
Ralf Kundel, Leonard Anderweit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Benjamin Becker, Tobias Meuser. Host Bypassing:
Let your GPU speak Ethernet. To appear in the proceedings of IEEE International Conference on Network Softwarization, IEEE, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Host Bypassing: Let your GPU speak Ethernet
Ralf Kundel∗, Leonard Anderweit∗, Jonas Markussen¶‡, Carsten Griwodz‡,

Osama Abboud§, Benjamin Becker∗, Tobias Meuser∗
∗Multimedia Communications Lab, Technical University of Darmstadt, Germany

ralf.kundel@kom.tu-darmstadt.de
‡Department of Informatics, University of Oslo, Norway
¶Dolphin Interconnect Solutions AS, Oslo, Norway

§Huawei Technologies, Munich, Germany

Abstract—Hardware acceleration of network functions is es-
sential to meet the challenging Quality of Service requirements in
nowadays computer networks. Graphical Processing Units (GPU)
are a widely deployed technology that can also be used for
computing tasks, including acceleration of network functions.
In this work, we demonstrate how commodity GPUs, which do
not provide any network interfaces, can be used to accelerate
network functions. Our approach leverages PCIe peer-to-peer
capabilities and allows the GPU to control the network interface
card directly, without any assistance from the operating system or
control application. The presented evaluation results demonstrate
the feasibility of our approach and its performance of up to 10
Gbit/s, even for small packets.

Index Terms—PCIe, GPU, NFV Offloading, Bypassing, DPDK

I. INTRODUCTION

Computer networks have become the basis of many ser-
vices in daily life over the last decades, and therefore the
performance requirements are very high. For example, the
total Internet utilization grows with a rate of around 25 %
per year [1], implying constant increasing performance and
flexibility demands on the underlying network.

Therefore, network functions in modern networks must have
high performance while being flexible in terms of deployabil-
ity and adaptability. Realizing network functions as a software
component, named Network Functions Virtualisation (NFV),
provides the aforementioned flexibility; however, standard
servers do not provide the required performance [2]. Hardware
accelerators, e.g., Field Programmable Gate Arrays (FPGA)
and Graphical Processing Units (GPU), can be used to in-
crease the performance [3]. By this, an improved Quality of
Service (QoS) can be achieved, especially a higher throughput,
a lower latency, and low deterministic jitter.

A high and ensured end-to-end network QoS is of high
importance for newly arisen applications, e.g., softwarized
radio access networks [4]. The network functions in 5G radio
access networks must perform many compute-intensive tasks,
including encryption and base-band channel encoding, at very
high packet rates with low jitter and zero packet loss [5].

GPUs are one of the most common accelerator technology
for these tasks as their internal architecture allows massive
parallel packet processing [6], [7]. However, the main disad-
vantage of nowadays common GPUs is the lack of network

NIC

GPU P
C
I
e

...
...core 1

core n

main
memory

CPU

DDR4

2
x 

1
0
G

server systemstate-of-
the-art
host-
bypassing

fx

Fig. 1. Server system with PCIe-based periphery and accelerator integration.
The red lines denote the data path in state-of-the-art systems, while the second
path depicts the host bypassing approach.

connectivity as they provide only graphics outputs and at least
one PCIe connector. PCIe is the current de-facto standard for
integrating accelerator cards in computer systems [8]. There-
fore, data is received by the Network Interface Card (NIC) in
the main memory of a commodity server and subsequently
copied into the GPU via PCIe using Direct Memory Ac-
cess (DMA), as shown in Figure 1. Next, the network function
running on the GPU is applied on the packet, denoted as fx, in
a highly parallelized manner. After completing the processing,
the packet is transferred the same way back: The GPU writes
the data into the system’s main memory via DMA. After that,
the NIC reads the packet from the main memory to transmit
it on the network interface port. To summarize, the packet
is copied four times within the system to be processed within
the hardware accelerator, causing additional latency, jitter, and
possibly limited bandwidth.

The main memory in data center servers is realized with
DRAM memory, a technology building upon capacity-based
bit storing. This technology, however, suffers from limited
bandwidth and non-deterministic access times. Further, at least
one software process running on the CPU is typically required
to control the copy processes.

To overcome this, we presented the host bypassing ap-
proach in our previous work, allowing a direct interconnection
between an FPGA and NIC in PCIe environments [9]. In
this work, we aim to replace the FPGA with a commodity
GPU. While FPGAs are special-purpose hardware allowing
to realize almost any digital circuit at a high development
effort compared to software processors, GPUs are much more



Ralf Kundel, Leonard Anderweit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Benjamin Becker, Tobias Meuser. Host Bypassing:
Let your GPU speak Ethernet. To appear in the proceedings of IEEE International Conference on Network Softwarization, IEEE, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

NIC
user space
application

shared memory:

. . .

mbuf:

rx descriptor ring:

...

head pointer

tail pointer

∅
∅∅

∅
∅

#1#2

#3

rx/tx tail pointer
update

Fig. 2. Working principle of user space poll-mode NIC driver, communicating
over a shared memory in the system’s main memory with the application.

widely deployed and the development process is much simpler
and very similar to conventional software engineering. In
summary, we investigate the realization and performance of
host bypassing with commodity off-the-shelf NICs and GPUs.
This approach benefits from avoiding two memory copies per
packet and bypassing the main memory.

The outline of this paper is as follows: First, we analyze
the reception process of commodity NICs. Following this, we
present our design for host bypassing with GPUs and present a
detailed performance evaluation. Last, we present related work
by other researchers and conclude the paper.

II. BACKGROUND: USER SPACE POLL-MODE DRIVER

Modern high throughput NICs are typically connected to a
server system by a poll-mode driver instead of conventional
interrupt-based packet handling, as the overhead of interrupt
handling would be too high. The most prominent commercially
maintained poll-mode driver collection is the Data Plane
Development Kit (DPDK), which is open-source and the basis
for this work [10]. In this section, we introduce poll-mode
drivers in detail as a basis for the GPU-based host bypassing.

A. Poll-mode Drivers

Figure 2 depicts the working principle of NIC poll-mode
drivers relying on a shared memory region accessible by the
user space application and the NIC. Within this shared memory
region, three different memories are realized:

Memory Buffer (mbuf): The largest memory area is used
for storing packets to be sent or recently received. This mem-
ory region is aligned in constant-sized blocks, each storing
a packet of the maximum allowed size, e.g., 2048 bytes . The
NIC and the user space application can read and write packets
directly via DMA into this memory.

In addition to this, at least two ring buffers are used for
handing over memory: The rx descriptor ring is a data
structure allowing to hand over memory addresses between the
NIC and user space application by a defined descriptor format.
First, the application allocates at least one memory slot in the
mbuf and writes these memory addresses into the according
rx descriptor ring entries. Second, the NIC reads this address,
and the next ingressing packet will be stored on the memory
address in the mbuf. After storing the complete packet, the

NIC overwrites the descriptor ring entry with multiple packet
metadata, e.g., receive timestamp and packet length, and the
information that a packet is received. In parallel, the user
space application continuously polls this descriptor entry until
a packet is received. After the reception, the packet can be
processed within the application, and the descriptor ring entry
will be re-initialized with a new mbuf entry as described in
the first step.

The descriptor ring typically has 64, 128, or 256 entries,
allowing to receive and process packets asynchronously. For
this, the head pointer indicates the position in the descriptor
ring which contains the physical address for the next receiving
packet. The tail pointer indicates the position in the ring
describing the packet to be processed next by the application.
By this, the NIC can receive many packets which do not have
to be processed immediately by the application. In the given
example of Figure 2, three packets are currently received but
not yet processed. To avoid overruns of the ring, i.e., the
NIC receives packets faster than the user space application
processes them, the tail pointer is written into the NIC
periodically. The NIC is not allowed to increase the head
pointer if this would imply a collision with the tail pointer.

Analogous to the receiving process, the tx descriptor ring
is responsible for the transmission of packets (not shown in the
figure). Packets are first written into the mbuf, and in a second
step, this memory address is written into a descriptor entry of
the tx descriptor ring. By updating the tx tail pointer of the
NIC, the new packet is advertised and can be read via DMA
by the NIC. Note that the tail pointer updates for receiving
and sending can be performed for every packet but do not
have to, e.g., only for every 8th packet to lower the PCIe bus
utilization is sufficient.

B. Parallel Packet Processing

To improve the performance further, NICs allow parallel
packet handling. For this, N descriptor rings for receiving and
sending packets can be used parallel. The NIC computes a
hash value for each incoming packet based on a few packet
header fields, including source and destination IP addresses
and L4-ports. This hash value is used to determine in which
ring the packet belongs into. Each ring can be processed by a
different software process of the user space application without
any synchronization to the other processes. For the sending
of packets, parallelization can also be achieved with multiple
rings. In this case, the distribution of packets into the rings can
be arbitrary as the packets of all rings are sent on the same
egress port.

III. GPU-BASED PROTOTYPE

In the following, we present the design and prototypical
implementation building upon the NVIDIA RTX 4000 GPU
and the CUDA programming API. Further, we chose the Intel
82599 NIC, one of the most common interface cards in today’s
servers, together with the DPDK framework. To enable further
research on our innovative host bypassing approach for GPUs,
we provide the source code and detailed build instructions



Ralf Kundel, Leonard Anderweit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Benjamin Becker, Tobias Meuser. Host Bypassing:
Let your GPU speak Ethernet. To appear in the proceedings of IEEE International Conference on Network Softwarization, IEEE, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

open-source1. In general, the host bypassing emulates the
behavior of the software driver (compare Figure 2) and works
as follows: 1) A control process on the CPU, being part of the
CUDA program, allocates memory in the GPU, accessible via
physical addressing on the PCIe bus. For this, we build upon
the GPUDirect technology. 2) The control process configures
the GPU with the physical address of the NIC to enable tail
pointer updates. 3) Last, a second control process configures
the descriptor ring addresses within the NIC pointing on the
GPU memory. This control process builds upon the DPDK
framework, providing access to the low-level registers within
the NIC. For this work, only minor modifications of the given
DPDK API methods were required.

After these initial steps, the GPU can receive and send
packets directly via the NIC without any active CPU process
interaction. Consequently, the CPU resources can be used
differently, or energy can be saved as no user space poll-mode
driver processes are required anymore.

In the following, we present some key features in detail.

A. Memory Management

The main principle of host bypassing is relocating the
shared memory, which is used for the NIC to application
communication, from the system’s main memory into the
GPU. For this, we allocate a single memory block in the GPU,
providing sufficient capacity for all descriptor rings and the
packet mbuf. However, by default, such memory can not be
accessed from another PCIe endpoint by physical addressing.
For this, we must compile and load a kernel module, enabling
memory pinning. This kernel module provides a pin memory
function, which is called by the initialization process, handing
over the virtual address of the memory block as well as the
PCIe bus and device ID of the GPU. As a result, this memory
region is pinned to a fixed address within the physical address
space of the GPU, and this address is returned. Further, within
the CUDA application, the driver must modify the attributes of
the memory pointer to enable synchronous memory operations
on this memory region by the NIC and GPU simultaneously.
Last, we must ensure that all PCIe permissions are set properly.
The GPU and NIC must be allowed to write into the physical
address range of each other. For this, PCIe bus mastering must
be enabled and we recommend disabling the I/O Memory
Management Unit (IOMMU). Furthermore, if there is a PCIe
switch on the data path (compare Section IV-B), PCIe access
control services must be disabled.

B. Parallel Packet Handling

One or multiple descriptor rings can be utilized for receiving
and sending packets. For this, we implemented two CUDA
kernels for incoming and outgoing transmissions. The behavior
of the receiving and sending program is based on the behavior
of the DPDK reference driver, as described in Section II. We
utilized two CUDA streams, allowing the parallel execution of
these two kernels. Further streams for packet processing can

1https://github.com/ralfkundel/HostBypassing

NIC

P
C
I
e

main
memory

CPU

10G NIC

GPU P
C
I
e

...

10G

21

Fig. 3. Packet flow in the system under test for two evaluation scenarios.

be easily added into this eco-system if required. The rx and tx
kernels have a 1-dimensional block ID, indicating which ring
they belong to. Within the allocated memory, all descriptor
rings are arranged in ascending order, and the particular ring
can be addressed by the base address, the ring size, and
the process ID of the kernel. With our implementation, we
tested one to eight descriptor rings; however, to serve even
faster NICs, e.g., 100 Gbit/s link speeds, a higher degree
of parallelism might be needed. Modern GPUs are providing
more than sufficient resources for this. As the single-thread
performance of GPUs is much lower than on commodity
CPUs, more than a single descriptor ring is likely required
to achieve a high throughput.

Last, memory allocation must be performed within all rx
kernel instances. Each rx kernel thread has its own memory
allocation range in the global memory to circumvent any
interference. The tx kernel is responsible for freeing memory
after sending a packet; similarly, a network function that drops
packets, e.g., a firewall, must free the memory accordingly.
Note that this allocation can not be realized with CUDA built-
in functions. As stated above, the memory must be physically
addressable from outside and set up before runtime. Therefore,
we built an allocation mechanism, providing fixed-sized packet
slots in the global memory, analogous to commodity drivers
running on the host.

IV. EVALUATION

In this section, we present the evaluation results of host
bypassing with commodity NICs and GPUs, stressing the
expected performance increase. Figure 3 depicts the two
main evaluation scenarios we investigate. The first scenario
describes state-of-the-art packet I/O from the NIC into the sys-
tem’s main memory and the same path back. In this scenario,
neither host bypassing nor any GPU accelerator is involved.
This scenario can be seen as an upper bound of theoretically
achievable performance for state-of-the-art approaches with
a GPU accelerator, as the packets must be copied first into
the system’s main memory before being transferred into the
GPU. Note that this upper bound is not realistic, as the transfer
from the main memory to the GPU and back in state-of-the-
art GPU integration causes additional overhead. According to
related work, in 2013 around 30µs for a single packet transfer
between main memory and GPU can be assumed, and thus
we still assume multiple microseconds for the latest GPU
technologies [11].The second scenario transfers packets to the
GPU using the host bypassing approach. As the goal of this
work is packet I/O only, the GPU sends the packet back onto
the same NIC port without any further packet processing.



Ralf Kundel, Leonard Anderweit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Benjamin Becker, Tobias Meuser. Host Bypassing:
Let your GPU speak Ethernet. To appear in the proceedings of IEEE International Conference on Network Softwarization, IEEE, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

P4STA-Stamper

Loadgen 1

Loadgen 2

NIC GPUPCIe

...core 1

core n
CPU

host bypassing system (SUT)

main
memory

10G

Fig. 4. Measurement setup for validating the host bypassing performance on
GPUs utilizing the P4STA framework.

For evaluation, we measured latency, throughput, and
packet loss of the host bypassing approach. To achieve a
high measurement accuracy, we utilized the P4STA mea-
surement framework, providing a nanosecond accuracy of up
to 10 Gbit/s link speed [12]. The general setup is shown
in Figure 4 and consists of two load generation servers
that create and validate test packets. The P4STA-Stamper is
responsible for high-accurate latency measurement and packet
loss detection. Further, as a single server can not generate a
sufficiently high packet rate, the Stamper device can duplicate
packets to achieve a high data rate even at small packet sizes.
The System Under Test (SUT) is a commodity data center
server with one Intel 82599 NIC and an NVIDIA RTX 4000
GPU. As mentioned in the respective sections, different CPU
types from AMD and Intel are used.

A. General Performance

In the following, we investigate the general performance
of the host bypassing approach and the DPDK baseline
(Scenario 1 and 2). Figure 5 depicts the latency over time
experienced by the packets passing through the test system.
In all cases, the input rate was limited to 9.99 Gbit/s . The
packet size, and by that, the packets per second rate, is
varied between 300 bytes and 1000 bytes . In addition to the
DPDK baseline (Scenario 1) and the GPU host bypassing
approach (Scenario 2), we added the equivalent evaluation
results from our prior work on host bypassing with FPGAs
(Scenario 2’) [9]. In all tests, the GPU and NIC are connected
to a PCIe switch (Broadcom PEX 8747), and no data is
forwarded through the PCIe root complex of the CPU, as
shown in Figure 6. We did not observe any packet loss in
one of these four tests, each consisting of millions of packets.

First, we discuss the DPDK baseline, receiving and sending
300-byte UDP packets. This packet size was chosen to stress
the SUT and create more diverging results. We can observe
that the latency is below 25 µs for most of the time; however, it
periodically peaks up to ≥ 150µs. We could not determine the
reason for this, but it can be either caused by an interruption
of the packet handling process, running on one of the CPU
cores, or by accessing the main memory. A state-of-the-art
system with GPU acceleration would have the same latency
plus additional latency and jitter caused by transmitting the
packet to and from the GPU accelerator.

The host bypassing results with FPGAs (named FPGA by-
passing in the plot) show up a very low and constant latency,

Fig. 5. Measured latency for different test scenarios at 9.99 Gbit/s and
300/1000 byte packet size. No packet loss occurred in all tests. GPU
bypassing with 1000 byte packets is stripped for readability reasons.

on average 7.99 µs. This is caused by neither involving the
system’s main memory nor any DRAM-based memory on the
FPGA. Further, the FPGA processes incoming and outgoing
packets with digital circuits built especially for this purpose.
This allows the FPGA to detect and process new packets
within a few nanoseconds only.

The host bypassing results with GPUs (named GPU by-
passing in the plot) are generated with eight rings for parallel
receiving and sending packets each. The latency for 300 byte
packets is significantly higher than for the DPDK baseline
or the FPGA implementation. Nevertheless, zero packet loss
occurred. As we can not observe the internals of the GPU at
runtime, we could only speculate about the reasons, possibly
caused by the global memory of the GPU, caching mecha-
nisms, or the CUDA kernels running on them. Increasing the
packet size to 1000 bytes , a more realistic average packet
size in most computer networks, strongly decreases the jitter.
However, the performance in terms of latency is still not
comparable to the FPGA implementation. We assume that the
internal architecture of GPUs, consisting of many processing
cores and complex memory structures, is causing this non-
deterministic processing behavior.

We can conclude that GPUs are currently no alternative
to FPGAs for applications with very low jitter requirements,
e.g., less than 1 µs. Indeed, GPUs are very well suited for
many compute intensive network functions and the general
performance of GPU-based host bypassing is very good, e.g.,
even for small packet sizes, zero packet loss occurs. This
approach is superior by design to state-of-the-art techniques,
performing network function offloading on GPUs.

B. PCIe Topology Influence

PCIe endpoints can be connected to the PCIe network in
multiple ways. As shown in Figure 6, they can be either
attached to the PCIe root complex of the CPU or to an external
PCIe switch, increasing the total number of PCIe endpoints
that can be attached to the system simultaneously. In the
following, we consider two scenarios: Either the NIC and GPU
are both connected to the CPU root complex (Intel Xeon Silver



Ralf Kundel, Leonard Anderweit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Benjamin Becker, Tobias Meuser. Host Bypassing:
Let your GPU speak Ethernet. To appear in the proceedings of IEEE International Conference on Network Softwarization, IEEE, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

...
core 1

core n

main
memory

CPUPCIe
root

complex

PCIe
switch

NIC

GPU

NIC

GPU
x16

x8

x16

x16

x8

Fig. 6. Different PCIe topology scenarios evaluated in this work.

avg.
latency

latency
std. dev.

packet
loss

Broadcom
PEX 8747 544.18µs 99.68µs 6.45%

AMD
Epyc 7402 564.67µs 94.75µs 7.72%

Intel Xeon
Silver 4110 583.73µs 98.36µs 9.82%

TABLE I
PERFORMANCE CHARACTERISTICS FOR 4 RX/TX RINGS AND 300 BYTE
PACKETS AT 9.99 Gbit/s DEPENDING ON THE PCIE INFRASTRUCTURE.

4110 and AMD Epyc 7402), or both are connected to a PCIe
switch (Broadcom PEX 8747).

The results in Table I are created with 4 descriptor rings
for receiving and 4 rings for sending packets. Compared to
8 rings, this causes packet loss in all scenarios and we can
investigate the point-of-failure more precisely. In all cases, the
input rate was a constant stream of packets with 300 bytes
each at 9.99 Gbit/s . The measured latency is a product of
the maximum throughput and the receive buffer size of the
NIC, which is constant. Consequently, a higher throughput
causes a lower average latency. The packet loss is inverse to the
throughput of the system, and the different PCIe architectures
must cause the discrepancy between the runs. Consistent with
our prior work [9], the PCIe switch has the best performance,
followed by the AMD and Intel CPU. However, in contrast
to the FPGA implementation, utilizing only a single ring for
receiving and sending packets, the difference between the PCIe
architectures is much lower. This might be either caused by
an optimized PCIe interface of the GPU for common CPUs,
or by the four parallel data transmissions which better utilize
the PCIe root complex capabilities of the investigated CPUs.

C. Parallel Packet Handling

To improve the performance of host bypassing on GPUs,
we enabled packet receiving and sending by up to 8 parallel
descriptor rings each. Figure 7 shows the latency distribution
for 1000 byte packets at 7.4 Gbit/s , the maximum achievable
rate without packet loss for all ring sizes. It is noteworthy
that the latency and jitter are lowest for a single rx and tx
descriptor ring. The higher jitter and latency might be caused
by the multiple threads within the CUDA kernels accessing
the same global memory interfering with each other.

The results in Table II show that for a single descriptor ring
at maximum-sized packets, i.e., 1500 bytes , and 9.99 Gbit/s
throughput, zero packet loss and no packet reordering occurs.
Furthermore, the latency’s standard deviation is very low
(a reduction by ∼ 99%) compared to the aforementioned
experiments with smaller packets sizes and multiple rings.

Fig. 7. Latency distribution in a non-overloaded scenario depending on the
number of rx/tx rings. The 1000 bytes test packets are shaped to 7.4 Gbit/s .

Rings packet
size

avg.
latency

latency
std. dev.

packet
loss

reordered
packets

1 1500 9.76µs 87.7ns 0 0
1 300 1790µs 50.3µs 74.78% 0.01%
2 300 1000µs 87.7µs 51.64% 49.49%
4 300 544.2µs 99.7µs 6.45% 42.28%
8 300 27.17µs 7.6µs 0 38.20%

TABLE II
GPU HOST BYPASSING PERFORMANCE CHARACTERISTICS DEPENDING ON

THE NUMBER OF CONCURRENT THREADS (RX AND TX RINGS) FOR
PACKET HANDLING BETWEEN NIC AND GPU.

To measure this, we captured each packet before and after
the SUT and checked that the packet timestamps were strictly
monotonously ascending. After decreasing the packet size to
300 bytes , massive packet loss occurs for a single ring. As
the throughput in bits per second remained unchanged, we
can determine the packet rate as the limiting factor, which is
typical for virtual network functions. The number of reordered
packets is close to zero; however, we observed a few reordered
packets. This reordering might be caused by incorrect packet
handling in this overloaded situation. When the number of
descriptor rings is increased to two, the throughput is also
almost doubled. This is a good indicator for the receive thread
to be the bottleneck. Now, massive packet reordering can
be observed, as two or more threads are sending packets
asynchronously from each other. However, this can be the case
for many other network functions that perform parallel packet
processing as well, and is generally not a disadvantage. With 8
descriptor rings, we observed zero packet loss even for small
packets but still high packet reordering.

To summarize, in order to achieve high throughput in
GPUs, receiving and sending packets in parallel is mandatory.
However, this causes massive packet reordering and is there-
fore improper for some networking applications. However,
avoiding reordered packets may be possible at a high price
of synchronization and is not required for most applications.

V. RELATED WORK

Utilizing PCIe-based hardware accelerators and their con-
nectivity has been discussed in related work before.

Vasiliadis et al. presented a framework for GPU-based
packet processing, providing basic network functionality, e.g.,
TCP stream processing, to enable rapid and efficient applica-



Ralf Kundel, Leonard Anderweit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Benjamin Becker, Tobias Meuser. Host Bypassing:
Let your GPU speak Ethernet. To appear in the proceedings of IEEE International Conference on Network Softwarization, IEEE, 2022.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

tion development [13]. According to the authors, GPU pro-
cessing can enormously improve the processing throughput;
however, their measured latency of pure CPU-based processing
is lower and therefore recommended for flows with low or
strict latency requirements. We assume this problem can be
solved by the host bypassing approach presented in this work.

The capabilities of PCIe peer-to-peer data transfers were
investigated by Bittner et al. in 2014 [14]. The authors
interconnected a GPU with an FPGA and demonstrated a
significant reduction of the latency while transferring data.

Remote Direct Memory Access (RDMA) is a technology
allowing to write directly into the main memory of a remote
server by using special NICs and protocols on both sides. With
this technology, it is also possible to write data directly from
one server into the GPU main memory of a remote server over
a network connection [15]. However, this technology is not
applicable for network functions as it works only between two
servers exchanging data on the application layer. GPUDirect,
a technology also this work builds upon, allows the Direct
Memory Access (DMA) transfers from one GPU to another
without involving the system’s main memory. Utilizing RDMA
and GPUDirect technologies, data chains between multiple
GPUs and CPUs in one or multiple servers can be built [16].

GPUDirect has also been used accelerating storage work-
loads [17]. In a fashion very similar to our own solution,
Markussen et al. proposed a solution for leveraging PCIe peer-
to-peer capabilities and using GPUDirect to operate a non-
volatile memory device from a CUDA kernel [18].

VI. CONCLUSION AND FUTURE WORK

Many network functions in current computer networks
require very good performance in terms of latency, through-
put, and jitter, along with high flexibility. By using general-
purpose hardware accelerators, i.e., GPUs, these goals can
be achieved simultaneously. In this work, we investigated
the direct connection between GPUs and Network Interface
Cards (NICs) by utilizing PCIe peer-to-peer capabilities. We
have shown that our approach, named host bypassing, is fully
functional for receiving and sending packets over commodity
NICs, still providing the same flexibility as existing state-of-
the-art approaches. Our performance evaluation results have
proven the potential of this approach to lower the end-to-
end latency and jitter while providing very high throughput.
The improvements can be explained by fewer memory copies
within the system and bypassing the system’s main memory,
realized with non-deterministic DRAM memory technology.
We observed no packet loss down to 300 bytes packet size
at 10 Gbit/s throughput, corresponding to a packet rate of
greater 4·106 pps , while measuring a deterministic low latency.

In future work, we will investigate the realization of 5G O-
RAN functionality in GPUs together with host bypassing for
packet I/O [19]. Especially the Central Unit (CU) in disaggre-
gated O-RAN networks, responsible for the encryption of each
packet sent to or received from the mobile subscriber, might
benefit enormously from the combination of GPU acceleration
and host bypassing.

ACKNOWLEDGMENT

This work has been funded by the Federal Ministry of Ed-
ucation and Research (BMBF, Germany) within the Software
Campus Project ”5G-PCI” and by the German Research Foun-
dation (DFG) as part of the project B1 within the Collaborative
Research Center (CRC) 1053 MAKI.

REFERENCES

[1] Cisco Systems, Inc., “Cisco Annual Internet Report,” 2020, [Online, last
accessed: 28th February 2022].

[2] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[3] L. Nobach and D. Hausheer, “Open, elastic provisioning of hardware
acceleration in nfv environments,” in 2015 International Conference and
Workshops on Networked Systems (NetSys). IEEE, 2015, pp. 1–5.

[4] C. Ranaweera, E. Wong, A. Nirmalathas, C. Jayasundara, and C. Lim,
“5g c-ran with optical fronthaul: An analysis from a deployment
perspective,” Journal of Lightwave Technology, vol. 36, no. 11, pp.
2059–2068, 2017.

[5] M. Waqar, A. Kim, and P. K. Cho, “A transport scheme for reducing
delays and jitter in ethernet-based 5g fronthaul networks,” IEEE Access,
vol. 6, pp. 46 110–46 121, 2018.

[6] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing with
gpus and click,” in Architectures for Networking and Communications
Systems, 2013, pp. 25–35.

[7] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the
bar for using gpus in software packet processing,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, 2015, pp. 409–423.

[8] PCI Express Base Specification 4.0, Peripheral Component Interconnect
Special Interest Group (PCI-SIG), 2017.

[9] R. Kundel, K. Eryigit, J. Markussen, C. Griwodz, O. Abboud, R. Hark,
and R. Steinmetz, “Host bypassing: Direct data piping from the network
to the hardware accelerator,” in 2021 IEEE 14th International Sym-
posium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
IEEE, 2021, pp. 23–30.

[10] The Linux Foundation, 2010, https://www.dpdk.org/.
[11] Y. Fujii, T. Azumi, N. Nishio, S. Kato, and M. Edahiro, “Data transfer

matters for gpu computing,” in 2013 International Conference on
Parallel and Distributed Systems. IEEE, 2013, pp. 275–282.

[12] R. Kundel, F. Siegmund, R. Hark, A. Rizk, and B. Koldehofe, “Network
testing utilizing programmable network hardware,” IEEE Communica-
tions Magazine, pp. 12–17, 2022.

[13] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A GPU-Accelerated Stateful Packet Processing Framework,”
in 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014,
pp. 321–332.

[14] R. Bittner, E. Ruf, and A. Forin, “Direct gpu/fpga communication via
pci express,” Cluster Computing, vol. 17, no. 2, pp. 339–348, 2014.

[15] B. Yi, J. Xia, L. Chen, and K. Chen, “Towards zero copy dataflows using
rdma,” in Proceedings of the SIGCOMM Posters and Demos, 2017, pp.
28–30.

[16] G. Shainer, A. Ayoub, P. Lui, T. Liu, M. Kagan, C. R. Trott, G. Scantlen,
and P. S. Crozier, “The development of mellanox/nvidia gpudirect over
infinibanda new model for gpu to gpu communications,” Computer
Science-Research and Development, vol. 26, no. 3, pp. 267–273, 2011.

[17] S. Bergman, T. Brokhman, T. Cohen, and M. Silberstein, “SPIN:
Seamless operating system integration of peer-to-peer DMA between
SSDs and GPUs,” ACM Transactions on Computer Systems, vol. 36,
no. 2, pp. 5:1–5:26, 2019.

[18] J. Markussen, L. B. Kristiansen, P. Halvorsen, H. Kielland-Gyrud,
H. Stensland, and C. Griwodz, “Smartio: Zero-overhead device sharing
through pcie networking,” ACM Transactions on Computer Systems,
vol. 38, no. 1–2, pp. 2:1–2:78, 2021.

[19] R. Kundel, T. Meuser, T. Koppe, R. Hark, and R. Steinmetz, “User plane
hardware acceleration in access networks: Experiences in offloading
network functions in real 5g deployments,” in Proceedings of the
55th Hawaii International Conference on System Sciences. Computer
Society Press, 2022, pp. 1–10.


