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Abstract. This article introduces a programming and transformation systcm for describing, optimizing and mapping parallel
algorithms onto a highly parallel multiprocessor architecture. The application of the system in digital signal processing,
especially digital filtcring, has been the main subject of investigation. Consequently both the class of computations schemes
as well as the computer organization (MIMD) and the interconnection structure (crossbar) are effected. After presenting a
special MIMD-architecture the results concerning concurrent optimized versus pure sequential computing time {speed-up)
arg delineated.

Zusammenfassung. Dieser Artikel beschreibt eine Methode zur Formulierung paralleler Algorithmen, deren Optimierung und
Abbildung aul Multiprozessorsysteme. Der Schwerpunkt hegt dabei aul speziellen Anwendungen aus dem Gebiet der
Echtzeitsignalverarbeitung, insbesondere der digitalen Filterung. Dies wirkt sich sowohl auf die Klasse der erfafibaren
Algorithmen als auch der betrachteten Rechnerarchitekturen und der notwendigen Verbindungsstrukturen aus. Dieser Ansatz
wird an Hand eines vollstindig implementierten Programmier- und Transformationssystems erldutert. Es wird eine spezielle
MIMD-Architektur vorgestellt und daran Analysen des Zeitverhaltens gegeniiber rein sequentieller Verarbeitung angestellt.

Reésumé. Cet article introduit un systéme de programmation et de transformation a 1'aide duquel on peut décrire, améliorer,
accelérer el appliquer des algorithmes paralléles dans une architecture d'un systéme ‘multiprocessor’. Le point principal des
analyses est |'application en temps réel, spécialement dans le domaine du filtrage numérique. Par consequent on observe une
inAuence sur les classes des algorithmes ainsi que sur I"architecture de 'ordinateur. Cette proposition est décrite a I'aide d’un
sysleme complét et achevé de programmatjon et de transformation. Une MIMD-architecture particuliére est présentée. Ensuite,
on [ait I'étude des temps de I'architecture du MIMD et des méthodes uniquement séquentielles.

Keywords. Multi-processor, parallel algorithms, deterministic scheduling, digital filtering, tree transformations.

1. Introduction

Computer speed is limited by two basic factors. The first one concerns hardware technology: how fast
can elementary operations be executed:; how long are processor and bus cycle times and memory access
time? The second one covers both the aspects of computer architecture and program organization, which
form the subject of this paper.
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18 J. Lenzer et al. | High-speed multi-processor system

The demand for high computation speed and data throughput in real-time processing requires concepts,
disseating the von-Neumann principle [2, 6, 8, 13], in which a single CPU operates serially on data items
that it fetches from and restores to memory via the bottleneck *““bus”.

Fortunately the advances in VLSI technology have resulted in low cost computing capabilities, which
make feasible large-scale systems, including a lot of processing elements PE’s, large memory modules
and complex interconnection networks.

The design of a parallel computation scheme

However, parallel processing as the most powerful architectural concept to reduce computation time
[3] raises more sophisticated questions to a designer than a sequential approach does.

Sequential approach

S1: Design of the sequential algorithm
§2: Translation into machine language
S53: Tuning of the algorithm by realizing time consuming functions by firmware or hardware

Parallel approach

P1.1: Design of the parallel algorithm

P1.2: Design of the corresponding parallel architecture

P2: Scheduling of the basic algorithmic components and determining the number of necessary
processing elements

P3: Translation into machine language

Ad Pl.1

Each parallel algorithm (PA) consists of a set of basic components called “Task-Set” T. Between each
pair (i}, t(j) of elements of T a precedence relation PR(i, j) has to be defined.

PR, j)=""(": (i) has to be finished before #{j) will be started

PR{i, j)="y": «(j} has to be finished before ¢(i) will be started

PR(L j)="0": (i) and t(j) can be executed simultaneously
So the design of a PA is equivalent to the definition of the tasks (i), their data interfaces to other tasks,
their semantical behaviour as well as the set of precedence relations.
Ad P12

Close to the PA the machine architecture has to be defined. The tasks correspond to the PE’s, which
have to be connected by some form of interconnection network [1] in order to exchange data or messages.
The number of data paths between the PE’s and as a consequence the organization of the interconnection
network itsell depends on the PA, which has to be computed.

Ad P2

After the definition of both the computation scheme and the machine architecture the scheduling of
the tasks to the PE’s has to be done. The problem is to find an optimal schedule, i.e. a schedule with

Signal Processing
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minimal computation time and minimal number of PE’s and additional hardware resources. However,
most of the optimal scheduling algorithms are NP-complete, even for very strong simplifications of both
the computation scheme and the machine architecture [5].

Statement of the problem

It is evident that solving all the problems, which have been mentioned so far depends on the question:
Which kind of computation schemes do we want to analyse? This question requires investigations on
program analysis, including data and control abstraction mechanisms in program specification. Since this
is not the intended subject of this publication, the result will be given without detailed justification: ali
computation schemes which can be scheduled deterministically [5, 14). A formal definition as well as
implications of this assumption wilt be given later on. For this class of computation schemes the above
mentioned design steps {P1-P3} will be investigated in detail in this article leading to a programming and
transformation system for a special multi-processor architecture to be used in digital signal processing,
especially digital filtering.

2, Description of parallel algorithms

Most of the problems in digital signal processing—as digital filtering, DFT, eigenvalue problems, vector
operations etc—can be expressed by sequences of arithmetic expressions [4] and simple assignments.
Constructions for describing the data dependent control flow of programs—as IF-THEN-ELSE, WHILE,
REPEAT, FOR, CASE etc—used in high level von-Neumann styled languages are not allowed due to
the assumption of deterministic scheduling. The reason for this will become clearer in Section 4.

Abstraction mechanisms for compuosition of data—ARRAY, RECORD, POINTER, ENUMERATION
TYPES, etc—and consequently sophisticated access paths to data items are avoided due to a more simplc
language implementation.

Input—output relation

Each program maps input objects I to output objects O by means of a function T {Fig. 1):

0= T(1),
1 T =>0
Fig. I. O ="T{I).
with O=(0, 0,,...0,) and 1 =(f), i, ... i,). Two rules can be applied, combining existing functions to
form new ones:
O=T(,1) (D
0= Tz(Ti(I)), (2)

(resp. Fig. 2, Fig. 3). To define a functional form in a linear notation the Deterministic Computing Scheme
Language DCSL [15] has been defined and implemented, by which the syntactic interface of a function

Val. 7, Nu. |, Seprember 1984
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I

Fig.2. O=T(I, I,)

Fig. 3. O=TAT{I).

T is written as:

FUNCTION T

INPUT i), iz, ... Ix

OUTPUT o, 0,5, .-- 0,

..... Definition of the relation
END T:

History sensitivity

Up to now, however, it is not possible to define input—output relations, which are history sensituve as
illustrated in Fig. 4. This means that an output vector O depends on both an input vector 1 and a state
vector S, which describes the history of computation.

O=F(LS), S§=G{(IS).

I

lL

Fig. 4. O=F(L$) $§=G(,S).
In DCSL this is written

MODULE M

INPUT i, i3, ..., im
QUTPUT oy, 03,..., 0,
STATE s, 53, ..., =G(1, 5)
O-F(LS)

END M;

Signal Pracessing
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The functions F and G are of the form defined above. Each computation scheme which can be described
by these rules will be called a deterministic computation scheme DCS.

Arithmetic expressions

The functional behaviour is defined by arithmetic expressions. An arithmetic expression is any well
formed string composed by operators (+, —, +, /), left and right parenthesis and data objects, which are
constants, input- or state-variables.

To include more powerful instructions of the processor system for the description of mput-output
relations, the user is allowed to define machine dependent operators with the same syntactic interface as
functions. A typical example is a butterfly operator, which could be realized beyond the architectural
level by hardware or firmware. Thus the semantical meaning of such a hardware operator, i.e. the
inpul—output relation, is not relevant at this point of view.

The foliowing example and Fig. 5 demonstrate some features of DCSL. A detailed description of DCSL

is given in [15].
¥ 12 21
}3@ Ix
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Fig, 5. Tree oriented computation scheme for the notch-filier.

MODULE notch_filter

INPUT «x

OUTPUT y

CONST a=0.4, b=0.2;

STATE =zl,22=—1*(b*(x+2)+a*z1)+(x+{x+2z2)), z1
y=be(x+z2)+axz!

END notch filter;

Representation of a DCS
A DCS will be represented by a Directed Acyclic Graph (DAG) [14].

Definition. A directed acyclic graph {DAGY) is a 2-tuple DAG = (N, E), where N (nodes) and E (edges)

are disjunct finite sets with E—-> N x N. Iff for ec Ee=(nl,n2); nl, n2€ N then e is an edge from nl to
n2. We say that n! is a predecessor of n2, and n2 is a successor of rnl. There exist no subset of nodes
(nl, n2, ..., nm), where each pair (ni,ni+1), iin (l,..., m—1), is connected by an.edge and nl= nm.

Definition. The number of edges directed into node n is called the inner degree of »n and is denoted by
¥ol. 7, No. I, September 1984



22 I Lenzer et al. / High-speed multi-processor system

in{n). The number of edges directed away from node » is called the outer degree of n and is denoted by
out(n). All nodes n with in(n} #0 are called inner nodes, these with in(r) = 0 outer nodes.

Definition. Any DAG is a DCS, where the inner nodes of the graph represent arithmetic operations,
whereas the outer nodes mean data objects, i.e. constants, input objects or state variables.

The inner nodes (tasks) of a DAG correspond to processing elements {PE’s) of the real executing
machine, whereas the edges can be interpreted as data links for passing data objects from the output of
one PE to the input of another one.

The representation of DCSL-expressions are trees.

Definition. A DAG T is a tree, ifI
1) exactly one node re N exists with out(r) =0, called root
2) forall ne N—{r}=out{n)=1

3. Parallelization and optimization of algorithms

In this section we will illustrate the question of how to get the most parallel computation scheme from
any algorithmic specification described above.

The assumed executive machine model hereby implies an unrestricted number of PE’s available for
evaluation, each of those being able to perform any task in maybe different time periods. Data can be
passed at any time between input and output data links of the PE’s via a complete interconnection network.
In this section, hawever, the time required for passing data between the processing elements is ignored.
Those more rezlistic assumptions of the computer architecture will be added in Section 4, when the
problem of scheduling will be introduced.

Tree height reduction

The height of an expression tree, i.e. the maximum path length from the root to a leaf, determines the
number of computation steps which are necessary for evaluation, whereas the width of the tree determines
the number of PE’s required for fully parallel computation. Any expression tree, however, which is
generated during parsing a DCSL-expression is not the only possible representation. For example the
expression (a +b+c+d) is algebraic equivalent to the expression ({a +b)+(e+d)), although the two
parse trees (Fig. 6) are different.

e
a/ b a/Q( b ¢ /Q\d

2+bsced lasb] + {e+d)

Fig. 6. Dhfferent parse trees for two algebraic equivalent expressions.

Often algebraic laws-—commutativity, associativity, distributivity—applicable to certain arithmetic
operators, can reduce the height of an expression tree. For computing the height H of a tree T, it is first
necessary to introduce the cost C of a tree node. This means, that evaluating a node t by one of the PE’s
takes C (1) elementary time units.

Signal Processing
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Definition, The height H of a tree T with root t is defined as

H(T)= 0 if in(¢)=0

T lmax(H (i) +Ct) 1=<i=<in(¢)  t(i) means the i-th subtree of !
Definition. Given a set L of transformation rules, we say thal two expression trees T, and T, are equivalent
under L, if there exists a sequence of transformations derived from L, which will transform T into T..

We will not discuss the problem, that those transformations are not equivalent with regard to numerical
stability, which may lead to rounding errors [4]. Thus, applying the rules to a given expression tree T,
an squivalent tree T, with minimal height can be found.

Each transformation rule consists of one source tree template and one or more target templates in the
sense of [12], So the tree transformation can be explained as a process of laying all the source templates
over the actual point of the program tree and selecting the ‘best fitting’ one.

However, out of the set of possible target templates only this template with lowest height will be selected.
This ts a necessary condition to avoid transformation cycles. The realization of the recognition and
transformation process of tree templates is described in [12].

Tree width reduction

When performing a transformation, the height of the tree decreases, whereas the width increases.
Consequently more PE’s have to be available in order to execute this expression in parallel. If the PE’s
are functionally identical, i.e. if each PE is able to evaluate each tree node, the total number is equivalent
to the width W. The determination of the upper bound of necessary PE’s for parallel evaluation is quite
similar to the register allocation problem within code generation for high level languages.

The form of optimization, which reduces the width of a tree and as a consequence the number of
processors necessary for the evaluation of a given set of arithmetic expressions, is the recognition and
elimination of common subexpressions. Two subexpressions S and T are common, if the corresponding
expression trees fulfil the following condition:

FUNCTION common (S, T:tree) RETURNS boolean;
BEGIN
IF root (S8)=root (T) THEN
IF S and T are leafs THEN RETURN true
ELSE IF root (§) in * 47, '+’
/* commutative operators */
THEN RETURN common {Sf[), T(1)) AND common (S(2), T(2))
OR common (5(2), T(1)) AND common {(S(1), T(2))
/* non-commutative operators */
ELSE RETURN common (S(1), T(1}) AND common (5(2), T(2))
ELSE RETURN false
END common;

If two members of a given set of trees or subtrees are common, they need to be evaluated only once. By
application ol these optimizations a tree is transformed into a DAG. In Fig. 7 the completely optimized
graph for the notch flter is illustrated.

¥al. 7, Na. L, September 1984
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21

Fig. 7. Optimized compulation scheme for the notch-filter.

4, Scheduling and code generation

Introduction to the scheduling problem
One rather general definition of scheduling is
—the allocation of processors and resources over time to perform a collection of tasks.

An individual task is characterized by its processor type, its resource requirements and its duration. In
addition a collection of tasks may be described by the algorithmic constraints (precedence restrictions)
that exist among its elements. One possible representation is the taskgraph, which is equivalent to a DAG
of Section 2. At this point of view, however, the relation E > N X N is named precedence relation (PR)
or predecessor relation and defines for each task (i) (1 =<i< n) the earliest execution data.

The solution to a scheduling problem is any feasible resolution of three types of constraints:

—sequencing order of the tasks
- allocation of processors and
~ allocation of resources.

Under these assumptions we can define a scheduling system S as a triple § ={DAG, P, R}, where DAG
is a directed acyclic graph in the sense of Section 2, with the possibility of nonuniform duration times
td(i) (1=<i=<n) for the tasks {i)(l =i=<n). P is a set of not necessarily homogeneous processor types
p(iy (1=i=m). R is a set of resources r(i)(1=i=ys). The term resource is specified as the amount of
data links between the PE’s and the state variables.

The system S will generate a schedule s, which will be depicted using one of the most widely accepted
graphical representation models: the Gantt-chart. In our case the chart shows the processor-task allocation
aver time, with the specified PE’s along the vertical axis and the task dispatching together with the time
scale along the horizontal axis.

Restrictions in real-time signal-processing

Algorithms for scheduling tasks for a multi-processor system are well known [5]. However, optimal
solutions exist only for a small subset of problems. Fortunately in the field of digital signal processing it

Signal Processing
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is possible to make some assumptions, e.g. nonpreemptive tasks which simplify the complexity of these
problems [9].
There exists two different approaches to find a schedule for a given problem

—the heuristic solution and
—the optimal solution.

One advantage of the heuristic solution is the fact of polynomial time-complexity, for the optimal solution
suffers from exponential time-complexity. The optimal strategy allows only some special problem specifica-
tions to be solved whereas the heuristic approach guarantees always a solution. The terms ‘optimal’ and
‘heuristic’ imply the disadvantage of the heuristic approach: the completion time of the generated schedule.

Although the field of optimal solutions is guite interesting the heuristic approach is most widely used
for its polynomial behaviour.

The generation of a schedule based on heuristic algorithms consists of two phases [9]:

1) The determination of parallel working task sets PTS{(i) (1=i=n) according to the precedence
relationship PR: All tasks of a PTS{i} can be executed in parallel. Between the diffcrent PTS’s there exist
dependencies in a way that all tasks, which are element of PTS(#) have to be finished before starting a
task, which is element of PTS(j) with i <j. Out of the PTS’s the number of necessary processors per
processor type can easily be determined as the maximum number of tasks of a certain type over all PTS’s.

2) The computation of a priority number for every task t(4} (1 =< i< n) according to the applied heuristic
algorithm: The computation of the priority number for the tasks ditfers from one heuristic algorithm to
thc other. They are determined either by

~the task duration,

- the processor-type constraints,
— the resource constraints or
—the precedence structure.

This often leads to quite different schedule completion times, though the applied algorithm have to be
chosen carefully, depending on the input structure {e.g. tree, anti-tree, etc.) [9].

A task sequence then is generated by attaching the task with the highest priority out of the set of the
selected PTS to the next free processor. A random selection will be done if more than one possible task
is having the highest priority number.

To complete the example from Fig. 7 the result of the scheduling system for the notch filter is represented
in Fig. 8. The td’s for the different operations are: td(*) =3, td(+)=1, td(—)=1.

PEY {(Aly) | % Z 7 |-

P

E7 (Mull 1) 7 ¥ /
PE3  (Mult 2) *9 /
State Reg. File //Read//_ rite

1/ Module 777 read 7 it

801 2 3 & 5 6 g

Fig. 8. Gantt-chart [or the notch-filter.
Val. 7. No. |, September 1984
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Structure of the design and programming system

The various phases of the transformation process and consequently the organization of the transformation
system is shown in Fig. 9. Starting at the point of DCSL-program definition, after the conventional lexical,
syntactic and semantic analysis a program tree is built up, which is transformed into a tree with minimal
height, using teee transformation rules. The so transformed tree is optimized by recognition and elimination
of common subexpressions, leading to a DAG. The DAG is converted into precedence relations, which
are the input for the scheduling system.

DESL-program

source
analysis

tree
| building |
In
arogram

iree

tree :

- transformation
height === """ |40

reduction

—_
l precedence
0es relations
i
scheduling machinge

characteristics

‘ Gantt charts

code-
generation

machine program

*
crossbar controller program

Fig. 9. Structure of the programming and transformation system.

Code generation

The generated Gantt-charts as well as the DAG are used as input for the final code generation phase,
in which the programs for each PE and the informations for the interconnection network are generated.

Each PE consists of two register files, one for both input operands, an arithmetic unit to perform the
operations and a local control store containing the instructions. Each instruction for a PE looks like

{PE_op_code){source 1)(source 2)(reg 1){reg 2},

where (PE_op_code) determines the arithmetic operation inciuding the states ‘busy’ and ‘idle’. {source 1)
and (source 2) represent the input operands for the operation, which can be either the contents of a
register { R{address)) or a constant operand (C(value)) located in the control store.

Signal Processing
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The interconnection network realizes the data links between the outputs of the PE’s, their inputs,
I/O-processor, and a common register file, containing the state variables. The network is controlled by
a local controller and a local control store, which contains the connection data for each time period in
the following form:

{input - output) . .. {input > output)

Each input and output link is described by an integer number. 1n Fig. 10 the machine programs for the
notich-filter are shown, corresponding to the Gantt-chart of Fig. 8.

§. The multi-processor-architecture

Classification of architectures

In this chapter a multiprocessor architecture for use in digital filtering is introduced (Fig. 11). The PE’s
are noi identical, because they usvally perform different operations as addition, subtraction, multiplication
and [/ O-operations. Therefore the multiprocessor system can be classified as inhomogeneously. Different
operations generally last different time periods to be executed. For example a multiplication takes more
time as an addition, if we use today’s conventional hardward components like a Shottky-TTL adder
(50--80 ns) and a 16-bit hardware multiplier {150-200 ns),

Processing elements (PE)

The system includes n PE’s of different types, which execute the elementary operations as multiplication,
addition and subtraction. Each processor contains one output and two input data links, which are
completely connected by a crossbar switch matrix.

Input data are buffered in random accessible register files for the case that intermediate results can not
be processed immediately. So to each PE a local control store is attached, containing the program
instructions {operation, input operands) as well as the addresses of registers in which data has to be stored
for further requirements. Data input and output is handled by an {/O-processor.

Synchronous communication

The clementary operations executed by each processor take an integer multiple of the basic time cycle.
Therefore data exchanging between the processors has to be performed in fixed time intervals. So the
interconnection network can aperate synchronously.

Ceniralized conirolling

Alter each operation cycle the computed intermediate results as outputs of the processors (k) have to
be passed to the inputs (m) of the processors. So the communication links of the interconnection network
have to be rearranged for each connecting phase. This rearrangement must be performed by a centralized
network controller.

Nerwork topology

Each processor output (k) must have the chance of linking to each of the processor (m) inputs the
network must be able to handle all possible connections k X m. The generalized connection network which

Aol. 7, No. |, Seplember 1984



28 1. Lenzer et al./ High-speed multi-processur sysiem

PEZIMULTIPHER 1} input - tink 3,4
output - link 2

-
L ]

CROSSBAR
Transmission

RS TES

1—-1]

L -2} 15 =11
=1 31
n—=2) -8
(1-=5) (=7}

o o o D

PE, [ALUY- input-link 1,2

autput - link 1

PC[PU-0F - code | OP.1 | OP2 | RB1 | RB.2
1 +2 L R2
1 +] R1 R2
3 NOP B m
\ NoP R3 | R3

e +1 R3 | R3 Rl
6 - R2 | Rk

FE3{MULTIFL|ER PN

constant volue: b

input - Link 5,6
output - link 3
constani valve: 4

PC|PU-OP-cade | OP1

NOP

*1 R1

BUSY

BUSY

NOP

)
7

3

|

5

(6] wop

STATE REGISTER FILE

Read

i
1
k|
i
5
[

Write

output -link b

PU - OP- code

Read

o oo W e

Fig. 10. Machine programs for the notch-filter.
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Fig. 11. Machine architecture.
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is capable to do so 1s a crossbar. This is the fastest architectural concept, because all communication links
can be generated simultaneously. It has to be outlined that it is also the most expensive concept due to
necessary hardware [1, 7, 10, {1].

6. Results

So far different examples of real-time processing have been investigated, the results are tabulated below.
The speed-up factor demonstrates the advantage of paraliel processing.

Explanation to Table I:

1: Amount of leaves (in(t) =0}
2: Amount of inner nodes (in(t) > 0)
3: Available system components (f/ O processors +slate memories/data processors)

Table 1
Examples
1 2 3 4 5 6 7
2 x2 Marrix Multipl. 16 12 10/10 8/8 5 36 7.2
$x5 Inner Product 10 9 10/10 5/10 8 29 36
3 x3 Owter product 12 9 10/10 6/6 5 27 5.4
1 %3 Tridiag. Marrix Mulripl. 54 45 10/10 10/10 7 60 86
FFT-Radix-2-4. 40 EE] 10/10 8/10 8 53 6.6
Butterfly-Op. 6 4 10/10 2/3 5 8 1.6
Notch-filter 14 12 10/10 2/3 7 L5 21
Dig. Filter 1 28 25 10/10 3/1 15 24 16
Dig. Filter 2 22 19 10/190 5/9 14 49 35
Dug. Filier 3 28 a5 10/10 3/7 13 31 2.4
Notch-filter with bus-rime 14 12 10/10 2/3 10 21 2.1
18 9 10/10 9/10 3 27 9

Ax3 Muatrix Addition

Yol. 7. Na. |, September 1984
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Used processors splitted up as above

t1 = Complete serial computation time
2= Complete paralle! computation time
Speed-up factor'=1t1/12

7. Conclusions

In this anicle we have proposed the methodology of parallel computation of those algorithms, which
can be scheduled deterministically. Many of the algorithms in real-time processing, especially digital
signal processing, image processing and pattern recognition are of such a form. The solution of the
problems of parallelization, optimization as well as scheduling have been pointed out. It has been shown
that the constraints of computation time can be achieved by use of several processing elements, which
can lead to a speed-up factor of up to L0. The various hardware system components, e.g. data- and
I/ O-processors as well as memories are connected by a crossbar switch matrix, which is able to path
data between the diflerent components within a single time period. However, with increasing number of
processing elements the hardware complexity increases especially for this interconnection network. This
can be avoided, when using other interconnection structures [1, 6, 7, 8, 10].
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