Ralf Kundel, Jeremias Blendin, Tobias Viernickel, Boris Koldehofe, Ralf Steinmetz: "P4-CoDel: Active
Queue Management in Programmable Data Planes" In: Proceedings of 2018 IEEE Conference on
Network Function Virtualization and Software Defined Networks. 27.-29. November 2018

P4-CoDel: Active Queue Management in
Programmable Data Planes

Ralf Kundel, Jeremias Blendin, Tobias Viernickel, Boris Koldehofe, Ralf Steinmetz
Multimedia Communications Lab, Technische Universitdt Darmstadt, Germany
Email: {ralf.kundel, jeremias.blendin, tobias.viernickel, boris.koldehofe, ralf.steinmetz} @kom.tu-darmstadt.de

Abstract—Today, networks are still vulnerable to high laten-
cies. An important reason for that is the Bufferbloat problem
caused by big packet buffers as part of the forwarding equipment
of modern networks. Even if these buffer sizes are configured in
a reasonable way, they still have a fixed size which is always a
compromise. Indeed, the required buffer size strongly depends
on the RTT of the end-to-end network connection. In order to
support dynamic buffer sizes and to reduce the negative impact
of Bufferbloat, different Active Queue Management (AQM)
algorithms have been proposed recently, such as CoDel and PIE.
However, these algorithms are typically not available in state of
the art network equipment.

In this paper we show how recent AQM algorithms can be
implemented using P4 programmable network equipment. In
consequence, communication networks can be easily enhanced
to benefit from state-of-the-art AQM algorithms. To this end,
we provide an open-source available implementation of CoDel,
one of the most prominent queue management algorithms, in P4.
The implementation of such AQMs in P4 data plane hardware
enables a massive reduction of latency in many use cases, such
as traffic shaping in ISP access networks.

Index Terms—P4, Active Queue Management, Bufferbloat,
CoDel, Low Latency, Queueing, Traffic Shaping

I. INTRODUCTION

The volume of Internet traffic has risen by an enormous
extent in recent decades. Most of the transferred data is
transmitted by connection oriented protocols [1], typically
TCP. TCP uses a congestion control mechanism [2] in order to
avoid over utilization, to ensure fairness, and to provide a high
throughput. Whenever packets from a high bandwidth link
are forwarded to a link with lower bandwidth congestion can
occur. This congestion suffers from the buffering of packets
at the egress port of the forwarding switch or router.

Traditionally, the required queue size (B) for a fully utilized
and congested link has been advised to be larger than the
passing connections’ bandwidth-delay product: B = RTTxC,
with RTT being the round-trip time and C' the link capac-
ity [3]. In case of multiple TCP connections at the same time,
this demand is reduced to B = fLZxC where n describes the
number of congestion controlled connections on the link [4].
Whereas the link speed is mostly constant, the RT'T of internet
users can vary between less than 10 ms for connections to
content delivery-network (CDN) servers and over 200 ms for
connections around the world [5]. Thus, the optimal queue
size is RT'T sensitive. This means that all packet queues with
a fixed size are a trade-off between the needs of connections
with large and small R7TT's in most internet use cases. A

queue with constant size, but larger than required, will be
filled by packets of the active connections until the maximum
window size of TCP is reached or the queue is full and starts
dropping packets. This lead to unnecessarily high delays due
to full buffers, known as Bufferbloat [6]. These long delays
dramatically reduce the quality of latency sensitive network
traffic; such as voice over IP (VoIP). However, if queue sizes
are too small, this can lead to an underutilization of the
congested link.

Thus, the size of a queue should be chosen so that a full
utilization of the link leads to a queue utilization which is
sometimes close to, but never reaches zero. If the minimum
queue utilization is significant larger than zero, the delay
increases without any benefit.

Approaches to address the Bufferbloat problem are active
queue management (AQM) algorithms like CoDel [7] and
PIE [8]. These algorithms do not require an active adjust-
ment of the queue sizes. Instead, they provide an integrated,
dynamic feedback mechanism to ensure that queuing delays
become as small as possible. The effectiveness of CoDel and
PIE has been demonstrated in literature before [9] and they
have been included in the Linux kernel. The introduction of
Software-defined Networking (SDN) and Network Functions
Virtualization (NFV) in many areas of networking, for ex-
ample in ISP access network infrastructures, led to a new
generation of programmable network devices.

Programmable match-action packet-forwarding ASICs [10]
give the possibility to implement new functionality without
creating new ASICs, which is very costly and time intensive.
Most of these ASICs can be programmed with the open-source
available programming language P4 [11]. In this paper

« we show that and how it is possible to implement a state-

of-the-art AQM algorithm in programmable data planes
using P4,

« we provide an open-source implementation, available on

GitHub, of the CoDel algorithm in P4.

In Chapter II we consider all fundamental basics and related
work. In Section III the implementation of CoDel in P4
is introduced. Chapter IV shows the mininet testbed setup,
available on GitHub, and evaluation results.

II. BACKGROUND

In this chapter we motivate briefly which queueing re-
quirements must be fulfilled for a maximum throughput. Fur-
thermore we outline existing approaches of AQM, introduce

rst
Textfeld
Ralf Kundel, Jeremias Blendin, Tobias Viernickel, Boris Koldehofe, Ralf Steinmetz: "P4-CoDel: Active Queue Management in Programmable Data Planes" In: Proceedings of 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks. 27.-29. November 2018

programmable data plane hardware and give an overview over
related work.

A. Programming Protocol-independent Packet Processors

The high-level data plane programming language P4 [11],
introduced in 2014, follows the main objective to define packet
processing functionality of programmable network devices.
Major benefits are that packet processing of P4 devices
can be reconfigured after deployment and are hardware and
protocol independent. Thus, P4 circumvents hardware vendor
constraints which requires the use of proprietary languages.

The abstract forwarding model of any P4 device starts with
a programmable parser, which allows custom defined headers.
Next multiple match+action stages, which can be in parallel or
in series, may modify headers or determine egress ports. The
P44 forwarding model, as shown in Figure 1, has a pipeline,
divided into an ingress and egress part. Between those parts,
a fixed function block for queueing packets is implemented.

(A 0
N R Programmable Packet Programmable T
P [S | Match-Action- || Bacffe ~ || Match-Action- || p
U] E Pipeline uirer Pipeline U
TR T

Ingress Pipeline Egress Pipeline

Fig. 1. Abstract P44 forwarding model

Currently there are two versions of the language, P44
and the newer version P414. However, since the P4 software
toolchain for the newest version of the language is not con-
sidered production quality yet, we will focus on P41, in this
document. When looking at P4 implementations, the abstract
forwarding model is constructed by defining header formats, a
packet header parser, table and action specifications as well as
the control program itself. P4 programs can be executed either
in the reference behavioral model (bmv2) or on real hardware
like FPGAs, SmartNICs [12] or switches [13].

B. Bufferbloat and Queueing Requirements

For simplicity, we assume an exemplary network with a
single router and two ports. On the first port, the packets arrive
and are forwarded to the second port of limited bandwidth.
The dequeueing rate of the output port, called service rate, is
equal to this bandwidth limitation. Figure 2 shows the temporal
course of the buffer level for a single TCP connection in such
a switch with a simplified congestion control. As soon as the
arrival rate exceeds the outgoing service rate, the buffer level
will rise until it is full. Then, first packets will be dropped
and the congestion control of the TCP connection will detect
packet loss. In a consequence, the TCP sender reduces its
sending rate and will increase it slowly again afterwards. Since
the buffer becomes never empty, the service rate of the queue
and the utilization of the bottleneck link is maximized. The red
box below the buffer level chart in Figure 2 indicates that there
are always packets in the queue. As already mentioned, the
queue should be almost empty when the arrival rate exceeds
the fixed service rate. If the queue becomes empty before that,
the sending rate collapse. In general, TCP tend to fill buffers

if no packet loss occurs. If these buffers are sized too big, they
create additional queueing delay, called Bufferbloat [6].

arrlvalj | | service-
rate: | | rate

full
buffer
level:

unnecessarily delay |

empty

service- 100%

rate:
(bottleneck) 0%

Fig. 2. Buffer level behavior for a single TCP connection

If we consider many TCP connections in parallel, the arrival
rate will be a overlay of many TCP saw tooth like courses with
a lower total amplitude. By that, the required maximum buffer

size will be lower, exactly B = L\/TE*C [4].

C. CoDel

CoDel (Controlled Delay) is an AQM algorithm that ad-
dresses the Bufferbloat problem, specified by the IETF in RFC
8289 [7]. Its effectiveness has been shown in literature before
[9]. The pseudocode in Listing 1 shows the main behavior of
this algorithm.

#define TARGET 5 //ms
#define INTERVAL 100 //ms

Paket p; StatefulObject s;

if (p.queuedelay < TARGET || q.byte < INRTERFACE MTU)
s.dropping = false; count = 0;
continue ;

if (s.dropping == false)
s.dropping = true;
s.drop_next_paket = now + INTERVAL;
continue ;

if (s.dropping && s.drop_next_paket >= now)
drop () ;
count++;

s.drop_next_paket = now + INTERVAL / sqrt(count);

Listing 1. Reduced CoDel Pseudocode

The algorithm has two parameters, TARGET and
INTERVAL. The following algorithm ensures that the
queueing delay will be periodically lower than TARGET:

« If the queueing delay is below TARGET, a packet is never
dropped.
e If TARGET is exceeded by more than INTERVALL time
units, the first packet will be dropped.
o From now on, the interval between dropping packets is
getting smaller, until the TARGET delay is reached.
The full algorithm also considers other factors, for example the
duration since the last dropping phase. Our implementation is
based on the complete algorithm whereas we have shown here
a reduced version for better understanding.

D. Related Work

Sharma et.al. have used the possibilities of P4 pro-
grammable data planes to establish fairness between multiple

flows by per flow metering and a approximating fair queueing
algorithm [14]. A very similar fairness problem was addressed
by another work which implemented a equity motivated queue-
ing algorithm for P4 data planes [15].

Sivaraman et.al. analyzed different AQM algorithm and found
out that there is “No Silver Bullet” which fits best for all use
cases [16]. They have shown that it is possible to implement
CoDel with FPGAs, attached to a fixed function forwarding
ASIC. Their key insight was, that the data plane must be
flexible in order to be open for different AQM algorithms.
From their point of view, that could be achieved best by
including small FPGAs on switches.

III. SYSTEM DESIGN

Until recently, state-of-the-art switches, as shown by Sivara-
man et.al, cannot be used to implement custom queueing
mechanisms. The introduction of programmable data planes,
for example with P4, provides new prospects for that. How-
ever, P4 is a language that strictly works on and with packet
headers, but it doesn’t describe the queueing of packets. Still,
it can be used to implement CoDel, and thereby an AQM
mechanism as we will show.

Our approach is integrated into the P4 reference pipeline, as
shown in Figure 3. The packets can be processed in any way
by the ingress pipeline. Afterwards they are stored in a queue
of the packet-buffering unit in the middle and in the egress
pipeline CoDel will control the queueing delay by dropping
packets.

Ingress

Egress Pipeline
Pipeline

time

> o™ i
s ‘

TARGET
Algorithm constant

CoDel
AQM

—“CcCUoz-—

—Cc7wvHcCO

Fig. 3. CoDel integration in P4 reference pipeline

Our open-source available implementation' is build for the
P4 reference model bmv2 and can be executed on every
Linux based system without the need of specialized hardware
or proprietary software. Nevertheless, this code can be used
as a basis for migrating to P4 compatible hardware. In the
egress pipeline the bmv2 provides the possibility to access the
queueing delay as packets are timestamped before enqueueing.
Considering the CoDel implementation from Listing 1, this is,
with expect of the current time, the only required information.
Note: the queueing behavior of P4 processors is not standard-
ized and depends on the architecture. However, it is reasonable
to assume that on other hardware the same information about
the queueing state will be provided in a similar way.

Our implementation is self explainable and can be mapped to
provided pseudocode or the rfc reference code with ease. The
stateful information, for example the point of time when the
next packet should be dropped, are stored in registers. Our im-
plementation can be integrated in any P4 project by integrating
the file codel . p4 and inserting one line at the egress pipeline
declaration of the project. For in depth evaluation we provide

Uhttps://github.com/ralfkundel/p4-codel

a second file, queue_measurement . p4, which inserts the
queueing delay of the packet in the first 32 bit of the TCP
payload. For that, a TCP checksum update is required and it
can be used only for TCP load tests which don’t take care of
the payload (f.e. iperf3).

A. Complex Arithmetic Functions in P4

Main difficulty of implementing the CoDel algorithm was
the lack of square root function support in P4. With P44
fixed function blocks, which could describe the computation
of a square root, are supported. However, an execution on hard-
ware still requires the support of this functionality. Therefore,
we introduce an approximation for the function %
with standard language expressions. If the targeting hardware
supports this complex computation it can be replaced easily.

table_add

t_control_law action 0/26 => 17677
table_add t_control_law action 0/27 => 25000
table_add t_control_law action 0/28 => 35355
table_add t_control_law action 0/29 => 50000
table_add t_control_law action 0/30 => 70710
table_add t_control_law action 0/31 => 100000

Listing 2. Simple square root approximation

The approximation counts the number of leading zeros by
applying a longest prefix match table, as shown in Listing
2. For each entry of the table the result of the frac is stored in
there and no complex computation in the data plane is needed.
An even better approach is the use of range matching. By
that, an approximation can be almost equal to the logarithmic
function. However, this will require more memory space than
the simple approximation.

B. Other AQMs

According to our design, many AQMs can be described
for P4 data planes. One challenge is that some algorithms
like PIE [8] decide a packet drop before enqueueing the
packets in the ingress pipeline, which has no information
about the current queueing delay. For that, a packet can be
duplicated in the egress pipeline and its duplicate is sent back
by P4-recirculation to deliver the current queueing
state.

IV. TESTBED SETUP & EVALUATION

I1‘]o:|b 11 ; h3
0.1. P4-switch |Botie 10.0.2.1

- - Mpas

10 0.1.2 sl ri s2 }1'10%_2)

Fig. 4. Mininet testbed setup

Main goal of the evaluation is to show that the implemented
algorithm works as expected and by that prove the feasibility
of AQMs in P4 data planes. The implementation is embedded
in a simple Mininet [17] topology, as shown in Figure 4.
In this scenario two Internet servers and two households are
connected by the layer 3 router r1, implemented in P4. Due

to the bottleneck link between rl an s2 a CoDel based
queueing in rl with a rate of the bottleneck link speed is
installed. The bmv2 only supports a rate limit in packets
per second, therefore we provide the measured values in pps
with a fixed packet size of 1514 bytes. This is a limitation
caused by the bmv2 reference model and a “bytes-per-second”
implementation could be realized without any changes of the
P4 code. For all shown results the dequeueing rate is 2000 pps,
4 TCP flows are used in parallel and the RTT of the links is
4 ms.

For testing the behavior of the CoDel implementation
iperf3 was used between hl and h3. h2 and h4 provide
additional capabilities for parallel ping tests on non-busy hosts.

m
£ 10
B
@ 57
kel
0 T T T T T T
= 2000 - TI’T'FII11I'I'I"T‘|‘T'F’[[[TIT[T
=
1000 A
e
ol :
0 1 2 3 4 5
time [s]

Fig. 5. Ingress to Egress delay and throughput of r1

The correctness of our implementation is shown by the
following CoDel specific properties: (1) the queue delay is
falling below the TARGET of 5ms periodically as shown in
Figure 6, (2) at the beginning a burst of packets is caught and
(3) the throughput of the TCP connection is constantly equal
to the speed of the limiting link (Figure 5). As shown in the
results, TCP can not bloat the buffer as known from typical
taildrop or RED queues. The results can be reproduced on any
linux system. Please follow the instructions in the readme file
of the GitHub repository.

14

12 A

queue delay [ms]

0 1 2 3 4 5
time [s]

Fig. 6. Measured queueing delay within the P4 pipeline of r1l

V. CONCLUSION

Active queue management algorithms are very promising
and powerful to cope with the bufferbloat problem. In this
paper we have demonstrated, on the example of CoDel, that it

is possible to implement such algorithms for P4 programmable
data planes without the need of special hardware. Our open-
source available implementation has shown the expected
CoDel behavior and can be used for further investigation,
evaluation and research. We are firmly convinced that active
queue management in the data plane will contribute to reduce
latencies in core and edge networks and thereby increase the
performance and quality of experience in the future Internet.

ACKNOWLEDGMENT

This work has been supported by Deutsche Telekom through
the Dynamic Networks 7 project, and in parts by the German
Research Foundation (DFG) as part of the project C2 within
the Collaborative Research Center (CRC) 1053 MAKI. Fur-
thermore, we thank our colleagues for their valuable input and
feedback.

REFERENCES

[1] C. Labovitz, D. McPherson, S. Iekel-Johnson, and M. Hollyman, “In-
ternet traffic trends,” in NANOG, vol. 43, 2008, p. 2008.

[2] M. Allman, V. Paxson, and E. Blanton, “Tcp congestion control,”
RFC5681, https://www.rfc-editor.org/rfc/rfc5681.txt, RFC, 2009.

[3] R. Bush and D. Meyer, “Some Internet Architectural Guidelines and
Philosophy,” Internet Engineering Task Force, Request for Comments
3439, 2002.

[4] G. Appenzeller, 1. Keslassy, and N. McKeown, Sizing router buffers.
ACM, 2004, vol. 34, no. 4.

[5] “Global ping statistics,” https://wondernetwork.com/pings, accessed:
2018-07-10.

[6] J. Gettys and K. Nichols, “Bufferbloat: dark buffers in the internet,”
Communications of the ACM, vol. 55, no. 1, pp. 57-65, 2012.

[71 K. Nichols, V. Jacobson, A. McGregor, and A. Iyengar, “Controlled
Delay Active Queue Management,” Internet Engineering Task Force,
Request for Comments 8289, 2018.

[8] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” Internet Engineering Task Force, Request for
Comments 8033, 2017.

[9] F. Schwarzkopf, S. Veith, and M. Menth, “Performance analysis of codel
and pie for saturated tcp sources,” in Teletraffic Congress (ITC 28), 2016
28th International, vol. 1. 1EEE, 2016, pp. 175-183.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. 1z-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4. ACM,
2013, pp. 99-110.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.

[12] B. Vinnakota, “Netronome and p4: A brief his-
tory and a roadmap,” https://www.netronome.com/blog/
netronome-and-p4-a-brief-history-and-a-roadmap/, accessed: 2018-07-
06.

[13] “Barefoot networks
brief-tofino/.

[14] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approximat-
ing fair queueing on reconfigurable switches,” in USENIX Symposium
on Networked Systems Design and Implementation, 2018.

[15] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, and B. Sanso, “Towards
approximate fair bandwidth sharing via dynamic priority queuing,”
in Local and Metropolitan Area Networks (LANMAN), 2017 IEEE
International Symposium on. 1EEE, 2017, pp. 1-6.

[16] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan, “No
silver bullet: extending sdn to the data plane,” in Proceedings of the
Twelfth ACM Workshop on Hot Topics in networks. ACM, 2013, p. 19.

[17] K. Kaur, J. Singh, and N. S. Ghumman, “Mininet as software defined
networking testing platform,” in International Conference on Commu-
nication, Computing & Systems (ICCCS), 2014, pp. 139-42.

tofino,” https://barefootnetworks.com/products/

