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Abstract

Traflic matrices are fundamental {or network design,
capacity expansion and traffic engincering. A Traffic
mmairix describes the rate or volume transfered between
the ingress and egress nodes of a network.  Internet
traflic 1s dominantly TCP traffic and thus adapts o
changing network conditions like routing or capacity
This effect s svstematically neglected when using nor-
mal 1raffic matrices. This paper investigates the eflect
using three analytical models. It also shows how to use
elastic traffic matrices for capacity expansion problems
that do not neglect this effect.

]  Introduction

A Traffic Matrix M describes the average rate r,; for
4 given time interval between the ingress nodes 1 and
egress nodes 7 of a network A

L J

Traffic Matrices are fundamental for network design
and raflic engineering problems. Normally, the traflic
matrix entry 7, 15 expressed statically as a scalar (we
call a trafhic matrix with static predictions r,, a static
traffic matriz). However, Internet traffic is dominantly
TCP traffic that adapts to changing network conditions
like ronting or the link capacity. this eflfect is systemnat-
ically neglected when using static traffic matrices. The
effect of capacity changes was probably neglectible in
umes when the Internet was dominated by web traf-
fic that consisted of huge numbers of short lived TCP
connections dominated by the slow start and not the
elastic congestion avoidance phase. Traffic matrix en-
tries At these times mainly increased if the customer
base or browsing behavior changed.

Nowadavs, however, most of the traflic |1, 2] is gener-
ated by peer-ta-peer (P2P) apphcations. These appli-
catinns are first of all more bandwidth greedy and sec-
ond they generate more long-lived and therefore reac-
tive TCP connections over which the dominating pant
of traffic 1s exchanged: To support this claim we did
some measurements in the Edonkey network. It is with
52% of the gencrated flesharing traffic |1} the maost
successful P2P flesharing network in Germany. Our

[

measurements [3} show that an average Edonkey user
1s sharing 578 files with an average size of 217 MB, a
large proportion of those files being movies. An av-
erage active TCP connecction between two clients s
with almost 30 minutes definitely long-lived. During
this time on average 4 MB are transferred, this volume
is mostly limited by the ADSL upload capacity that
is typicallv almost fully used by the P2P application.
This supports the assumption of this paper, that long-
lived reactive TCP connections start dominating the
[nternet traffic

Besides P2P traffic. future multimedia Internet traf-
fic like streaming videos can also he expected to be
TCP friendly and therefore show similar reactive ef-
fects as long lived TCP connections that we are looking,
al in this paper [4].

Because of this it is time 1o investigate the effect of
the elasticity of long-lived TCP connectious in therr
congestion avoidance phase on traffic matrices used as
input for network design and copoaaly crpanston prob-
lems. Network design like |5, 6] 1s concerned with creat-
ing a new topology which typicallv includes a capacity
assignment. subproblem. A capacity assignment prob-
lem describes the problem of assigning capacity - most
nnportantly link bandwidth - w0 a network: a capac-
iy capansion problem s a special form of a capacity
assignmment. problemn. where the structure of the net-
work and the initial capacity are given. the capacity
can only be increased in limited ways (e.g. doubled or
in discrete steps). Al these problems are based on a
traffic matrix and usually use static traffic matrices as
input and ignore the effect that the new capacity (or
capacilv change) has on the traffic matrix nself. We
use the verm elastie traffic matrr for a traffic matrix
M with entries r;, = f(...}) that caplure the elastic-
ity of the TCP wraffic and investigate the use of these
elastic matrices in this paper.

OQur paper is structured as {ollows. After this intro-
duction we discuss related work. We then present three
different network models in Section 3 that we use as an
analytical foundation for our further analysis In a set
of experiments we use our network models ta analyze
the effect of the network capacity on the traffic matrix
entries 7,. The results show that in many cases the
elasticity of the traffic matrix should not be neglected.
Therefore, in Section 5 we extend the typical capacity
expansion problem to account for the elasticity of the
traflic matrix and test the model in a simulation. We
conclude with a short summary.
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2 Related Work

2.1 Traffic Matrices
i7] gives a good overview over the two distinct ap-
proaches to measuring a trallic marix: The duect e
surement approach as advocated by [8] uses e.g. Net-
How to collect How information. This information is
evaluated offline o derive the traffic matrix using the
routing tables active at the measurement time that also
Lave to be recorded. This approach is storage space
and router-CPU intensive but contrary to other ap-
proaches allows to derive the point-to-mmultipoint traf-
fic matrix. A point-to-point trafic matrix A models
the traffic between ingress node ¢ and egress j while the
point-to-multipoint traffic matrix M models the traf-
fic and ingress node ¢ and captures the fact that this
traffic can exit at more than one egress j.

Most of the other works favour derunng the traffic
matriz from link measurements as they are more read-
interfaces via SNMP

ple network management protocol) in production net-

ily available for all router sim

works. The problem with this approach is that esti-

é
mating the traffic matrix is an ill-posed inverse lincar

problem: In a network with N ingress/egress nodes
the tralfic matrix size is O(NV?
O(N) measurements - the problemn becomes massively
underconstrained for large N To solve this problem
additional assumptions e.g. about the traffic and the
routing have to be made. Approaches to this problem
can be classified into statistical tomographic methods,

optimization-based tomographic methods and other

while there are only

mcthods.

Statistical tomographic methods use higher order
statistics of the link load data like the covariance be-
tween two loads to create additional constraints, Ex-
amples are [9. 10, 11]. [9] and [10] assumne a Poisson
tratlic model, [11] assumes a Gaussian traflic maodel

Optinuzation-based  totnoyraphic methods sclect a
solution out of the solution space of the under-
constrained problem that optimizes a certain objective
function using methods hke linear or quadratic pro-
gramming. [12] is a simple example for this approach.

Classified as other melhods are approaches that comn-
bine the tomographic methods with other methods like
sravity or choice models. [13] that use a logit choice
model that captures the choices of users (where Lo
download from) and ncuwork designers (how Lo inter-
connect the point of presences/POPs). The decision
process is modeled as a utility maximization problem.

[14] combines a optlimization-based tomographic
methods with a generalized gravity model. A gravivy
model can for example be used to estimate the traffic
between edge links by assumining that the traffic between
¢ and ; is proportional to the total traffic entering at ¢
multiplied with the total traffic exiting at

[15] uses an information theoretic approach that
chooses the traffic matrix consistent with the measured
Jdata that is as close as possible to a model inn which
the souree and destination pairs are independent and
therefore the conditional probability () that source

¢ sends traffic to J is equal 1o the probability p(;) that

the whole network sends traffic o

All the works mientioned above derive sta

matrices from measurement data. Traditio
design problems are placing links, nodes and assigr
link and node 5

capacities, typical examples are t

They use static traffic matrices. Contrary to thal
this paper, we assuiie that have estimated the
traffic matrix as a starting point using one of the met
clasticity of tu

ods above and try o mcorporate the

traffic into the matrix
While we focus on changes of the traffic matrix be-

cause the capacity of the network has changed

context of network design and capacity expansiot

focuses on traffic engineering and investigates how

routing performance in form of networl

affected by the fact that traffic matrices chan

and cannot be predicted exactly

[17| presents an OSPF traffic engineering approact

that also takes into account that traffic matrices change

over time (e.g. the course of a day) and tries

imize OSPF weight changes. Their approach is to op
tirmize over multiple traffic matrices

2.2 Related Network Models

Some works use network models similar to our

of Section 3. The performance models of [18, 19, 20|
are used to analyse quality of service (QoS) in DiffSery

[21] TP networks with two service classes. They assute

a Poisson arrival process and exponential service
M/M,/1/B)

the DiffServ resource models with the

The fixed point model of [20
['CP foru

We are using a similar approach but we also 1nves
and nou-Poisso

Ligdle not-exponeutlal service uimnes

.‘\mu, we rlormance

arrivals imvestigate p
text .01 I.l’l\\‘()lk design and (('x[)«'t(‘.’._\' exXpalnsion ana not

QoS aud therefore do not use different service classes

|22} preseuts an analytical TCP model for multipic
flows and verifies it agamst NS2 simnulations. Suniler o
our mode! they use a TCP and a network submocder ang
calculate the fixed point of the two models. Their TCP
submodel however, is wore fine-grained and complex
than our TCP formula based TCP submodel. This
however, comes at the cost of loosing a closed lorn
formulation of the whole model. The authors wmves-
tigate different network submodels and find that the
simple M/M/1/B gives sufficiently accurate resulus

(23] introduces a queuing model that s based on
multiple ON/OFF arrival processes which allows tc
count for long range dependency. It is extended to b
reactive Lo congestion by slowing down the rate simnilar

to the way TCP is reacting and can thus be used

performance analysis of TCP generated burst
Contrary to this approach we combine the TCP {o

mula with standard queucing theory



3  Network Models

In this section we present the analytical {oundation
of onur analysis. Several petwork models of increasing
complexity that describe the behaviour of the traffic
flows through a network with respect to the capacity
of the links and nodes of that network are described.

3.1 Basic Model

We model a subnetwork A of the Internet consisting
N .l‘.ful /

\" nodes The traffic through
the network consists of long-lived greedy TCP connec-

directed links

ms and is represented by TCP macro-flows. A TCP

1acro-flow represents a number of TCP connectious
that have the same ingress node i and egress node
ol A We assume that the connections of a macro-flow
experience on average the same loss p and delay ¢ when
iraversing the other networks that are not modeled in
detail with this model from their source to their des-
fmation We assume that the macro-flows modeled in
our model are small compared to the other fows flow-
ng through the external networks and that because of
this the external loss p and delay § are independent of
the rate of the macro-flows. The macro-flows are elas-
tie, their rate is described by a TCP-Formuula and adapt.
to the network conditions of A. There are a nuinber of
works about predicting the average TCP throughput
depending on the loss and delay properties of a flow
[24. 25, 26, 27. 28]. As we arc not interested in details
tike the duration of the connection establishment etc.
we use the rather simple square-root. formula (|24. 25])
mothis work

An ontput queue is attached to each link. Tu the
hasic mindel we model the queues as MM /1/B quenes
[20. 30, This s not the most realistic approach: First,
hecanse Internet traffic is not described very well by
a Pmsson arrival process [31]. Second. becanse packet
sizes are not exponentially distributed an exponential
service rate is also not realistic |32, 33|, However. the
M M 1.8 model is one of the simplest queuing mod-
els and used in related works like 20, 22]. We will
mvestigate more realistic queueing models later in this
Lection

The basic network model with elastic traffic is de-
scribed by the non-linear equation system in Figure 1.

The total loss probability of a macro-flow ij can be
approxtinated by py, = p+ Z,Eu,‘) m far small loss
probainlities. Similarly. for small lnss probabilities at
alink 7 the utilization (2) can be approximated by p; =

ST
roiley,

These simplification can reduce the computational
effort 1o solve the resulting non-linear equation system
by up Lo 25%. In order to assess the systematic error of
these approximations we ran a number of experiments
on the Deutsche Telekom topology [34] with different
parameters of t,;, B and ;. We solve the non-linear
equation svstem from Fig. 1 using MAPLE (35| and
compare the difference in pr. The wmaximum crrors of

different settings are listed in Table 1. They are

Indices
y=1,..N Node i rsp. 3
l=1...,L Link rsp. output queue {
Parameters
Wiy Path froin node 1 to node ) and back
ty; Size of macroflow between node pair 1.
i Service rate of link rsp. queue !
q Av. exl. queueing - total prop. delay
P Av. ext. loss probability
Variables
Ty Rate (pkts/sec) of macrofiow betw. 1.7
o Utilization of link rsp. queue !
i Loss probability of link rsp. queue {
q Queuing delay of link rsp. queue (

Ty = — _ 1]
(3 ’“’*‘”‘\/?\/1—( [T tv=pl 1=
e wy, tEw,,
Yigli# g (1
1 1
=Y e = v (2
ey =m0
(1.7)il€un,
B
Py ,
== Vi (3
" ( pl) l—-/)ln“'] )
1 - p pr -
= - g (B 1)V (4)
H 1 -

Figure 1. The Basic Model

[ Approximation FM&;&;H&]’ Error {%] |

for p, | 00004795 |
~ for o 0.0009097

Table 1. Assessment of the Approximations

extremely small and can be neglected.
Next we discuss the possible extensions of the basic
model.

3.2 Discrete Service Times

We first investigate how we can extend the basic model
from Section 3.1 to account for more realistic service
times. IP packets can differ drastically in their size
(40 to 1500 Bytes) [32, 33]. We assume a service time
proportional to the packet size and use a discrete dis-
tribution with ¢ = 1, ..., C classes of differently sized
packets to model the service time; si. is the packet
size of class ¢ and N, the relative frequency of class ¢
with 3, h. = 1. Using sp; as the line speed of link
! the probability density function of the service time
chstribution s given as pdf(x) = 3 h. - 6(z — #)
1 forz =0
The probability distribution func-
tion is PDF(z) = 5 he - ulx - if) where u(z) is
the unit function w(z) = 1 for z > 0 and 0 other-
wise. In order 1o model the queneing delay we use the
Pollaczek-Khinchin formula for the queueing delay of

2
E(z)- (1 + 5 120 with the

where d(z) is the Dirac impulse 6(z) =
and 0 otherwise.

an M/G/! queueq =

225



oo

expected service time' E(z) = — = f_cx oopdf () dr =
oo he- i*l and the square of the coefficient of variation
J7 (- E(2)? pdf (x) dx
—E@T

For the loss probability p; we turn to the M/G /178
queue. There is no general closed forin for the loss
probability of the M/G/1/B or the queue length dis-
tribution of the M,/G/I qucue. We can derive the loss
probability of the M/G/1/B queue exactly if we know
the state probabilities ﬂffc
according M/G/1 queue [.

[30, 36] list an iterative algorithm based on Markov
chains that can be used to numerically derive n,(?).
We do not want to use this Markov chain algorithmon,
first. because it does not give us a closed fori for the
loss probability that we need for our equation system
and. second, because for that approach we would have
to solve several complex integrals numerically while we
are interested in an analytical form. Therefore, we use

Var(z

) for queue length & of the

a different way to derive the state probabilities "1\?) of

the MG I queue: The Laplace transform of the ser-

vice time distribution pdf(z) is b; (s} = >, he- e TV
[29. 36] show that the ransformed state probabilities
follow the Pollaczek-Khinchin transforin formula for
the queue lengthQ(z) = (1 - Pt)b—l-bf,\(i;—:;_),(l - z).
With the inverse Z-transformation on (Qi(z) we can
derive the state probabilities ﬂl(soJ We
can use the Taylor series expansion to analytically
transformn the quite complex term Q(z) buck:rrt(sc) =

d‘(
pam Q2) =0

M G/1/B queuc is now given as pp =

analytically.

The loss probability of the related
| - —L

B
" 1»7(“’

using the state probability 7 of the Huite queue
=

(B m T e : 5%
4——— [36]. This leaves us with closed form

210

non-linear equations for loss and delay of the M,/G/1/B

queue with a discrete service time dist

3.3 Self-Similar Traffic

Internet traffic measurements show sell-similar. heavy-
tailed and long-range dependent properties [31]. The
burstiness of Internet traffic on larger timescales can
significantly influence the loss probability. To take this
effect into account we use the Gaussian approximation
of aggregate traffic and the following loss formula based
on |37. 38

LERY

t is the optimizer from the infimum condivion, ¢ is the
timescale, B is the buffer size, A and p are the arrival

2

o Hurst parameter o7 18
2 2 42H

given as o, = 0" A

rsp. service rate da given

'We keep using u for the inverse of the expected service ime
as we did with the M/M/1./B queue.

4 Elasticity of Traffic Matrices

The influence that the elasticity of a trathic matrnx has

e
when the capacity of the network changes while

other conditions remain the same (ceteris paribus

The effects described it

being analyzed in this section
this section are normally neglected when stati
We base our analysis on the

matrices arc used

ent network models of the previous section

4.1 Single-Link Experiments

We start our analysis with an extensive series of exper-

nnents ona single link. The Figure 2 shows the rat

new _old

increase —'J,—m—"— of the syrmumetrical macroflows ove
the Single~lin‘l)\' Lopology for different queue lengths /
(measured in packets) and different values for the ex-
ternal loss p and delay ¢ when the link capacity g8
doubled g)¢¥ = 2 uf™. Figure 2 (a) lists the results
for the basic model of Section 3.1, (b) shows the resules
for the model with discrete service times of Section 32
We used two different service time distributions. disu
bution A consists of 50% packets with a size of 40 an
50% packets with a size of 1500 Bytes. Distribution
consists of packets of size 1000 Bytes only. We assun.ed
a line rate of 1 Mbps and had 1o use a rather low quen
length of B = 10 packets because the loss probalnliv
formula gets too complicated for larger values of 51w
be handled analytically.

Figure 2 (¢) shows the results we obtain if we assuue
the loss probability of the model for sell-similar tratiic
from Section 3.3. We used a Hurst parameter of { =
0.75, a hine rate of 1 Mbps, an average service packels
size of 1000 Bytes and the according average service
time.

[Looking at the results we notice that for all three ai-
ferent network wodels and most parameters the general
behaviour of the traffic is the same. Up 1o a certam uti-
lization threshold of the analyzed link the trathic largety
unaflected by the inercase in capacity, Then the tralic
mcreases very quickly. If the initial utibization of the
link is high cnough the analyzed link forus a strong
bottleneck and all additional capacity is used up con-
pletely by a rate increase of 100%.

The step is steeper for the M/ M 71,1 network moue
than for the other two models that can be deemed mor
realistic.

4.2 Different Topologies

We now analyze the elasticity in

crease for more complex topologies thar

topology of the previous experiments

the results for three different

Ltopologiles, the ba

of the Deutsche Telekom [34|, a dumbbell topology
with a single bottleneck link and three nodes on eacl
side of the bottleneck and a star topology with ont

We varied the valu

he net

internal and 4 external nodes

and 104

and recorded the rate increase As

of t;; between 10 doubled 1

WOI'K Cd-

pacity for each t,,
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(b) Results for Discrete Service Times
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{c) Results for Self-Similar Traffic

Figure 2: Single-Link Experiment. Results

one can see, the different topologies lead to similar re-
sults While most of the rate increases are very small
{morc than 50% of the times the rate increase was be-
low 10%), there are a significant. number of times where
the rate increase was very high. Because of the differ-

[a9)

ent paths the different Aows take through the topology
the rate increase can be higher than 100% if a series of
links is doubled in capacity for a flow.

Toiekom Backbone

_ e f
£ |
.
: |
|
| | _
|
oW {
|
° R L T
rate Increase [%]
Figure 3. Rate Increase for Different Topologies
Conclusion I a traflic matrix is used in the context

of network design or capacity expansion the elasticity of
the traffic can be quite important as our results show
The elasticity of the traffic can only be neglected up
to a certain threshold of the utilization of a link. Once
that threshold is passed, the error can be quite signifi-
cant.

5 Capacity Expansion

Capacily expansion of an existing network topology are
an important problem for ISPs. In this section, we
focus on a special type of capacity expansion problem
with elastic traffic:

The provider measures and evaluates the link utiliza-
tion (as available e.g. froon SNMP data) every period.
If the utilization p; exceeds a certain threshold £ on a
link I the capacity expansion for that link is triggered.
The motivation for this approach is that the quality of
service of a best-effort network is only good if certain
utilization thresholds are not cxceeded [39].

The capacity of a link is expanded by doubling the
bandwidth of that link as new line cards are added to
the routers connected by the link. The expansion will
take some time, we assume that the link capacity is
effectively doubled to the beginning of the next period
after the one that triggered the expansion.

Traffic is given in form of the parameter t,; of equa-
tion 1. The actual traffic volume passed through the
network is elastic and will react 1o the capacity expan-
sion.

In “classical” network design and capacity expansion
algorithms the elasticity of the traffic is ignored. The
problem is that by increasing the capacity of a link the
trafic lows through that link will increase their rate
and therefore the utilization also of the other links they
are flowing through. This can lead to the situation (a)
that immediately after the expansion the threshold ¢
on other links will be exceeded which is not predicted
by the classical model with static traffic matrices and



Telekom how  often ] in percent of ‘
| Backbone avoided | total num-
ber of link
| (.'Xpd”SlO“b
Effect (a) 23 21.5% |
Effect (b) . -

Table 2: Simulation Results

it will take an additional period until they can be ex-
panded, too. Furthermore, if a link is an extreme bot-
tleneck for some flows it is possible that the utilization
will not significantly decrease if the link is doubled.
This effect (b) can also not be predicted with static
matrices. This effect was for example observed when
the UK ISP Rednet quadrupled their DSI, access link
capacity.

Using the our models of Section 3, we can predict
the traffic increase rsp. utilization change of 1 planned
network expansion and avoid the effects (a) and (b).
We use the following simulation as a proof of concept:

Using the backbone topology of the Deutsche
Telekom |34] we gencrate g trafhic matrix with random
entries 7;, between 1.0 and 5.0. We use this for the
inital parameters t,;. We choose a starting line-rate
of 1 Mbps for all links that is doubled for each link
before the actual simulation until all link utilizations
are below 70%. We then simulate 10 periods, at the
beginning of each period each trafic matrix entry is in-
creased randomly between 5 and 20%. Our basic model
of Section 1 is used to calculate the link utilizations -
we assume that the result of these initial calculations
represents the SNMP data collected by the provider.
We used an external loss of 2% and delay of 100ms.
This results in a not too aggressive behavior of TCP
The expansion of a link [ is triggered if it has a utiliza-
tion of p; > € =0.75.

In order to capture the elasticity of the traffic ma-
trix we can again use our basic model to predict the
effect of the triggered capacity expansions in order to
avoid the effects (a) and (b) described above. We do
so and measure how often these elfects were avoided.
The results are summarized in Table 2. Because we
increased the rates only in moderate steps and allowed
to increase the capacity in each period effect (b) did
not occur in our simulations and could therefore not
be avoided by the model. Effect (a) however occured
23 times and could be avoided by using our prediction
of the clastic traflic. This shows that our concept works
and significantly helps in capacity expansion decisions.

6 Summary and Outlook

In this paper we presented three analytical network
models of varying complexity that predict the queucu-
ing behaviour (loss and delay) and the traffic behavior
of a network. We assume that long-lived TCP connec-
tions dominate the traffic behavior and therefore model
the elasticity of these connections using the TCP for-

mula
Because of the elasticity of that traffic it will adapt

Lo changes in the network, e.g. to capacity increases

The capacities of operational networks are increaset
constantly as the traffic demand (e.g. the customer
base and the downloading behavior) increases rapidly.
Wich this in mind, we used our models 1o analyse the
reaction of the traffic to an increase in link bandwidun.
The results show that the clastic effects can be ignored
only if the initial utilization of that link is low. Unfor-
tunately, it is especially the finks with a high utilization
that are increased in capacity regularly, therefore it s
important to take into account the elasticity of the ual-
fic matrix. In the last part of this paper we showed a
simple way of incorporating our models into a capacity
expansion problem in order to predict the elasticiny A

small simulation shows how this approach works
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