
Joachim Lenzer, Renate Lenzer, Ralf Steinmetz:

Desiqn, Proaromminq ond Applicotion of o Hiqh-Speed Multi-Processor Svstem for
[JL84]

. . Use in Diqital Siqnal Processinq. In: Signal Processing, North Hollond Publishing

Compony, Amsterdom, vol. 7, no. 7/84, p. 17--30, July 1984
Sig;nal Processing 7 (1984) 17-30
Nonh-Holland

DESIGN, PROGRAMMING AND APPLICATION OF A
HIGH-SPEED MULTI-PROCESSOR SYSTEM FOR
USE IN DIGITAL SIGNAL PROCESSING

Joachim LENZER
TE KA D£-Philips Kommunikariunr lndurlrie AG, Thurn- und- Taxis- Sirarre 10, 8.i00 Niirnberg 10, FRG

Renate LENZER
Fachgebierfür Graphireh Inlerakliw Syrleme, Far.hberoir.h Inlormorik, TH Dorrnriodr. Aleronderrirnrre24,6100Darmsradl, FRG

Ralf STEINMETZ
InstiluIfUr Überiragungsrechni& Fachbereich Elckrrische Nochriehrenteehnik, TH Dormrtodr, Merckrrosre 2.5, 61W Darmsradl,
FRG

Received 20 luly 1982
Revised 8 February 1984

Abstract. This article introduces a programming and translormation systcm for describing, optimizing and mapping parallel
algorithms onta a highly parallel multiprocessor arehitecture. The application of the system in digital signal processing,
especially digital hltcring, has been the main subject of investigation. Consequently both the dass af camputations schemes
as well as the computer arganizatian (MIMD) and the intercannection structure (crassbar) are effected. After presenting a
special MIMD-architecture the results concerning cancurrent optimized verius pure sequential compuring time (speed-up)
are delineated.

Zusammenfassung. Dieser Artikel beschreibt eine Methode zur Formulierung paralleler Algorithmen, deren Optimierung und
Abbildung aul Multiprazessorsysteme. Der Schwerpunkt liegt dabei au l speziellen Anwendungen aus dem Gebiet der
Echtzeitsignalverarbeitung. insbesondere der digitalen Filterung. Dies wirkt sich sowohl auf die Klasse der erfapbaren
Algorithmen als auch der betrachteten Rechnerarchitekturen und der notwendigen Verbindungsstrukturen aus. Dieser Ansatz
wird an Hand eines vollständig irnplerneniierten Programmier- und Translormalionssyslems erläutert. Es wird eine spezielle
MIMD-Architektur vorgestellt und darin Analysen des Zeitverhaltens gegenüber rein sequentieller Verarbeitung angestellt.

R6sumP. Cet article intraduit un systerne de prograrnrnatian et de transforrnation i I'aide duquel on peut decrire, arneliorer,
accelerer et appiiquer des algorithmer paralltler danr une architecture d'un systtme 'multiprocessor'. Le point principal des
analyses est I'application en ternpr reel, specialernent dans le dornaine du filtrage nurnenque. Par consequent an observe une
inRuence sur les classes des algorithmer ainsi que sur I'architecture de I'ardinateur. Cette prapasitian est decrite i I'aide d'un
systeme cornplet et achevedeprogramrnatian el de traniforrnatian. Une MIMD-architecture particulitre es1 presentee. Ensuite,
an lait I'etude des temps de I'architecture du MIMD et der rnethodes uniquernent sequentielles.

Kepordr. Multi-processor. parallel algorithms, deierminisiic scheduling, digital filtering, tree transforrnations.

1. Introduction

i-omputer speed 1s limited by two basic factors. The First one concerns hardware technology: how fast
cati elementary operations be executed: how lang are processor and bus cycle times and memory access
time? The second one Covers both the aspects of computer architecture and program organization, which
form the subject of this Paper.

0165-1684/84/%3.00 0 1984. Elsevier Science Publishers B.V. (Narth-Holland)

The demand for high computation speed and data throughput in real-time processing requires concepts,
dissenting the von-Neumann principle [2, 6 , 8 , 131. in which a Single CPU operates serially on data items
that it fetches from and restores to memory via the bottleneck "bus".

Fortunately the advances in VLSl technology have resulted in low cost computing capabilities, which
make feasible large-scale Systems, including a lot of processing elements PE's, large memory modules
and complex interconnection networks.

7'he design of a parallel compuration scheme

However, parallel processing as the most powerful architectural concept to reduce computation time
[3] raises more sophisticated questions to a designer than a sequential approach does.

Sequential approach

SI: Design of the sequential algorithm
S2: Translation into machine language
S3: Tuning of the algorithm by realizing time consuming functions by firmware or hardware

Parallel approach

PI.1: Design of the parallel algorithm
P1.2: Design of the corresponding parallel architecture
P2: Scheduling of the basic algorithmic components and determining the number of necessary

processing elements
P3: Translation into machine language

Each parallel algorithm (PA) consists of a Set of basic components called "Task-Set" T. Between each
pair r (i) , r (j) of elements o i T a precedence relation P R (i , j) has to be defined.

P R j = : r (i) has to be finished before t (j) will be started

' : r (j) has to be finished before r (i) will be started

P R j = : t (i) and t (j) can be executed simultaneously

So the design of a PA is equivalent to the definition of the tasks t (i) , their data interfaces to other tasks,
their semantical behaviour as well as the Set of precedence relations.

Close to the PA the machine architecture has to be defined. The tasks correspond to the PE's, which
have to be connected by some form of interconnection network [I] in order to exchange data or messages.
The number of data paths between the PE's and as a consequence the organization of the interconnection
network itself depends on the PA, which has to be computed.

After the definition of both the computation scheme and the machine architecture the scheduling of
the tasks to the PE's has to be done. The problem is to find an optimal schedule, i.e. a schedule with

J. Lenier ef 01.: High rpeed muhi-proeerror i p l e m 19

mininlal computation time and minimal number of PE's and additional hardware resources. However,
most of the optimal scheduling algorithms are NP-complete. even for very strong simplifications of both
the ccimputation scheme and the machine architecture 151.

Slatemenr of the problem

It is evident that solving all the problems, which have been mentioned so far depends on the question:
Whichi kind of computation schemes do we warit tu analyse? This question requires investigations on
prograim analysis, including data and control abstraction mechanisms in program specification. Since this
is not the intended subject of this publication, the result will be given without detailed justification: all
compiitation schemes which can be scheduled deterministically [5, 141. A formal definition as well as
implications of this assumption will be given later on. For this class of computation schemes the above
menticbned design steps (PI-P3) will be investigated in detail in this article leading to a programming and
transfc~rmation System for a special multi-processor architecture to be used in digital signal processing,
especiully digital filtzring.

2. Deseriptinn of parallel algnrithms

Most of the problcms in digital signal processing-as digital filtering, DFT, eigenvalue problems, vector
operations etc.-can be expressed by sequences of arithmetic expressions [4] and simple assignments.
Constriictions for describing the data dependent control flow of programs-as IF-THEN-ELSE, WHILE,
REPEAT. FOR. CASE e t c u s e d in high level von-Neumann stylcd languages are not allowed due to
the assiimption of deterministic scheduling. The reason for this will become clearer in Section 4.

Abstraction mechanisms for conipusition of data-ARRAY, RECORD, POINTER, ENUMERATION
TYPES, e t o a n d consequently sophisticated access paths to data items are avoided due to a more simplc
language implementation.

Each program maps input objects 1 to output objects 0 by means of a function T (Fig. I):

I+O

Fig. 1 . O = T(1).

with O== (0 , . o„ . . . o,) and 1 = (i,, i„ . . . i„) . Two mles can be applied, combining existing functions to
form new ones:

0 = T(I , , 1 2) (1)

0 = T > (T , (I)) , (2)

(resp. Fig. 2, Fig. 3) . To define a functional form in a linear notation the Deterministic Computing Scheme
Language DCSL [I51 has bzen defined and implemented, by which the syntactic interface of a function

Ynl. 7 . Nu. I. Siplrmhir I V M

Fig. 2. O = T (I , , G)

T is written as:

FUNCTION T
INPUT i , , i2, . . .
OUTPUT o, , 02, . . . o„
. Definition of the relation
END T:

History sensilivity

Up to now, however, it is not possibIe to define input-output relations, which are history sensitive as
illustrated in Fig. 4. This means that an output vector 0 depeiids a n both an input veaor I and a state
vector S, which descrihes the history of computation.

0 = F(Z, S), S = G(z, S) . -

I(
Fig. 4. 0 = F(1, S) S = G(1, S) .

In DCSL this is written

MODULE M
INPUT il , i2, . . . , l m
OUTPUT ob 02,. . . , o.
STATE s„ s„ . . . , s, = G(1, S)
0 - F (I , S)
END M;

Signal Procsr~ing

The functions F a n d G are of the form defined above. Each computation scheme which can be described
by these rules will be called a deterministic computation scheme DCS.

Arirhrnetic expressions

The functional behaviour is defined by arithmetic expressions. An arithmetic expression is any well
formed string composed by operators (+, -, *, I) , leit and right parenthesis and data objects, which are
constants, input- or state-variables.

Tc1 include more powerful instructions of the processor system for the description of input-output
relations, the User is allowed to define machine dependent operators with the Same syntactic interface as
functions. A typical example is a butterfly operator, which could be realized beyond the architectural
level by hardware or firmware. Thus the semantical meaning of such a hardware operator, i.e. the
input-output relation, is not relevant at this point of view.

Thie followiiig example and Fig. 5 demonstrate some ieatures of DCSL. A detailed description of DCSL
is giiien in [IS].

Fig. 5 . Tree oriented camputatian scheme for ihe natch-fiiier

MODULE notch-filter
INPUT X

OUTPUT y
CONST n =O.l. b =0.2;
STATE ; l , z 2 = - l * (b * (x + z 2) + n * z 1) + (x + (x + z 2)) , z l

. V = b*(x+:2)+n*zl
END notch-filter;

Represenrarion qf n DCS

A [)CS will be represented by a Directed Acyclic Graph (DAG) [14].

Definition. A directed acyclic graph (DAG) is a 2-tuple DAG= (N , E) , where N (nodes) and E (edges)
are disjunct finite sets with E - N X N. IR for e e E e = (n l , n2); n l , n 2 ~ N then e is an edge from n l to
n2. We say that n l is a predecessor of n2, and n2 is a successor of n l . There exist no subset o i nodes
(n I, n2, . . . , nm), where each pair (ni, ni + I), i in (I, . . . , rn - I), is connected by an.edge and n I - nrn.

Definition. The number of edges directed into node n is called the inner deeree of n and is denoted by
V" 7. No I . Scp,rmC" ,984

in(n). The number OS edges directed away Srom node n is called the outer degree of n and is denoted by
out(nJ . All nodes n with in(n) $0 are called inner nodes, those with in(n) = 0 outer nodes.

Definition. Any DAG is a DCS, where the inner nodes of the graph represent arithmetic operations,
whereas the outer nodes mean data objects, i.e. constants, input objects o r state variables.

The inner nodes (tasks) of a DAG correspond to processing elements (PE's1 of the real executing
machine. whereas the edges can he interpreted as data links for passing data objects from the output of
one PE to the input of another one.

The representation of DCSL-expressions are trees.

Definition. A DAG T is a tree. iff
I) exactly one node r t N exists with out (r)=O, called root
2) forall n E N - { r] J o u t (n) = l

3. Parallelization and optimization o l algorithms

In this section wc will illustrate the question of how to get the most parallel computation scheme from
any algorithmic specification described above.

The assumed executive machine model hereby implies a n unrestricted number of PE's available for
evaluation, each of those being able to perform any task in maybe different time periods. Data can be
passed at any time between input and oulput data links of the PE's via a complete interconnection network.
In this section, hnwever, the time required for passing data between the processing elements is ignored.
Those more realistic assumptions of the Computer architecture will be added in Section 4, when the
problem of scheduling will be introduced.

Tree heiglir redlrction

Thc hcight OS a n expression tree, i.e. the maximum path length from the root to a leaf, determines the
number of computation steps which are necessary for evaluation, whereas the width of the tree determines
the number of PE's required for fully parallel computation. Any expression tree, however, which is
generated during parsing a DCSL-expression is not the only possible representation. For example the
expression (a + b + C + d) is algebraic equivalent to the expression ((a + b) +(C + d)) , although the two
parse trees (Fig. 6) are different.

Fig. 6 . Different parse Lrees rar two algebraic equivalenr erpressions

Often algebraic laws-comrnutativity, associativity, distributivity-applicable to certain arithmetic
operators, can reduce the height of a n expression tree. For computing the height H of a tree T. it is first
necessary to introducc the cost C of a tree node. This means, that evaluating a node r by one of the PE's
takes C (t) elementary time units.
Signal Proicsring

.I. Lenrrr ri nl / High-rpeed rnulli-procerror spiern

Defiinition. The height H of a tree T with root t is defined as

0 if in(i)=O
H (T) =

max(H(l (i)))+C(t) I S i S i n (t) t (i) means the i-th subtree of I

Definition. Given a set L of transformation rules, we say that two expression trees T, and T? are equivalent
und!er L, if there exists a sequence of transformations derived from L, which will transform T, into T?.

Vde will not discuss the problem, that those transformations are not equivalent with regard to numerical
stability, which may lead to rounding errors [4]. Thus, applying the rules to a given expression tree T,
an equivalent tree T, with minimal height can be found.

Each transformation ~ l e consists of one source tree template and one or more target templates in the
sense of [12]. So the tree transformation can be explained as a process of laying all the source templates
over the actual point of the program tree and selecting the 'best fitting' one.

However, out of the set of possible target templates only this template with lowest height will be selected.
This is a necessary condition to avoid transformation cycles. The realization of the recognition and
trarisformation process of tree templates is described in [12].

Trre widrh reduciion

\Yhen performing a transformation, the height of the tree decreases, whereas the width increases.
Consequently more PE's have to be available in order to execute this expression in parallel. If the PE's
are functionally identical, i.e. if each PE is able to evaluate each tree node, the total number is equivalent
to ihe width W The determination of the upper bound of necessary PE's for parallel evaluation is quite
sinnilar to the register allocation problem within code generation for high level languages.

The form of optimization, which reduces the width of a tree and as a consequence the number of
processors necessary for the evaluation of a given set of arithmetic expressions, is the recognition and
eliinination of common subexpressions. Two subexpressions S and T are common, if the corresponding
expression trees fulfil the following condition:

I'UNCTION common (S, T : tree) RETURNS boolean;
l3EGIN

IF root (S) = root (T) THEN
IF S and T are leafs i H E N RETURN true
ELSE IF root (S) in '+', '*'
/* commutative operators */

THEN RETURN common (S(1), T(1)) AND common (S(2). T(?))
OR common (S(2), T (])) AND common (SO). T(2))

/ * non-commutative operators */
ELSE RETURN common (S(1), T(I)) AND common (S(2), T(2))

ELSE RETURN false
END common:

If two members of a given set of trees or subtrees are common, they need to be evaluated only once. By
application o i these optimizations a tree is transformed into a DAG. In Fig. 7 the completely optimized
grziph for the notch filter is illustrated.

Val. I . Na. I. Sep!rmbcr I984

Fig. 7. Opiimized cornpu~ation rchcme lor ihe notch-hlter

4. Scheduling and code generatinn

Introduction fo ihe scheduling problern

One rather general definition of schcduling is

- the allocation of processors and resources over time to perform a collection of tasks.

An individual task is characterized by its processor type, its resource requirements and its duration. In
addition a collection of tasks may be described by the algorithmic constraints (precedence restrictions)
that exist among its elements. One possible representation is the taskgraph, which is equivalent to a DAG
of Section 2. At this point of view, however, the relation E + N x N is named precedence relation (PR)
or predecessor relation and defines for each task i(i) (1 s i S n) the earliest exccution data.

The solution to a scheduling problem is any feasible resolution of three types of constraints:

- sequencing order of the tasks
- allocation of processors and
- allocation of resources.

Under these assumptions we can define a scheduling system S as a triple S = (DAG, P, R), where DAG
is a directed acyclic graph in the sense of Section 2, with the possibility of nonuniform duration times
td(i) (I s i s n) for the tasks i(i)(l s i s n). P is a set of not necessarily homogeneous processor types
p(i) (I iS rn) . R is a set of resources r(i)(l s i s s) . The term resource is specified as the amount of
data links between the PE's and the state variables.

The system S will generate a schedule s, which will be depicted using one of the most widely accepted
graphical representation models: the Gantt-chart. In our case the chart shows the processor-task allocation
over time, with the specified PE's along the vertical axis and the task dispatching together with the time
scale along the horizontal axis.

Resfricrions in real-firne signal-processing

Algorithms for scheduling tasks for a multi-processor system are well known [5] . However, optimal
solutions exist only for a small subset of probIems. Fortunately in the field of digital Signal processing it
Signal Proc..rin$

is po!isible to make some assumptions, e.g. nonpreemptive tasks which simplify the complexity of these
problems [9].

Thi:re exists two different approaches to find a schedule for a given problem

-the heuristic solution and
- the optimal solution.

One advantage of the heuristic solution is the fact of polynomial time-complexity, for the optimal solution
suffers from exponential time-complexity. The optimal strategy allows only some Special problem specifica-
tions to be solved whereas the heuristic approach guarantees always a solution. The terms 'optimal' and
'heuristic' imply the disadvantage of the heuristic approach: the completion time of the generated schedule.

Although the field of optimal solutions is quite interesting the heuristic approach is most widely used
for it:. polynomial behaviour.

The generation of a schedule hased on heuristic algorithms consists of two phases [9]:
I) 'The determination of parallel working task Sets PTS(i) (1 G i s n) according to the precedence

relationship PR: All tasks of a PTS(i) can be executed in parallel. Between the diffcrent PTS's there exist
dependencies in a way that all tasks, which are element of PTS(i) have to be finished before starting a
task, which is element of PTS(j) with i <j . Out of the PTS's the number of necessary processors per
proceijsor type can easily be determined as the maximum number of tasks of a certain type over all PTS's.

2) The computation of a priority number for every task i(i) (1 s i < n) according to the applied heuristic
algorithm: Tbe computation of the priority number for the tasks differs from one heuristic algorithm to
thc other. They are determined either by

-the task duration,
- the processor-type constraints,
- the resource constraints or
- th'e precedence structure.

This a8ften leads to quite different schedule completion times. though the applied algorithm have to be
choseri carefully, depending on the input stmcture (e.g. tree, anti-tree, etc.) 191.

A taisk sequence then is generated by attaching the task with the highest priority out of the Set of the
selecte:d PTS to the next free processor. A random selection will be done if more tban one possible task
is having the highest priority number.

To c:omplete the example from Fig. 7 the result of tbe scheduling System for the notch filter is represented
in Fig. 8. The rd's for the different operations are: td(*) -3, td(+) = I, td(-) = I .

Fig. 8 Gantt-chart Gor the notch-film

Struciure of the design and programming system

The various phases of the transformation process and consequently the organization of the transformation
system is shown in Fig. 9. Starting at the point of DCSL-program definition, afler the conventional lexical,
syntactic and semantic analysis a program tree is huilt up, which is transformed into a tree with minimal
height, using tree transformation rules. The so transformed tree is optimized by recognition and elimination
of common subexpressions, leading to a DAG. The DAG is converted into precedence reiations, which
are the input for the scheduling system.

p r o g r a m

p r e c e d e n c e
O t S reiations

mach ine
characteristicr

+
marhine prograrn

cro~~bal conlroller p r o g r a m

~ i g . 9. Struciure of the programming and tranrformatian system

Code generaiion

The generated Gantt-charts as well as the DAG are used as input for the final code generation phase,
in which the programs for each PE and the informations for the interconnection network are generated.

Each PE consists of two register files, one for both input operands. an arithmetic unit to perform the
operations and a local control store containing the instructions. Each instmction for a PE looks like

where (PE-op-code) determines the arithmetic operation including the states 'busy' and 'idle'. (source I)
and (source 2) represent the input operands Tor the operation. which can be either the contents of a
register (Riaddress)) or a consranl operand (C(value)) located in the control store.
Signal Piocirring

:Re interconnection network realizes the data links between the outputs of the PE's, their inputs,

I - I/O-processor, and a common register file, containing the state variables. The network is controlled by
a Iocal controller and a local control store, which contains the connection data for each time period in
thr following form:

(input-t output). . . (input* output)

Each input and output link is described by an integer number. In Fig. 10 the machine programs for the
notch-filter are shown, corresponding to the Gantt-chart of Fig. 8.

5. 1The multi-processor-architecture

Classijcation of archiiectures

Iin this chapter a multiprocessor architenure for use in digital filtering is introduced (Fig. 11). The PE's
are not identical, because they usually perform different operations as addition, suhtraction, multiplication
and 110-operations. Therefore the multiprocessor system can be classified as inhomogeneously. Different
operations generally last different time periods to be executed. For example a multiplication takes more
time as an addition, if we use today's conventional hardward components like a Shottky-TTL adder
(50--80 ns) and a 16-bit hardware multiplier (150-200ns).

Processing elernenls (P E)

The system includes n PE's of different types, which execute the elementary operations as multiplication,
addition and suhtraction. Each processor contains one output and two input data links, which are
completely connected by a crossbar switch matrix.

Iriput data are buffered in random accessible register files for the case tbat intermediate results can not
be ixocessed immediately. So to each PE a local control store is attached, containing the program
insti-uctions (operation, input operands) as well as the addresses of registers in which data has to be stored
for Iiirther requirernents. Data input and output is handled by an l/O-processor.

Synchronous communicarion

Tlie elementary operations executed by each processor take an integer multiple of the basic time cycle.
Therefore data exchanging between the processors has to be performed in fixed time intervals. So the
interconnection network can operate synchronously.

Ceniralized controlling

Alter each operation cycle the computed intermediate results as outputs of the processors (k) have to
be passed to the inputs (m) of the processors. So the communication links of the interconnection network
have to be rearranged for each connecting phase. This rearrangement must be performed by a centralized
netuork controllcr.

Netrvork topologj

Each processor output (k) must have the chance of linking to each of the processor (m) inputs the
network must be able to handle all possible connections k X m. The generalized connection network which

Val. I . No. I. Scplrmhcr ,984

CROSSEAR

PE [ALU1 input - l ink 1.1 ' o ~ t p ~ t - l i n k 1

PF~IMULTIPLIER 1) : input - l i n k 3.1 PE~IMULTIPLIER 21: input - l ink 5.6
output - l i n k 2 o ~ t p u t - l ink 3
ron i tont volue: b constant volue: a

BUSY
BUSY
NOP

NOP

S T A T E R E G I S T E R FILE : input - l ink 7
output-link L

110 MODULE : input - l i n k B

outpui - l ink 5

1
3
L
5
6

Fig. 10. M a c h i n e prograrns for the nolch-f i l ier .

Read

Wr i te

98
P'S
9c
Z'L

(s~ossa2old eiep/sa!iouiauI aieis+siossa3oid 011) sluauoduos uiaisds alqe[!eay :E
(0 < (i)u!) sapou iauu! JO iunouiv :¿

(0 = (l)u!) saneal jo iunouiv :I
:I alqeL oi uo!ieue~dx~

'%u!ssasoid lalle~ed JO aaaiuenpe aq, salelisuouiap ioi~ej dn-paads aqJ
.molaq paieInqei aia silnsal aql 'paieB!isanu! uaaq aneq %u!ssasoid aui!i-~eal JO salduiexa iuaiay!p iyl OS

'[I 1 '01 'L 'T] aJempleq dlessa2au
01 anp ida3uos an!suadxa isou aqi osle s! 11 leq, pau![ino aq oi seq 11 .dlsnoaueilnui!s pale~aua4 aq ues
squy uo!ies!unuiuIos [[e asnesaq 'ida2uo~ leinisai!qsJe isalsy aqi s! s!q~. .leqssoJs e s! os op oi alqe'de3 s!

4: Used processors splitted up as above
5: 1 l := Complete serial computation time
6 : tZ:=Complete parallel camputation time
7: Speed-up factor:= 11/12

7. Conclusions

In this article we have proposed the methodology of parallel computation of those algorithms. which
can be scheduled deterministically. Many of the algorithms in real-time processing, especially digital
signal processing, image processing and Pattern recognition are of such a form. The solution of the
problems of parallelization, optimization as well as scheduling have been pointed out. I t has been shown
that the constraints of computation time can be achieved by use of several processing elements, which
can lead to a speed-up factor of up to 10. The various hardware system components, e.g. data- and
110-processors as well as memories are connected by a crossbar switch matrix, which is able to path
data between the different components within a Single time period. However, with increasing number of
processing elements the hardware complexity increases especially for this interconnection network. This
can be avoided, when using other interconnection structures [I, 6, 7, 8, 101.

Acknowledgement

The authors would like to thank Dr. N. Roethe and H. Roth for many helpful discussions.

References

[I] G.A. Anderson and E.D. Jensen, "Computer interconnection structures: iaxonomy, characreristics and exarnples", ACM
Compur Surveyq Vol. 7, No. 4. Dec. 1975, pp. 197-213.

12) J. Backue, "Can Prograrnming be liberated from the von Neumann Style? A lunctional style and its algebra o l programe",
Comm. ofrhe AChl, V01 21, NO. 8, August 1978. PP. 613-641.

[i] I.L. Baer, "A Survey olsome lheorrtiral aspecrs of Multiprocessing". ACM Compul Surr.u~s, Val. 5, No. I, Mar. 1973, pp 3 1-80.
[4] R. P. Brent, "The parallel evalualion oigeneral arithmetic expreiriani". Journalo/ACM, Val. 21, No. 2, April 1974, pp. 201-206.
[5] K. Ecker. "Organisation von parallelen Prozessen", Reihe In/ormorik/2.7, BI Mannheim. 1977.
[6] P h E Enslov Jr., "Multiprocessor organization-A sunry". ACM Comp>rr. Suruep, Vol 9, No. I, Mar. 1977, pp. 103-129.
[7] T. Feng, "A survey of interconnection networks". Cumplirer, Dec. 1981, pp. 12-27.
(81 M.J. Flynn, "Some Computer organiraliona and their effecriveness", IEEE Tranr. on Compuirrs, Vol. C-21, No. 1, 1972, pp.

948-960.
[9] R. Gemballa. "Unlersuchung von Paralleltransformationen an Teilprogrammgraphen fuer Multiproressor-ryrteme und

Implementiening eines entsprechenden Translormationssystems", Diplomarbeit, TH Darmstadt, FB Informatik, Nov. 1980.
[I01 L.S. Haynes, R.L. Lau, D.P. Seiworek and D.W. Mizell, "A survey of highly parallel computing", Cumpuler, Vol. 15, No. I,

Jan. 1982, pp. 9-26.
[I I] D.J. Kuck, "A survey of parallel machine organization and programming", ACM Compul. Surve.vs, Val. 9. Mar. 1977, pp. 29-59.
[I21 J . Lenzer, "Formale Beschreibung von Rechnerarchitekturen und Programmsprachen: Implrmentierung und Anwendung in

einem Erzeugenden System fuer Codegeneratoren", Dissertation TH Darmstadt, FB Infoimatik, June 1981
[I31 J. Lcnrer and N. Roethe, "A high level language signal processing system", in: Proc EURASIP, 1980, pp. 369-375.
[I41 J. Lenzer and G. Wieber, "On design strategies lor parallel algorithms in rignal processing using graph rnadelr", in: Proc.

ICASSP, 1980, pp. 939-942.
[I51 H. Roth and R. Steinmetz, "Analyeevon Algorithmen durch DatenRussgraphen und deren Abbildung auf Multiprozesiorsysieme

zum Einsatz in der Echtzeilsignalvrrarheitunggg, Studienarbeit, TH Darmstadt, FB Eleklrische Nachrichtentechnik, 1982.

Signal Proariiing

