources per time

Existent 14

Variable Costs per amount of used resources

periim Non-Existent -
e e

Existent U

Variable Costs per amount of requested but

. . Non-Existent
not satisfied resources per time

Existent R

Variable Costs per

Non-Existent
served customer”

Existent P

Table 5: Cost Model Elements

2, Finitc fixed costs for the first period and infinite fixed costs for all other periods, This effec-
tively protib and thus simpl the resufung probler. We introduce this special
notation because this simplificauon will be used quite ofien in the MPRASE problems below.

b. This will in many problems be a negative term modelling the profit per served customer

Parameter Value [ Addition |
Linearitv Linear|

Non-Linear and Convex ox

Non-Linear and Concave cv)

Otherwise Non-Linear nl

Costs can vary between
different periods
Costs remain equal for all periods

Time dependent costs

the properties of those cost types. A budget constraint means the following: for

2 This is because if we model the problem mathematically we need the same kind of variable o
measure the number of reallocations independent of whether we use it for calculating real fixed
costs or as a technical constraint; see ¢.g. M L.

the related cost term that only a limited budget is available which can not be
exceeded. This can also be used in a plain technical context: If all setup costs are
1 and the budget is N we only allow a maximum of N reallocations/allocations.
With a time constraint we describe that - again using the setup costs as example -
there has to be a certain time interval between two reallocations.

To specify the cost model in the taxonomy we list all existent cost terms plus
the necessary additions for each cost term. Linear fixed and variable allocation
costs are described by “FV” while “F.V ;" would denote linear fixed setup costs
that are equal for all periods and non-linear changing variable costs.

2.2.5 Intermediary. Note that the intermediary is the component where solution

techniques towards MPRASE problems are conceptually located. Mathemati-

cally speaking, it captures the target function of the optimization problem that is

described by the taxonomy.

— Paramcter - Value B Abbrev.
Part of the Target Function All Cost Terms *

Cost-Constraint Costs are unconstrained

Budget constraint budg
Time constraint time

Table 6: Cost Model Additions

Parameter Value Abbrev.
B Parameter - All s
Cost Term EVURC..
Demand D
Budget / Technical Constraint(s) Budg / Tech
Provider’s capacity Cap
Uncertainty Deterministic -
Stochastic N
Discrete Stochastic D
Total Uncertainty T

Table 8: Edge Model
the six components as follows:
Cust | Provider | Resource | Cost | Intermediary | Edge.

Individual Cost Terms of the
- Cost Model
Table 7: Intermediary Model

FEVURC..

If all cost terms of the cost model are to be optimized (minimized) this is indi-
cated by “*”. A combination of the cost model “Fi,q,V"” with intermediary
model “V™ means that only the variable costs are to be minimized, the fixed setup
costs only have to remain below their budget constraint.

2.2.6 Edge. The edge model encompasses the nature of knowledge about the
problem parameters al the system edge. Deterministic knowledge means that we
know the exact values of the parameter for all periods. If the knowledge is sto-
chastic, we do not know the exact value of the parameter for the future periods
but have some knowledge of statistical nature about it, e.g., the probability distri-
bution. Discrete stochastic means that the parameter set is chosen from a number
of known scenarios. And we speak of total uncertainty if no assumptions about
the parameter can be made.

For the taxonomy we specify the parameters that are not deterministic and
describe their uncertainty with a small index (S, D or T). So if every parameters
is deterministic instead of the future demand which is totally uncertain we would
write “D¢”. If all parameters are deterministic we write “*”,

2.3 The Complete Taxonomy
We can now describe each MPRASE problem incamation by describing all of

1|1{1|FV|*|* thus describes the MPRASE problem incarnation with one cus-
tomer, one provider, a one-dimensional resource, linear fixed setup and variable
costs that are to be minimized under deterministic knowledge.

3. Selected Abstract MPRASE Problems

‘We now present two abstract problem incamations from the MPRASE frame-
work, The first is very complex and encompasses all problems discussed later in
this paper while the second is the smallest non-trivial problem of the framework.
We ate on the di ion of the second problem as the results come in
handy later for the other MPRASE problems.

3.1 General Model: Maximizing Social Welfare at the Edge

3.1.1 Problem Formulation. The overall goal at an edge between a number of
customers and providers is to maximize social welfare. Thus we first look at a
very general but rather complex MPRASE problem incamation which models an
edge between a ber of s and a of providers where the inter-
mediary's goal is to maximize social welfare.

We assume that there is a considerable number of customers, the intermediary
performs admission control on them. Additionally the providers are allowed to
dissatisfy a part of the customers’ demand (degraded quality}, although doing
this imposes costs on them. Thus the customer model is \Nac po™.

There are multiple providers with limited capacity; the provider model is there-




fore ,,Ncap“. We use a token bucket as resource model: ,,NTB “, There are fixed
setup costs for each (re)allocation. As a technical limit for the reallocations there
is a minimum time that has to pass between to reallocations at the same provider.
There are variable costs imposed for the token bucket parameters, degraded qual-
ity leads to costs as well as rejecting customers leads to lost profit, The cost
model is thus ,,FF; . .VRC“. The intermediary tries to maximize social welfare
and thus embraces ali costs (,,*“) and for ease of description we look at the deter-
ministic version of the problem, leading to ,,*“ as edge model.

in terms of our taxonomy the problem is described by

Nac.pq | Neap NP | FFyme VRC | *| %,

It is formulated in MIP (Mixed Integer Programming, [32]) form as M1. The
social welfare is the total utility of the providers and the customers, it is maxi-
mized in (1) and consists of the profit for accepting customer i minus the costs for
the resource allocation, consisting of the fixed setup costs and the variable costs
for the token bucket rate and depth, minus the costs for degraded quality.

For M1 we assume that all the cost terms are non-negative and that the profit p;
of customer i is lower than lelc:’b“ so that there is an incentive to impose
admission control.

In M1 the constraints (3) to (6) force sjjrto 1 whenever a reallocation is made,
indicated by a change in r;; and/or dj,. Constraints (7) and (17) set the variable
u;, to the unsatisfied demand but not smaller than zero. (8) updates [, the tokens
in the bucket at the end of period ¢ are the ones left from last period plus the cur-
rent rate minus the tokens used to satisfy demand as expressed by v;;,. (9) makes
sure that there are never more tokens in the bucket than the bucket depth at the
end of the period. The provider’s maximum rate and bucket depth is accounted
for by (10) and (11). (12} is the technical constraint that makes sure that realloca-
tions can only occur once every AT periods. (13) to (19) are the non-negativity
and binary constraints for the variables.

3.1.2 Solution. As M1 is a MIP problem it can be solved with standard MIP solv-
ing techniques like branch and bound with LP relaxation [32). This is however
not necessary. A huge system edge between customers and providers as assumed
in M1 cannot be solved centrally in the Internet because of the scalability issues
involved. There is no central intermediary in the Internet that could ever manage
ali req from the Proposals like [46] that rely on a central interme-
diary (there called broker) are generally regarded as unrealistic approaches.

The goal of M1 must be aimed at with distributed algorithms. Therefore we do
not intend to look for algorithms that solve M1, instead we use M1 to show thata
number of problems in the literature are actually subproblems of M1. Thus we

M1  Basic MPRASE Model
(Variables and Parameters)
Indices:
i Index for customersi= 1, ...,/
J Index for providers j= I, ..., J
¢ Index forperiods =1, .., T
Variablcs:

rii Allocated token bucket rate for customer i by provider / in period .

dy;,; Allocated token bucket depth for customer i by provider / in period 1.

Iy Amount of buckets left in token bucket of customer i at provider  at the end of pe-
riod 1.

Sy Auxiliary binary variable for accounting the sctup costs. Set to | if customer 7 reats
locates resources (bucket rate and/or depth) at provider / in period ¢ and to O other-
wisc.

a; Binary variable, sctto 0 if jis
otherwise.

control and to |

jected by the admissi

vy Amount of demand by customer f in period ¢ that is satisfied by provider /.

u; Amount of d d d of j inperiod .

Parameters:
b;,  Demand of customer / in period t.
cz, Sctup costs of provider j in period t.
c{/ Costs per allocated rate of provider/ in period t.
c 1t Costs per allocated bucket depth of provider j in period 1.
¢;, Costs per unsatisfied demand (degraded quality) of customer / in period 1.
'y Maximum total ratc available at provider j in period 1.
de: Maximum tota) bucket depth available at provider / in period 1.
p;  Profit for accepting customer /.
ryp = 0. Rate d for i at provider j before the first period.
djjg = 0. Bucket depth allocated for customer i at provider / before the first period.
ljjp = 0. Tokens in the bucket of customer f at provider / before the first period.
M Misasufficiently high number (max{5,| Vi, 1}).
AT Time interval that must pass between two (re)allocations.

prove the generality of the MPRASE framework and show that it is sensible 1o
look at these problems at systems edges in an integrated fashion.

3.1.3 Modelling Subproblems. To change the customer model to ,,1* parameter
1in M1 has to be set to 1. Dropping the ,,4C* (admission control) in the customer
model is reflected by forcing all a; to I in (19). Dropping the ,,.DQ'* (degraded
quality) is reflected by setting all ¢}, to infinity. Changing the provider model to
providers with unlimited capacity is done by setting all C;, and Cf, to infinity.
To change the provider model to ,,1* J has to be set to 1.

If the one-dimensional resource model ,,1“ shall be used instead of a token
bucket model all Cf., have to be set 10 zero. To drop ,,Fy;,,." from the cost model
AT has to be set to zero. If we only allow one allocation in the first period and for-
bid all reallocations ,,F™ in the cost model has to be replaced with F_ . This is
done by setting the setup costs cj, to infinity for all but the first peried.

Many of the possible subproblems of M1 are modeled and solved in the fol-
lowing parts of the paper.

3.2 The Single Provider Problem (SPP)

3.2.1 Problem Formulation. While M1 is the most complex and comprehensive
MPRASE problem discussed here, the single provider problem is the most sim-
ple non-trivial MPRASE problem. In terms of the MPRASE taxonomy it is
1|1]1|FV{*|*. There is one customer that has one-di | capacity d d
b, that must be fully satisfied at every discrete time interval 7 = 1,...,T. The edge is
deterministic. Capacity is requested from a single provider who is charging a
fixed setup cost ¢; for each allocation and variable allocation costs ¢ per
reserved capacity unit and period. A new allocation is constituted by a change in
the allocated capacity. Allocated capacity is available in the period the allocation
is made and in all subsequent periods until the next allocation is made. Note that
the altocated and not the actually used capacity causes the costs.

3.2.2 Exact Selution Algorithm. At first we want to look at techniques that
guarantee to produce an optimal solution for the SPP.

3.2.2.1 Branch and Bound with Linear Programming (LP) Relaxation.

A standard approach to solve the single provider problem SPP is 1o use a mixed
integer problem solver in order to solve M2, A typical algorithm for solving a
mixed integer LP model is a branch and bound algorithm that uses the LP relaxed
problem M3 of M2:

The resulting problem can be easily solved with the simplex algorithm. The
solution of M2’ is a lower bound to the optimal solution of M2, Branching can be

M1 Basic MPRASE Model
Maximize Zpia,—ZZZC;,A'U,—ZZZC;{”, Q)
Pt ]
4 u
- zzzcjldljl - chil“il @
Tyt [
subject to
Py 1 SM sy, Vi, Vj, Vi1 (6]
Pty S M- sy, Vi, Vj, Vi [C))]
dy—dy_ SM s, Yi, V),V )
dl/l-l_dl/lSM'st/l Vi, Vj, Vit )
u,,Za,b,,—Zv,], Yi, vt ()]
i
Ly Sy % rg—vy, Vi, vt )
1y < dy, i, Vi, Ve ®
Sorusc;, Y, vt (10)
Y dyusc, Vi, v (1)
i
14AT
2 Sy S 1 Yi,¥j,Vt = 1,..T-AT (12)
Tt
ry20 Vi, Y,V a3)
20 i, Y, V1 (14
sy€ {0, 1} Vi, V),V %)
;20 Vi, Vj, Vi (16)
1,20 Vi, Vi an
v, 20 Vi, Vi, Vi (18)
a;€ {0, 1} Vi 19)




M2  Single Provider Problem - SPP
Variables:
r, Amount of reserved capacity in period 1= 1,..., T,
5, Binary variable, 1 if a allocation setup is made at beginning
of period 1 = 1,...,T and 0 othcrwisc.
Parameters;
b, Demanded capacity in period ¢ = [,...T. Demand is as-
sumed to be greater than 0.
c': Setup costs in period t,
c: Costs per allocated rate in period 1.
ry Allocation level before the beginning of the first period.
M M is a sufficiently high number (¢.g., max {5,}).

T T
Minimize Zcfs,+ ZC:r, (1)

t te1

subject to

r.2b, - i8I T o (2)
r,—r,_SM-s, Vie=1,.,T 3)
r_y-rsM-s, vie=1,.,T 4)
s,€{0,1} ve=1,.,T (5)

M3  LP Relaxation of M1 (SPP)
The binary condition (5) is dropped from M1 and replaced by
0<s,<1 Ye=1,..,T (6)

done by fixing the highest not yet fixed 5, to 1 in the first and to 0 in the second
subproblem.

Even for this very simple MPRASE problem incamation an example with only
50 periods took already 33 minutes to be solved®. Problems with more than 100
periods could not be solved within several days. The reason for this is that the
structure of the problem does not make it very amenable to branch and bound
algorithms since s, are often set to very low values greater 0 resulting in a vast

AN experiments have been performed on a 400 MHz Pentium 11 processor using the
commercial MIP Solver CPLEX [11).

setup latencies, Therefore, we now want to investigate heuristic techniques which
do not guarantee an optimal solution but allow very fast allocation decisions. A
further reason for investigating heuristics becomes obvious when we extend the
SPP techniques towards other MPRASE problems later in this paper when we
sometimes end up having to solve huge numbers of SPPs.

3.2.3.1 LP Heuristic (LH). The LP heuristic is solving the LP relaxation M3 of
Section 3.2.2.] to determine the amount of allocated capacity. After solving M3
(using the simplex algorithm), any s, # 0 is set to | wherever necessary (that is,
where r, and r, ; differ). This leads to a relative high number of allocations since
fixed costs are sy ically und d by allowing continuous s,.

3.2.3.2 Merge Heuristic (MH). The
merge heuristic starts with a separate
allocation for each period and then
tries to merge two successive alloca-
tions into one if the saved fixed costs
of the allocation are less than the
waste of variable costs (see Figure 3
for an illustration of this).

cap./sec - — — = allocation
demand

allocation 1

allocation 2
waste allocation 2

e

e o
3.2.3.3 Split Heuristic (SH). The >

: L . : time
split heuristic starts with a single allo-
cation and then tries for all periods to
split existing allocations if the fixed costs for the new allocation are less than the
saved waste of variable costs.

Figure 3: Waste of variable costs.

3.2.3.4 Combined Heuristics (CH[x,y]). The merge and split heuristics can also
be used to further improve the results of other heuristics. In our simulations we
therefore iterated through merge and split in sequence until no further improve-
ment could be achieved (CH[MH, SH]). Moreover, we also tried the combination
of merge and split based on the result of the LP heuristic (CH[LP,MH,SH})).

3.2.4 Evaluation. In order to evaluate the performance of the heuristics we ran a
simulation over 100 random problem instances, each with 7=1000, fixed costs
¢; € [200,800) drawn from a uniform random distribution once and then set
equal for all 7 periods. Variable costs ¢| are drawn from {3,5] and remain equal
for p periods; p is drawn from [10,20].

underestimation of fixed costs which leads to very loose bounds. Therefore, we
strived for more efficient, yet still exact algorithms for the SPP.

3.2.2.2 Dynamic Programming (DP).
Let (1}, 1,) be the edge from vertex 1, to vertex f,. The costs (or length) of edge
(1}, 17) are defined as

]
Cltpty) = &+ Y ¢ max(b|re {ty, . ta]). )
LN
With this, the problem can be solved efficiently with the following algorithm
which uses the dynamic programming paradigm [1] and has a complexity of
O(T?) (see Figure 2).

Preparation:
Prepare an empty array cMin and an empty armay pred, cach
with 7 entrics.
Start:
cMin(1)= 1y, 17)
pred(1)=1

Iterationt=2, .., T
eMin(r) = min{C(i, 1) + cMin(i-1) | i =
pred(t) = argmin{C(i, 1) + cMin(i-1) | i
Result:

cMin(T+1) contains the minimal costs while array pred
stores the hops towards that solution.

Figure 2: Basic Dynamic Programming (DP) Algorithm.

3.2.2.3 Assessment of Execution Times. Table 9 shows the execution times for
all of the exact algorithms for two differently sized problem instances.

Algorithm B&B DP
T=50| 1920.7 0.0026
T=1000)| na. 9.0

Table 9: Execution times for exact SPP algorithms (in sec).

3.2.3 Heuristic Solution Algorithms. The last section introduced exact solu-
tions for the SPP, which while they provided fairly good performance still
required a certain computational effort that might be prohibitive in scenarios
where there is either a large number of periods to be planned for or where there is
only an extremely limited amount of time available for computation as, e.g., if
the resource allocation is done in response to signalling messages and thus affects

The demand b, is calculated by super-
posing a number of requests (for exam-
ple representing individual requests 20
from several users) with their interar- 2z ﬁ { ,E"‘ 1 A

i

g 150]
rival time modelled by a Poisson distri- £

Lok
. . . & o) Ly MK
bution (A = 4) and their duration “'%; | | ‘,x ,.b | M !r
modelled by an exponential distribution r :‘w 158

(1 = 20)*. For calculating the requests’ 1
capacity demand we draw from a uni- o W e w0 w0
form random. dlsl.nbuuon from one out Figure 4 Sample capacity demand
of three possible intervals [2,8], [10,20])

and [35,50] representing small, medium and high capacity requests. The interval
itself is selected for each request with a probability of 40%, 30% and 30%. Fig-
ure 4 shows a sample problem generated in this way.

Table 10 shows the results generated by the simulations, Here, allocation
length denotes the average duration of a single allocation and waste is the total
waste of variable costs for a single SPP instance (as illustrated in Figure 3).

As a very simple alternative heuristic and to have a reference value we also
used what we called the peak heuristic (PH) which makes a single aflocation with
the highest capacity demand over all periods. Expectedly, PH performed very
poorly compared to the other technigues, A much better performance at very low
execution time is achieved by the merge heuristic (MH): on average it imposes
less than 5% additional costs relative to the optimum and reduces execution time
by a factor of 4500. The conceptually very similar split heuristic (SH) is consid-
erably less effective. Looking at the allocation length shows the reason: it over-
does its job by splitting too often, resulting in too short allocation lengths and
thus incurring fixed costs more often although waste of variable costs is roughly
equal to MH.

The LP heuristic performs only marginally better than SH, although it con-
sumes considerably more time. This is due to its characteristic of underestimating
fixed costs which is also expressed in a very low waste and small allocation
lengths.

Ifl;ext, let us see how these results may be improved by the combination of heu-
ristics as described in Section 3.2.3.4. The combination of MH and SH leads
expectedly to better results than the techniques in isolation. Yet, even better

g

4-We have to admit that paramieter choice is rather arbitrary (albeit sensible) due to lack of
cmpirical data. However, we have experimented with other values without changing the
results in a significant manner.



results can be achieved by integrating LP with MH and SH.

In conclusion, the best results are achieved by CH[LP,MH,SH], yet the most
attractive trade-off between cost performance and execution time is probably
achieved by MH or CH[MH,SH].

3.2.5 Related Work. The deterministic single provider problem is treated in
more detail in [27] and [26]. The algorithms for the single provider problem are
extremely useful for many other MPRASE problems and are reused several times
in the following chapters.

4, Selected Uncertain MPRASE Problems

4.1 Background on Uncertain Optimization Models

Many d and opti in the areas of network design, traffic engi-
neering and other resource allocation problems are based on uncertain data due to
the relatively long timescales on which these mechanisms operate. In this section
we derive several fairly general strategies for dealing with uncertain problems of
the MPRASE framework.

4.1.1 Stochastic Programming, We will use methods from stochastic program-
ming in this section, Stochastic programming deals with optimization under
uncertainty and was introduced in 1955 by Dantzig [12]. Good overviews on sto-
chastic programming are given in [38, 63, 73, 24]. Many economical problems
are solved using stochastic programming; €.g., a case study that uses stochastic

4.1.2 Modeling Uncertainty. If there is no uncertainty with regard to a parame-
ter the value of that parameter is known at the time the decision is made. We then
call that p deter M2 was an le for a model which has only
deterministic parameters.

4.1.2.1 Types of Uncertainty. Parameters like future bandwidth demand which

form the basis for a decision or optimization process can be and in practice often

are uncertain. Several degrees of uncertainty can be d ished for a p

ter:

= Total uncertainty: Nothing is known about which values the parameter will
take. The best thing one can do in this case is to try to react flexibly and learn
from past values the parameter took. Section 4.3 gives an example for an
MPRASE problem under total uncertainty and presents an efficient and flexi-
ble self-leamning algorithm.

= Stochastic uncertainty: The exact value the parameter will take is not known
but the decision maker knows the probability distribution of the parameter
and can thus make some pred about the p [16] and [54] are
typical works that deal with stochastic uncertainty for bandwidth allocation
problems from a provider's point of view by assuming sources with on-off
traffic.
Discrete stochastic uncertainty: The parameter is drawn from a discrete set of
values, each value has a certain probability. The set is typically modelled as a
number of scenarios. This approach is discussed below in more detail as it is

programming for capacity pl g in the semicond industry can be found the approach taken in Section 4.2,
in [39).
X Costs Relative deviation from optimum costs Allocation Waste | Time (sec)
Algorithm length

av av stddev| max| av av av|
Optimum (DP) 452304 na. n.a. “na| 943 jr)m 9.000
[ PH 1010199 12381%)  32.96%|  5897%)  221.73%|  1000.00] 645804  <0.001)
Mil 474027 4.79%|  1.07% 205%|  7.15% 1065| 64257 0. 007
si 568759  25.93%| 10.43%  1296%)  73.65% 372 63295 0010
LP 554317|  2234%|  837% 6.12%  39.07% 262 424 0.452|
| CH{MR,SH] 469723 3.85%|  0.74%) 180%  5.34% 981 56064 0,005
[ CHILP.MH,SI) || 460404  1.77%  0.70% 0.39% 3.75% 893 41918 0.452)

Table 10: SPP simulation results.

4.1.2.2 Modeling Uncertainty with Scenarios. The idea of modeling uncer-
tainty with scenarios has its roots in scenario analysis [49, 47]. Scenario analysis
is a method for long-range planning under uncertainty. Conformant and plausible
combinations of the realizations of all uncertain parameters yield a number of
scenarios. These scenarios form the basis for the following decision process (¢.g.,
a production plan is based on the assumption that one of the three scenarios will
occur: “prices and demand go up”, “prices fall slightly and demand remains
equal”, “demand goes back and prices fall heavily™). An application example and
literature overview is given in [39).

However, describing uncertainty with a range of scenarios also makes sense for
short- and mid-range planning and is often used for stochastic programming [38,
12, 63] as it has some crucial advantages over using a parametrized probability
distribution:

» It is easy and intuitive for the decision maker to create the scenarios, they
could also be created automatically [22].

Scenarios are easy to analyze, their plausibility can be approved easier than by
creating a mathematical probability distribution.

Scenarios are flexible, every kind and number of possible events can be easily
accounted for in the scenarios.

Finally, scenarios can be used as a discretization of probability distributions
for numerical algorithms.

.

4.1.3 Robustness. The notion of robust plans stems from decision theory [63].
Decision makers are typically evaluated ex post by how good their proposed plan
performed in reality (i.e., in the scenario that actually occurred). As they can
loose their job and career when their plan performs badly in the occurring sce-
nario and this typically outweighs the praise if the plan performs well, clever
decision makers are risk-averse to a certain degree and biased towards robust
plans. A robust plan is a plan that is judged positive in most of the scenarios and
does not perform too badly in any of the scenarios.

4.1.4 Strategies for Dealing with Uncertainty.

In the following two sections we examine two MPRASE problems that act
under varying degree of uncertainty to demonstrate various strategies that deal
with uncertainty.

4.2 VPN Provisioning

4,2.1 Problem Formulation. In this section, we look at a customer that needs a
considerable, varying amount of network resources (e.g., bandwidth) over long
timescales, for example for a provider provisioned virtual private network (see

IETF working group ppvpn, [9, 21]), potentially in support of business-critical
applications. The demand fluctuates heavily over the course of a day with peaks
in the late momning and afternoon hours and far lower demand in the night hours
as well as over the course of the week with ups on the weekdays and downs on
the weekend.

Previous research work [23, 43, 74, 25] has shown that it is generally favorable
for both customer and provider to allow renegotiation of bandwidth allocations.
The customer saves costs during phases of low demand and the provider can
make better use of the capacity of the network. Among other findings, the simula-
tions in this section confirm that without renegotiation the costs increase consid-
erably (at least by a factor of 3 in our settings). A lot of research in the area of
virtual private networks is done to increase the flexibility of VPNs [14, 41, 36,
35, 48], a trend which will make renegotiations easy and common,

On the downsnde for critical applications renegotiation can be a dan-
gerous } are given no guarantees that they obtain
the higher amount of bandwnd(h they need for their peak demands as the provider
could run out of resources in such times Jeading to a rejection of the request.

This problem can be avoided if renegotiation is combined with reservation in
advance. Customers can now request their increased bandwidth ahead of time.
They can thus avoid the risk of running out of bandwidth for business critical
applications. We show in this section that they will usually still save costs. So
there are strong arguments for customers to use reservation in advance.

On the other hand with reservation in advance the provider has a better progno-
sis of the utilization of the network in advance which may atlow him in turn to
potentially allocate bandwidth more efficiently at further providers, yet the latter
recursion is not in the scope of this paper. We assume that if there is not enough
bandwidth for a reservation in advance that either the provider allocates the miss-
ing bandwidth at another provider or the customer changes providers.

In the VPN provisioning problem we take the viewpoint of a (e.g., VPN) cus-
tomer that reserves bandwidth (e.g., for one of the trunks of his VPN) in advance
at a provider (e.g., offering a bandwidth-assured VPN service). The problem for
the is that its d d forecast is ily uncertain.

The VPN provisioning problem is the MPRASE problem incarnation
1[1{1|FV]*|Dp as it deals with an uncertain edge (discrete stochastic demand)
between one customer and one provider, uses a one-dimensional resource model
and a linear cost model with fixed and variable costs. Our prior discussion of the
SPP M2 comes in handy now, as the VPN provisioning problem is quite similar
to it. The difference is the uncertain parameter b, for period ¢ =1....,T. Using the
scenario model from Section 4.1.2 we assume that we have a number S of scenar-




ios with the demand forecast b, for period ¢ and scenario s, each scenario has a
probability p; with

5
Zp\* ) (8)
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4.2.2 Strategies for Dealing with Uncertainty. Because the demand b, is now
uncertain, we can no longer use the algorithms of the SPP. We now derive strate-

straints for all scenarios, this is why such a strategy is also called fat solution
strategy [38, 63].

4.2.2.2 Chance Constrained Strategies. The deterministic strategies have no
real control over the chance that their plan violates the uncertain constraints with
the exception of DWC which makes sure that the plan is valid for 100% of the
scenarios. The chance constrained strategy CC allows finer control over the
chance that a plan is valid by introducing a factor & and forcing the uncertain
to be satisfied in at least o percent of the scenarios.

gies that can deal with the uncertain p s by; and evall their rot
later in simulations.
In g I, uncertain p can occur in the objective function and the

[, ints of an op problem. If the objective function is affected the
decision maker runs the risk of not achieving optimal results because of the
uncertainty. If, however, the constraints are affected the decision maker risks cre-
ating plans that are not valid or realizable in reality. Dealing with uncertainty in
the constraints is usually harder and more complex, yet more important than
dealing with uncertainty in the objective function [63]. In our problem constraint
(2) of M2 is affected by the uncertain parameters b,.. We now present some gen-
eral strategies how to deal with problems that have uncertain constraints.

4.2.2.1 Deterministic Substitution Str For the d istic substitution
strategies we substitute the uncertain (scenario dependent) parameter b, with a
deterministic (scenario independent) parameter b, and then solve the resulting
deterministic problem M2 with the algorithm presented in Section 3.2.2.2.
Several substitutions can be used. An obvious one is to use the expected value

s
b= 2¥ pb, ©)
fei
as substitute, we call this strategy DED (deterministic with expected demand).
To avoid und d a surcharge o. can be added to the substi-
tute. We call this strategy surcharge strategy (DSUa):

imating the d

(10)

For the deterministic worst-case strategy DWC we use the highest value of all
scenarios as substitute:

by = max{b,,|Vs} )
A plan based on the worst case values yields a solution that satisfies all con-

given scenario.

The recourse f; has to be penalized in the objective function. The RER does
this by weighting fj; with c,f and adding the expected value over all scenarios to
the objective function(12).

In order to implement the recourse strategy the algorithm of Section 3.2.2.2
can be reapplied with some modifications. It uses as new cost function

tos
Clrp t1y) = ¢ + 207"|1+ Z szclffu("lz-’nv’z), (15)
(=t t=fs=1
the optimal rate 7, (that leads to minimal costs
Copltintz) = Clry, (15, 13), ), t5) between 1, and 1,)
Fop{tu13) = r[Clr by, 85) = (16)
min(C(r,l‘,tz)|Vre 10, max(b,|le [t 43131}
and the recourse f, (7, t),1,) which is defined as
Sty 1) = max{0,b,—r} a7n
As ¢y is fixed, the minimum costs C(ry,, 11, ;) from (15) can also be written
as

LE 3
Cer, t,ty) = 20:r+ z Zp,c{max{o, b —r} (18)
1= IER RS
which can be rewritten as
5

I3 2 S
C(r, lisls) = [z c,']r - 2 Zp((';’min{(), r-b,} (19)
(=1, 1

1=ns

Clrtyi83) = C, —C, (20)
n
Function (1, = [Zc:]r @
11,
is a linear strictly mc ici ing function of r.
nos
Function C; = ¥ 3" p,c/min{0,r~b,} @2)
ftepr=1
is a wide-sense increasing piecewise linear function that starts with negative
values. Its slope is d ing and b zero for all

r>max {by| 5=1,...,5, t € [1,,1;) }. For a local minimum the slope of the differ-

The chance constrained strategy is much harder to implement than the deter-
ministic substitution strategies. The MIP model and an efficient algorithm to
impl the chance cc d strategy CC are presented in [28), there also a
simplified version of the CC strategy is presented, the so called separated chance
constrained strategy SCC.

4.2.2.3 Recourse Strategies. The CC strategy controls the risk that a solution is
invalid to some extent. Recourse strategies control the risk in a different way. In
M4 a recourse strategy with expected recourse (RER) is given.
M4  Bandwidth Allocation with
Expected Recourses (RER)
Variables sec M2 and
Ji« Recourse for scenario s = 1,...,$ for period r=1....,T.
Parameters scc M2 and
c{ Recourse costs for seenario s= 1,...,S forperiod 7= 1,...,T.
b,, Demanded capacity in scenario s = (,...,S
for period 1 =1,...,T.
p, Probability of scenario s = |

Minimize Z(‘f-", + z(':'l + 221"":’ Ju (12)
. ' ros
subject to (3), (4), (5) and
rtfie2by, Sl £3)
| £.20 Vi, Vs (14

In constraint (13) the new variable /;, measures by which amount the demand
remains unsatisfied in scenario s for the resulting planned allocation in period ¢,
r,. The CC strategy only takes into account that demand is unsatisfied or not, the
recourse strategy also takes into account how much demand is unsatisfied in a

ence of these two functions C has to be z_cros. As the slope of C isthe difference
between the constant positive slope of C; and the decreasing slope of C; itis
zero only for a single point t, or a single interval [t,, ;1. C therefore only has one
local minimum which is then at the same time the global minimum. If there is
only a single minimum it can be easily found with a binary search over all
r =_b, with t€ [1;, ;] and s=/,....S. This results in a worst-case complexity of

o log(Ts)).

4.2.3 Evaluation. A simulative comparison is used in [28] to assess the merits of
the different strategies. Realistic demand patterns for 20 scenarios with peaks in
the late moming and afternoon and downs during the night in accordance with
[57] and [37] are used to describe empirically found traffic patterns. The exact
method is described in [28]. The possible demand of one scenario is depicted in
Figure 5 together with the allocation made by the RER strategy. As can be seen,
it is possible that a plan does not allocate sufficient bandwidth for the demand of
some periods for a given scenario. To account for such failures of the bandwidth
allocation strategies the unsatisfied demand is penalized with penalty costs that
are 10 times as high as the variable costs.

In [28] the robustness and general performance of the strategies are evaluated
in detail, we summarize the results here, the minimal, average and maximum rel-

Demand
400 Bandwidth Allocations of RER

D 50 100 150 200 250 300 t

Figure 5: Real demand for one week and the allocations
made by the RER strategy

5 The slope in a local minimum or maximum is zero. The difference function here obvi-
ously has no maximum



ative deviation from the optimal costs are depicted in Figure 6:

The robustness was evaluated based on the worst case performance of the strat-
egies. The RER strategies show the best worst-case behavior, followed by SCC
and DSUy 5. The RER and SCC strategies are more robust concerning the varia-
tion of their parameters & respectively ¢ than DSU.,

DED and DSU with lower or higher surplus perform very badly, as does DWC
and CC. Those strategies cannot be considered robust, this is important for the
DWC strategy which is based on the worst case demands and thus never leads to
penalty costs. But its basic plan is still much more exp than the bina-
tion of penalty and the planned costs of the other strategies. Only when the pen-
alty costs are set higher than 100 times the variable costs the DWC strategy
performs acceptably. Thus the DWC strategy cannot be recommended for a wide
range of parameter sets of the bandwidth allocation problem.

DED and DSU with low surplus factor are also not robust. Only if the surplus
factor of DSU is set correctly its performance is acceptable; it can thus not really
be considered robust,

SCC and RER can be considered robust. SCC bases its calculations on quan-
tiles of the demand distribution and thus uses more informatien from the demand
distribution than the surplus strategies DSU which explains the better perfor-
mance. RER performs very good, obviously the fine-grained control over the risk
makes it more robust than the deterministic strategies.

Next, the general performance is evaluated based on the average performance
over a number of simulation runs with higher uncertainty. The ranking in perfor-
mance is quite similar to the ranking regarding robustness above. The RER and
SCC strategies perform best and can be recommended.

DSU again only performs well if the surplus factor is set correctly. DED and
DWC as well as CC perform relatively badly and cannot be recommended.

The conclusions from the experiments are that the RER strategy should be
used. The recourse costs should be set similar to the estimated (calculatory) pen-
alty costs of unsatisfied demand for best performance. However, the strategy is
robust against a wrong setting of the recourse costs, it still performs very good as
long as the recourse costs are in the same order of de as the
penalty costs.

If the computational complexity of RER is too high, SCC can altematively be
used, it performs a little worse but still better than all other strategies and is easy
to compute.

The experiments allocating resources once per week without renegotiation lead
to about 3 times higher costs than those yielded by RER or SCC. This shows
again that renegotiation can save a considerable amount of costs. We have

duction program [29].

4.3 Decoupling of Time-Scales

While the last problem was an example for a problem with (discrete) stochastic
uncertainty we now discuss one with total uncertainty. We present a framework
to solve such problems that is useful beyond MPRASE.

4.3.1 Problem Formulation. Different time scales of QoS systems may arise
due to different QoS architectures like RSVP/IntServ (Resource reSerVation Pro-
tocol/ Integrated Services) [6], DiffServ (Differentiated Services) [3], or ATM
(Asynchronous transfer Mode) [4) being used but may also be due to different
QoS strategies followed by providers even if they employ the same QoS architec-
ture, Choosing different QoS architectures as well as different strategies results
from serving different needs, e.g., for an access and backbone provider. An
access provider that has a comparatively moderate load and directly connects to
end-systems may favor a fast time scale system responding immediately to the
end-systems requests. A backbone provider that connects access providers
respectively offers transit services is generally faced with a drastically higher
Toad of individual transmissions, so that reaction on the time scale of individual
requests is usually not possible and a slower time scale system needs to be
enforced.

When different time scales are in operation in heterogeneous network QoS sys-
tems, it is simply not possible to query the underlying QoS system each time an
overlaid system is altering its state. Here, the system operating on a faster time
scale needs to be smoothed when overlaying it onto a system that operates only
on slow time scales.

A realistic configuration for access and backbone providers may be, e.g., that
access providers use RSVP/IntServ to suit their customers' needs while a back-
bone provider uses DiffServ with a Bandwidth Broker (DiffServ/BB) to allow for
some dynamics but on a slower time scale. This scenario is shown in Figure 7.

Here it is also very obvious why a BB is generally not able to react to individ-
ual RSVP requests that are arriving at edge devices between access and backbone
provider. Because if it did, the BB would need to operate at a throughput of
requests that is proportional to the square of the number of access providers it
serves - that is not scalable. Here a decoupling of the different time scales is nec-
essary. The decoupling can be achieved by building “depots™ of capacity which
stabilize the fluctuations of the “nervous” demand curve for backbone capacity
by individual requests. From another perspective, the decoupling technique can
also be viewed as introducing a combined local and global admission control for
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Figure 6: Relative Deviation from the minimal costs

explained why reservation in advance is vilal to avoid the risk of not getting
enough bandwidth in peak periods. Even if that is not the case reservation in
advance can be better than short-term reservations: short term reservations will
typically be priced higher because they leave the provider with a much higher
planning uncertainty and the risk of underutilizing his resources. The results
show that if short-term allocations are priced only 15 to 20% higher than long-
term reservations the latter combined with a robust algorithm are cheaper than
the optimal short-term allocations.

4.2.4 Related Work. In [72], service provisioning for distributed communication
networks with uncertain data is studied. Several service provisioning models are
presented that account for several types of uncertainty. However, no efficient
solution algorithms are pr d and no lations are carried out. Another
related work is [15], here a service provider offers computational services and
tries to maximize profits. In our work we consider a network service and take the
perspective of the customer. Some of the methods presented in this paper were
also successfully applied to a different problem domain, the planning of a pro-

Invokation of BB
for global admission control

RSVP/IntServ
Access Networks

Incoming
Flows

\\

Figure 7: Combined local and global admission control,

the DiffServ/BB network. Global admission control is only invoked whenever
local admission control at an edge device runs out of resources in its capacity
depot. In such a case, local admission control on an edge device tries to obtain
more resources from the global ad control repr d by the BB. This
scheme allows to trade off resource efficiency for a more stable and long-term
capacity demand presented to the BB,

This problem of d pling different ti les is the MPRASE problem
incamation 1|1}1jFV|*|Dp, it is similar to the SPP M2 but acts under total uncer-
tainty. In the next section we present a flexible, self-leaming, and powerful heu-
ristic scheme.

4.3.2 Solution Strategies. Acting under total uncertainty we propose the use of
an adaptive heuristic as a way to learn the statistical properties of the system in an
on-line fashion. The scheme we propose is highly useful in an environment
where there are unpredictable, but rather long-term fluctuations in the demand for
capacity. In general, the adaptation to behavior that would have been “good” in
the past is the best a heuristic technique can do under complete uncertainty.

The question what is “good” behavior can be assessed by comparing the out-
come of an on-line heuristic with (he optimal solution of the SPP that results by
looking back at the past n periods.

We now first present the adaptive algorithm framework and next a heuristic



h(8) that fits into this fi
means of simulation.

ork. The combination of both is then evaluated by

4.3.2.1 The Adaptive Framework. Let us assume that we have a parametrized
heuristic #(8) for the on-line decoupling problem and that we use an exact algo-
rithm for the off-line decoupling problem, which is the SPP with the now deter-
ministically known demands of the last # periods. There are essentiaily two
different modes of adaptation that can be directed by good behavior as achieved
by the cost-minimal cover of the past CDC:

Adaptation in Action Space. In this mode, the heuristic’s parameter (vector) 8
is adapted such that the behavior of the CDC cover produced by applying the
heuristic deviates as little as possible from the optimal cover with respect to some
characteristic as, e.g., the number of reallocations,

Adaptation in Performance Space. In this mode the heuristics parameter
(vector) 6 is adapted such that the cost of the solution produced by applying the
heuristic #(8) deviates as little as possible from the optimal cost obtained for the
SPP.

Both adaptation modes have three parameters:

The frequency of adaptation determines how often the adaptation of the heu-
ristics parameter is carried out.

The time window of adaptation determines the length of the past period that is
taken into account for the adaptation.

The accuracy of adaptation determines how thoroughly the parameter space is
searched during the optimization problem for the adaptation.

We call this adaptation scheme ODAH (Optimum-Directed Adaptive Heuris-
tic).

4.3.2.2 An On-line Heuristic. Now, a very simple, yet reasonable heuristic is
introduced that deals with the problem under total uncertainty at each period. It is
called thresholded depot excess (TDE) as it ensures that the capacity depot held
for decoupling is never above a certain threshold. It is applied in each period:

If the demand level rises above the current allocated capacity the change is
always followed (assuming that there is enough capacity at the underlying QoS
system). Whenever demand decreases, TDE checks whether the step is smaller
than a certain fraction a € [0,1] of the old allocation level and if that is the case,
TDE follows this step.

Of course, the value of parameter & is crucial for the success of TDE. If a. is set
to00 high, then TDE is too “nervous”, and will produce too many changes in the
level of the depot and if it is set too low, TDE is too “lazy”, and will waste a lot

control path events, Furthermore, the introduction of the watermark technique is
rather ad hoc, and resembles the TDE algorithm without any adaptation.

One piece of work that explicitly deals with different time scales of access and
backbone networks on the control paths is [51). Here a backbone QoS signalling
is proposed which integrates mechanisms in order to dampen the faster time
scales of access networks. This mechanism is based on hysteresis and quantiza-
tion for traffic aggregates which are based on sink trees towards destinations. The
applied algorithm is to always reserve capacity in multiples of a certain quantity
Q. Whenever the reserved capacity level of £ x 0 is no more sufficient, it is
increased to (k+ 1) x 0 and the new quantum is only relinquished when the
reserved capacity falls below (k1) x Q. This is very comparable to the simple
strategy of the TDE algorithm, and uses no adaptation.

4.4 Admission Control Problems

Admission control is a widely recognized problem at system edges. The basic
admission control problem is Njl cyp|1|P|*|D or with an n-dimensional resource
model (e.g., token buckets) NJl¢p{N|P|*|D and consists of maximizing the profit
(from the accepted customers) from a provider’s point of view or the total utility
from a user’s point of view. Admission control is discussed broadly in literature,
e.g..[7, 16, 42, 43, 45, 55, 60].

5. Selected Deterministic MPRASE Problems

In this section we di several selected deter ic MPRASE problems.

5.1 Provider Selection

The basic provider sclection problem 1{NI1JFV[*[* and 1[Nc,,|{[FV[*[* could
be regarded as the dual problem of the basic admission control problem (Section
4.4). Unlike the latter it is not treated broadly in literature. Because of this, we
treat it here in more detail than the admission control prot

5.1.1 Problem Formulation. Let us that there are a number of providers
offering capacity to a single customer. The customer has to decide which or
which combination of providers to select and if and when to change the provid-
ers.

We assign index j = 1, ..., J to the different providers. We can model this prob-
lem with M5. This model mainly differs from the SPP M2 in the additional index
j. Furtherore, we now have to model the case that in a certain period no capac-
ity is allocated at a certain provider. This is captured by the introduction of
demand defect variables, d;,, and the constraints (27) and (28). Here, & needs to

of capacity.

4.3.2.3 Combining Both, We now integrate TDE into the ODAH framework so
that the p o is adap ically. We call the resulting heuristic
ODAH- TDE.

As discussed above, there are two modes of adaptation in the ODAH scheme:
adaptation in performance space and in action space. In principle, both kinds of
adaptation are possible for ODAH-TDE. The adaptation in performance space
works by simply adjusting TDE’s parameter ¢ such that the difference in costs
between TDE(ax) and the optimal solution of the SPP (see Section 3.2) is mini-
mized. This minimization is done by a simple recursive grid search [19] through
the interval [0,1] for parameter o as there is no simple relationship between o
and ¢ for a more intelligent search to exploit. See [61] for details.

For the adaptation in action space, it was decided to use the number of reallo-
cations as basis for the similarity relation between covers, so that in this case the
difference in the number of reallocations is to be minimized. We can use an inter-
polation search [19] since o and n have a simple relationship: » PE.2 is mono-
tonically increasing in o. This is, of course, much more efficient than the
recursive grid search for the adaptation in performance space mode. See [61] for
details.

4.3.3 Evaluation. In simulations (described in detail in [61]) we experimented
with both adaptation modes. Both modes performed very similar but adaptation
in action space is more efficient due to the less compute-intensive adaptation
step.

The simulation results show that ODAH-TDE generally achieves a good and
robust performance over all types of requests. In particular we experimented with
different fifetimes of requests, where ODAH-TDE was able to achieve over 90%

of the cost saving performance of a hypothetical optimal sch which operates
under certainty, i.e., solves the SPP exactly.
ODAH thus rep a robust sch for heuristically dealing with the

(X}

I decoupling p under total uncentainty. In particular, it should
work well even if flow characteristics as the lifetime of requests change since it
shows good performance for all types of requests in the simulations.

4.3.4 Related Work. [70] deals with a two-tier model which consists of an intra-
and i fomain resource it. BBs are representing each administrative
domain in the interdomain r Based on , a

watermark heuristic at edge devices is used to trigger inter-domain signalling. In
contrast to our work, the triggers are based on traffic measurements instead of

M5 Provider Selection Problem - PSP
Variables:
rj; Amount of allocated capacity in interval ¢ from provider .
s, | if an allocation for provider / is made at the beginning of]
period ¢ and 0 otherwise.
d;, 1 if allocation for provider j drops to 0 in interval f and 0
otherwise.
Parameters:
b, Dcmanded capacity in interval 7= 1, ...,
be fully satisficd in cach period.
c;, Sctup costs, i.c., cost for an atlocation in period ¢ from pro-
vider j, we assume f;,> 0.
c;, Variable capacity costs, i.¢., costs per capacity unit per pe-
riod (specific per provider and period).
rjy Allocation level beforce the beginning of the first planning

7. Demand must

pcriod
Mmlmlzez ZCJ,( Sy —dy)+ 2201, y (23)
=1 -1

sub)cc((o

J
ZI'/,zb, Vi=1,.,T (24)
j=1
ra=ry _M s, . Vj = (25)
i ,,_M , V) = (26)
d;+er, <1 Vj = (27)
L(ry+ryy)2d, Vj= (28)
d, e {0,1} V) = (29)

€ {0,1} V) = (30)
r,,zo vj = @31

be chosen small, e.g,, € = 1/(max{b,}), whereas M and L need to be chosen
large, e.g, M = max{b} and L = 1/(min{b,|b,>0}).



In the next step we use additional parameters, ky, to model by (32) that each
provider j can offer only a limited amount of resources ;, in period ¢. This leads
10 model M6, the capacitated PSP (cPSP).

Cap d Provider Selection Problem - cPSP
Minimize (23)
subject to (24)-(31) and
X, Sk, Vi=1,.,),¥Vt=1,.,T (32)

5.1.2 Solution Algorithms. The uncapacitated PSP represents a situation where
a customer’s demand is relatively small compared to the provider’s supply such
that the resulting problem consists mainly in the selection of the cheapest pro-
vider. The capacitated PSP (cPSP), on the other hand, rather deals with a good
mixing of providers to achieve low total costs.

Note that the problem complexity of PSP is much higher than that of SPP (sec
Section 3.2). First, the demand of each period can be satisfied by 27~ different
combinations of providers and second, if two or more providers are selected to
satisfy the demand of one period there is a high number of sensible shares
between these. This higher complexity is also illustrated by the execution times
of applying the standard branch and bound solver to model M5, A small PSP
with 7=20 and J=4 already took 1920.8 seconds to solve while the corresponding
SPP with =20 only took 1.2 seconds. For any larger PSPs execution times were
no longer reasonable. With this complexity in mind we go directly for heuristics
and try to exploit our knowledge about the SPP.

5.1.2.1 Static Cheapest Provider Heuristic (SCPH). A rather straightforward
approach to tackle the uncapacitated PSP is to transform it into J SPPs, one for
each provider and each with the full demand. The SPPs can then be solved by any
of the SPP algorithms discussed in Section 3.2, Afer solving the J SPPs we
select the provider of the SPP with the least costs. That means we obtain a solu-
tion where one provider is used for all periods.

5.1.2.2 Dynamic Cheapest Provider Heuristic (DCPH). One  drawback of
SCPH is that it does not allow provider changes, Using a technique similar to the
DP algorithm from Section 3.2.2.2 we can eliminate this characteristic of the
SCPH. The resulting algorithm is called dynamic cheapest provider heuristic
(DCPH). This is also illustrated in Figure 8.

5.1.2.4 Other Heuristics for the PSP. Of course, we can again use the results of
the LP relaxation for M5 and M6 to obtain a solution for PSP/cPSP.

We also adapted the merge heuristic to the multi-provider case and to the
capacity constraints and combined it with DCPH and LP in order to investigate
whether it can improve their solutions.

5.1.3 Evatuation. In order to evaluate the PSP heuristics described above we ran
a simulation over 50 PSP instances similar to the simulations in Section 3.2 with
100 periods. We used 10 providers and different levels of capacity. The average
different costs the used strategies yielded are depicted in Figure 10 for an unca-
pacitated and a capacitated PSP. In the latter probiem, 2.58 providers were used
on average at the same time. We use (he DP algorithm from Section 3.2.2.2 for
the SPP subproblems.

uncapacitated PSP capacitated PSP
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Figure 10: Some Resuits for the PSP

The results for the uncapacitated PSP show that DCPH is expectedly signifi-
cantly better than SCPH. This, however, comes at a drastically increased execu-
tion time (243 s contra 0.4 s per instance). While the LP heuristic alone does not
perform good, it performs well if combined with the merge heuristic (roughly 2.3
s execution time). Please note that running merge on the solution of DCPH was
ineffective because within its range (i.e., only one provider at a time) the DCPH
solution is already optimal.

In the capacitated case the results are similar but SCPH comes closer to the
results yielded by DCPH. This can be explained by the fact that now because of
the limited capacitics also the modified SCPH can and has to use more than one

We use the DP algorithm from SCPH
Section 3.2.2.2, but the minimal costs Pl
C(ty, 15y for satisfying the demand z [RrrtEsa s RIS
between two periods ¢; and 1, are »
obtained by solving J independent SPPs
for the interval [t;, 5] and choosing the ol DCPH
cheapest provider. Unlike the DP algo-
rithm from Section 3.2.2.2, this. algo- P2 -_— e —
rithm does not necessarily lead to the B
opun:alll :e;su" az“ d(:e‘si ?Ol laI:lOW :or "? Optimal Solution
constellation as depicted for the optimal p,
solution in Figure 8. Again, we have the p2 -F
freedom of selecting any of the SPP P3 -

algorithms for solving the sub-SPPs.

Figure 8: Provider usage of the
different algorithms for the PSP.

5.1.2.3 Adaptation of the Heuristics for the Capacitated PSP.

If the capacity of one provider is not
enough to satisfy the whole demand we
can no longer simply select a single pro-
vider in SCPH and DCPH but have to
combine several providers. We do this

SCPH
Pl
P2
P e e R VAR T
P4

by first cropping the demands in ecach DCPH

SPP to the capacity of the according ;:; I £

provider. We then solve the SPPs forall ¢ = e
J providers and select the provider that  p4 [ r———l
has the minimum costs per satisfied e
demand. The overall demand is then | Optimal Solution
reduced by the capacity served by the ) ey [ep—
selected provider and the procedure is  p3

repeated until no more demand remains

N alimemnl
P4 [Fipan S P ten] 3079 TR
re

unsatisfied. Example allocations are
shown in Figure 9.

Please note that the non-zero demand
assumption in Section 3.2 can now no longer be held and model M2 as well as
the heuristics of Section 3.2 had to be adapted to cope with periods of no
demand.

Figure 9: Provider usage of the
different algorithms for the cPSP.

provider.

Summarizing, DCPH leads to good results if the execution time does not mat-
ter, otherwise SCPH and the combination of LP and MH can be recommended.
The results from the SPP came in handy and the good heuristics for the SPP
could be adapted and perform well here again.

5.1.4 Related Work. The provider selection problem is discussed in more detail
in [27]. As we mentioned, there are not many works about the provider selection
problem. [65] analyses dynamic provisioning in a multi-provider environment
and gives very interesting insights into the global behavior of such a system by
game-theoretic observations.

5.2 Token Bucket Dimensioning

5.2.1 Problem Formulation. For any kind of QoS guarantees traffic has to be
regulated. Traffic shapers and policers are common elements in both IntServ [6]
and DiffServ [3]. Token buckets are the most popular traffic regulating mecha-
nism, especially as they are easy to implement, see, e.g., [34, 30, 31, 67, 59] for
the role of token buckets in a DiffServ environment. A token bucket is specified
by two parameters, the rate r and the bucket depth B. The sender accumulates
tokens in the bucket with a rate of r. Unused tokens are stored in the bucket, there
can never be more than B tokens in the bucket, surplus tokens are lost. In order to
send data tokens are spent (e.g. per byte or per packet). The bucket starts with
8- B tokens (0 <8< 1). We assume that this parameter § is fixed.

Consider the following problem: A single token bucket (1, B) has to be dimen-
sioned for a flow x, (f = 1, ..., T} which is known in advance as when streaming a
pre-recorded video from a server towards a client. We assume that the allocation
of r and B imposes cenain (real or fictive) costs C, and Cp, the relation between
those two coefficients expresses the trade-off between rate » and buffer B. Our
aim is to find the optimal token bucket (v, By).

We call the problem the single token bucket dimensioning problem (STBD), it
is the problem incarnation 1/1|Nyg|Fo V[*[* of the MPRASE framework. To
some extent this problem has already been discussed in literature:

According to [68] the first work to efficiently calculate the minimal bucket
depth of a token bucket for a given token rate - and that is a subproblem of the
STBD - was done by Partridge and Garrett in 1994 [52]; their algorithm Send-
Now is also described in [68]. An algorithm for the same problem which is more
flexible as it does not rely on a full bucket in the first period is also derived in
[68). Both papers also deal with calculating the minimal bucket depth for a given
rate when a certain queue is added before the token bucket in which the stream



can be hold while it is waiting for enough tokens to be accumulated.

However, these works look at the optimal B for a given r but do not calculate
the optimal ».

Keshav [40] proposes as a heuristic for token bucket dimensioning to choose
the “knee area” that the B,,,(r) curve shows, outside which small changes in r
resp. B can only be p d by greater changes in the other parameter. How-
ever, Keshav does not propose a trade-off function with which the preference of
and B can be weighted and influenced and he proposes no algorithm to find the
area. Also other works [54] show that the “knee area” is not straightforward to
find for long range dependent traffic.

5.2.2 Exact Algorithm. The optimal token bucket (r,,, B,) for a given stream
can be calculated as follows:
The optimal B for a given rate rand § # 0 is:

Bnpl= max(”npll' Bnplz) (33)
88,,,= max ( z x - rx') (34)
F 1SvsT =
v
Bopin= 2S:£isr(2x,-r(v-u+ 1)) 35)
P

The proof is given in [25].

Next, the optimal # has to be found. We use a cost function to describe the
trade-off between rate and bucket depth. With a linear cost function the bucket
costs are a function

Popt ()= ¢,-r+ cg-B,,(r). (36)

We can find the minimal costs of this piecewise linear function using a search

algorithm similar to regula falsi which is described in [25].

5.2.3 Related Work. On the first view the static token bucket dimensioning
problem resembles lot sizing, lot scheduling and related problems [34]. Unfortu-
nately, the nature of the resources involved is fundamentally different and the
mathematical structure is different enough that the algorithms and methods do
not fit,

Apart from the works mentioned above in 5.2.1 there are some works in the
area of Quality of Service (QoS) dealing with IIjNTB|F, V|*|Dg and
I1INTB|F o, V|*|*. Glasmann et.al, present in [20] a simple heuristic for guess-
ing the token bucket parameters for video conferencing flows. The heuristic con-

token bucket p s on the achieved sending rate are analysed. That paper
operates with different assumptions (TCP instead of real-time traffic) and is thus
complementary to the algorithms in Section 5.2.2.

5.3 Renegotiable Services

5.3.1 Problem Formulation. In Section 5.2 we have shown how to calcutate the
optimal token bucket (ro5, By} for a given flow of length 7. Video streams often
have longer scenes with a relatively high or low transmission rate. Fitting a single
token bucket usually leads to a high resource waste during the times with a rather
low transmission rate. For example, the cost minimal single token bucket for the
Asterix movie of 58] with ¢,=1, ¢5=0.] leads to a solution where the bucket is
only used in 89 of 40000 periods®!

For a longer video stream it thus makes sense to allocate a series of token buck-
ets instead of a single token bucket. But we have to assume that there is a certain
reservation overhead involved for the setup of each new token bucket and we
want to avoid that a token bucket is used for a too short time period. We account
for this again by introducing setup costs which are applied whenever a new token
bucket is used. Another possibility would have been 1o allow a new token bucket
only every n periods. The latter, however, is less flexible and can usually be
achieved by choosing setup costs adequately, as our results show.

Please note again that we do not necessarily mean real costs, they can also be
fictive / calculatory:

» For each allocation, independent of its duration, fixed setup costs ¢’ are
incurred.
The token rate » induces costs proportional to height and duration:
prnt)=c ro1.

» The costs per bucket depth B are similar: p(B, 1) = & B T,

« The 8- B tokens in the bucket at the beginning of an allocation induce the
following costs: py (8- B) = .5.8.

The DTBD can be formulated as a quadratic optimization problem (see M7)
and is thus generally extremely hard to solve exactly with standard optimization
techniques [32]. .

Target function (37) of M7 minimizes all costs consisting of the setup costs,
the costs for the rate, the bucket depth and the tokens the bucket is filled with

€ For higher Cy the number of periods increases but still remaing on a very low level, For Cp=C, the
number of periods only increases to 203 periods.

sists of setting » to the mean transmission rate of the video and B to the number of
tokens that are then required to avoid packet drop. This work does not consider
the potential trade-off between r and B but shows some realistic values for video
streams.

Dovrolis et.al. [13] analytically derive from the empirical envelope the optimal
token bucket parameters. It considers the trade-off between » and B and tries to
minimize the reserved rate R of an IntServ guaranteed service flow given a delay
bound. This problem can be seen as a subproblem of the STBD problem in this
paper with a fixed trade-off which minimizes R.

Falkner et. al. [16] use a cost function for token bucket dimensioning with min-
imum costs from the perspective of a single user. They, however, assume an ATM
network and on-off traffic which is not known in advance. They solve the result-
ing non-linear optimization problem with the Lagrangean method.

Bruno et. al. [8] study token bucket dimensioning for aggregate VoIP sources
for the DiffServ Expedited Forwarding service class. Their LBAP is an aggrega-
tion of independent fluid on-off sources. They analyze the effect of token bucket
parameters on the non-conformance probability. They, however, do not use a cost
function or something similar and do not present an algorithm to derive the opti-
mal pair of token bucket parameters.

Kulkamni and Gautam study in [44] the sizing of K token buckets with admis-
sion control resp. network utilization in mind. They aiso formulate and solve
token bucket dimensioning as an explicit optimization problem but their perspec-
tive is fundamentally different to ours. While we consider minimizing the costs
of one customer and expect the customer to choose his/her token bucket parame-
ters they do not look at costs but try minimizing the sum of the rates of X cus-
tomer’s token buckets at the same time, taking the network’s point of view.

Procissi et. al. analyse in [54] the influence of long range dependence in traffic
on the dimensioning of token buckets. They use two cost models, one of them
similar to the one used in this work, to derive an analytical model for estimating
the token bucket parameters. This model explicitly takes into account the long
range dependency of traffic, the B ,,(r) curve is obtained for traffic modeled as a
Fractional Brownian Motion process. As a result they can quite well estimate
good token bucket parameters for Internet traffic. They, however, show no algo-
rithm for calculating the optimal parameters for a given trace as we did.

Naudts [50] describes an efficient algorithm for calculating the optimal cell
rate r*(t) for a given 1 for the ATM generic cell rate algorithm (GCRA). As the
GCRA can also be described as a continuous-state leaky bucket this is equivalent
to calculating the bucket rate for a given bucket depth.

In [59] a token bucket marker is used for TCP streams and the effect of the

M7 Dynamic Token Bucket Dimensioning (DTBD)
Variables:

r, rateinperiod r=],..

B, bucket depth inperiodt = 1,...,T.

¥, numbcr of tokens in the bucket at the beginning of the period 1 = /... T.

5, binary variable, sct to { if the token bucket p {r, B;) were changed at the
beginning of the period 1 = /....,Tand 0 otherwisc. This variable is necessary to ac-
count for the setup costs <.

Parameters:
x, tokens used in period 1 = 1,..,,T10 send data.
" cost coefficient for the rate r,,

¥ cost cocfficient for the bucket depth B,

¢ cost coefficicnt for cach token in the bucket at the beginning of a new allocation pe-
riod.

¢ fixed setup costs per redimensioning.

8 bucket starting factor (8 € [0, 1] ). r

M big enough constant to rescmblc infinity numerically,c.g. M = 2 Xi

t=1

T T T
Minimize ¢’ Y s, +¢" Y r,+” Y B+ 8 Y (2,8)) 37
t=] t=1 t=1] t=1

subject to
rty2x, forallt=1,..T (38)
»sQ —:,)B,+:,SB, foralit=1,.T 39
yEW-2)y,_ytr_ %) tsM forallt=2,.T (40)
B,-B,_y<Ms, forailt=1,..T “n
B,_,-B,< Ms, forallt=1_.T 42)
Fo—r_ 1 SMs, foralit=1,..T (43)
r_—r<Ms, forallt=1,.T (44)
rob,y, 20 forallt=1,.T (45)
s,€{0,1} forallt=1,..T (46)




after redimensioning.

Constraint (38) makes sure there are enough tokens available each period. (39)
makes sure there are no more tokens in the bucket than the bucket depth (if no
redimensioning was performed that period - indicated by s5=0) rsp. the bucket
starting factor (after redimenioning). Similarly, (40) accounts for the new and
used tokens if 5=0, that is no redimensioning was performed in that period. After
redimensioning (40) imp no additional limit to y,.

(41) to (44) force 5, to one if the bucket was redi joned. Redi ioning
equals a change in B, and/or r,.

(45) and (46) are the non-negativity and binary constraints for the variables,

5.3.2 Solution Algorithms. The MPRASE algorithms from Section 3.2 can

again be adapted to also solve this problem. The solution is a series of token

buckets which are themselves again the result of a STBD process. The different
buckets are decoupled. We can solve the single token bucket dimensioning STBD
problems (see Section 5.2 and [25]) between each couple of periods u,v with

1 Su<vsT and store the optimal TB parameters (#; B) and related costs of
these T(T+1)/2 problems. We then have to find the optimal combination of those
token buckets with a modified DP algorithm (Section 3.2.2.2), the algorithm is

described in more detail in [25].

Because of the relatively high complexity of the modified DP algorithm we
also strive for heuristics. A possible heuristic is to use the exact algorithm above
and change it so that before we solve the STBD between periods « and v, we have
a look at the previous solution found for « and v-1:

« If the rate r(u, v-1), the token bucket size B(u, v-1) and the number of tokens
remaining at the end of the period v — 1 y,_,(, v-1) are high enough to satisfy
the demand of the new period v, then we extend the previous solution by one
period to include v. This way the parameters are not always optimal but we do
not have to solve the STBD for each sub-problem.

+  Only if the previous parameters and tokens left are not sufficient we solve the
STBD for (4, v).

We call this heuristic the dynamic programming heuristic DPH. We also
adapted MH, SH and CH[SH+MH]’ from Section 3.2.3 to this problem.

8

5.3.3 Evaluation. Our basic simulation® uses the video traces pattems of [58].
These 21 traces are from MPEG versions of different types of video sequences

7 Test experiments showed that starting with SH yiclded slightly better results.

® The simulation was done with Java as programming language on a PC with a 700MHz Pentium 111
Processor and a 256 MB RAM.
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Figure 13. Relative cost difference (logarithmic)
DTBD without renegotiation as a STBD. MH, SH and CH are slower than DPH
for small 7 but scale better and are thus faster than DPH for higher 7. CH can
never be faster than SH as the first step of CH is to execute SH. MH alwavs takes
longer than SH and most of the times even than CH.

Presumably more important than the execution time is the quality of the results
measured by the relative difference in costs compared to the optimal costs
returned by the exact algorithm as depicted in Figure 12 and 13. For a single
token bucket the additional costs are far higher than for a serics of token buckets.
The difference increases with the number of periods 7 which is obvious as the
potential benefit of being able to change token bucket parameters increases with
T This also clearly shows that it generally makes sense to use a series of buckets
and to look at the token bucket redimensioning problem DTBD as it can very sig-

(movies, cartoons, TV, sport, ...). One period represents one group of pictures (12
frames, 0.5 seconds), 2000 periods equal little more than 15 minutes of a movie.
The average bit rate of the movies is 0.536 Mbps, the average peak rate of the
movies js 3.54 Mbps. The cost coefficients are = =1 =01 and
¢/ =10°, the bucket starting factor is set to & = 0.5.°

The DTBD was solved for different values of T ranging between 50 and 2000.
We tested the exact algorithm DP and the heuristic DPH, MH, SH and CH. We
also fitied a single token bucket (STB) instead of a token bucket series using an
exact algorithm from {25]. We measured the CPU time, the numbers of alloca-
tions and the relative difference between the calculated cost and the optimal costs
(yielded by the exact algorithm)
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The following figures 11 to 13 are based on the average over the results from
each of the 21 traces.
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By looking at the computation times in Figure 11 one first notices that the
exact DP algorithm takes by far the longest time to solve as can be expected as it
has the highest computational ¢ ity. The DPH heuristic is much faster than
the DP algorithm and scales a little better. This indicates that in practice it can
avoid solving a lot of STBDs because it can extend the previous token bucket by
just one period in most of the cases. The fastest way is of course to solve the

% Variation of these p showed no sig infl on the basic results, sce [25).

nificantly reduce costs by a factor of 2 and more,

The DPH algorithm on the other hand is always extremely close to the optimal
solution, resulting in less than 0.25% higher costs. SH performs quite bad, MH is
better but as can be expected CH is better than SH and MH and roughly 2% away
from the optimal solution.

When increasing the setup costs by a factor of 10 the number of allocations
goes down by a factor of roughly 3 to 5 as can be seen in Figure 14 which shows
that the setup cost are an effective way of influencing the number of used token
buckets. Even with 10 times higher setup costs, using a series of token buckets
instead of a single one the total costs can still be reduced by a factor of 2, the
ranking of the algorithms in computation time and performance remains the
same, for more details see [25].
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Instead of using the MPEG traces we now use randomly generated traffic using
the ffi_fgn traffic generator [53, 64] generating three patterns following a frac-
tional brownian motion process. The first pattern is a pure brownian motion pat-
tern (Hurst parameter H=0.5), the second a fractional brownian motion pattern
with a low autocorrelation of the values (Hurst parameter #=0.7) and the third is
one with a strong autocorrelation of the values (Hurst parameter 7#=0.9).

The performance of CH and DPH is depicted in Figure 15 and 16. First of all,
one notices that the performance of the algorithms degrades the lower the Hurst
parameter is. The performance drop is higher for DPH than for MH, if there is no
autocorrelation in the traffic (H=0.5) CH even yields better resuits than the DPH
heuristic. This can be explained as follows: DPH extends the token bucket of a



previous calculation by one period ¢+1 if the bucket is big enough. This extension
is the better the more the traffic of +1 depends on the values ¢, #-1, ... that is the
higher the autocorrelation is.
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Figure 16, Performance of DPH
for different Hurst parameters

In summary, DPH has the most attractive trade-off between computation time
and the quality of the solution. As it is extremely close to the optimum for long-
range dependent traffic and orders of magnitudes faster than the exact algorithm
it can be used instead of the exact algorithm.

For very high 7 CH might be attractive, too, as it scales better than DPH. For
short-range dependent traffic it is better than DPH, too.

an integrated manner as they have many similarities, allow the reuse of algo-
rithms and the simplification towards easier already solved MPRASE problems.

We encourage readers to make use of the framework and taxonomy and plan to
further investigate interesting MPRASE probiems.

5.3.4 Related Work.

Renegotiable services are also popular in literature. The 1J1|Nyp|FVI*|* prob-
lem is discussed broadly in [25].

There are some works, e.g. [5], [71], and [66], that consider optimal smoothing
for guaranteed service streams. These works are different from this work in that
in principle they smooth a given stream to fit into a token bucket by adding a
playback delay and using buffers while this work tries to fit a single rsp. multiple
serial token buckets to a given stream.

While this section tries to fit a series of token buckets to a given stream [56]
tries to fit a multi-level token bucket (multiple token buckets starting at the same
moment) to a video stream.

There are also a number of works on renegotiable services (23, 74, 43). Gross-
glauer et. al. [23] propose the renegotiable constant bit rate service and show how
it can be used to increase total network utilization. Knightly and Zhang [74, 43]
extend this work to the renegotiable variable bit rate service (RED-VBR). They
also consider sending an MPEG movie known in advance. They show that with-
out renegotiation for certain MPEG streams only an average utilization of 25%
can be achieved. They propose a heuristic called off-line algorithm to calculate a
series of token buckets for the ATM VBR service that achieve a far higher aver-
age utilization. This heuristic needs an input parameter that controls how often to
segment the stream. This parameter is difficult to set. Our work presents an exact
algorithm and an extremely close yet much faster heuristic instead. Knightly and
Zhang also present a second heuristic (on-line algorithm) that does not require
the traffic to be known in advance and they propose an admission control scheme
for renegotiable VBR services.

6. Conclusion & Outlook

This paper has described a framework and taxonomy for a class of optimiza-
tion problems related to resource allocation at system edges over multiple time
periods (MPRASE). The taxonomy consists of six submodels describing the indi-
vidual facets of the different problem incarnations: customer, provider, resource,
cost, edge and intermediary. Each submodel can be described by a short abbrevi-
ation, the combination of them then identifies the problem incarnation exactly.

We have presented two abstract MPRASE problems including the single pro-
vider problem (SPP) - the smallest non-trivial MPRASE problem,

After that we presented two uncertain and three deterministic MPRASE prob-
lem incarnations and showed that MPRASE problems occur often - although yet
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