
Conceptual Approach Towards Recursive
Hardware Abstraction Layers

Robert Konrad, Polona Caserman, Stefan Göbel, and Ralf Steinmetz

Multimedia Communications Lab - KOM
Technische Universität Darmstadt, Darmstadt, Germany
{robert.konrad,polona.caserman,stefan.goebel,

ralf.steinmetz}@kom.tu-darmstadt.de

Abstract. Cross-platform publishing is a must have in game develop-
ment. Sophisticated game engines such as Unreal or Unity provide cross-
platform publishing capability. Therefore, many developers use these
game engines. On the other hand, several game developers also pro-
vide their own technology and do not want to become fully dependent
on external technology. Based on that situation efficient mechanisms are
required to combine both sides: Usage of custom in-house technology
enhanced with multi-platform capabilities. This paper introduces a new
concept for hardware abstraction layers tackling this issue. Chapter 1
and 2 motivate the use of multiple hardware abstraction layers and pro-
vide a brief overview of related work. Chapter 3 describes the Kha and
Kore frameworks as basic game technology for custom in-house game en-
gines. In the main part of this paper, a conceptual approach of hardware
abstraction layers, is introduced in Chapter 4 and Chapter 5 discusses its
practical use for the integration in Unreal and Unity. Finally, Chapter 6
provides an overview and best practice examples of how to use Kha and
Kore for Serious Games.

Keywords: Kha, Kore, Hardware Abstraction Layer, OpenGL, Unreal,
Unity

1 Introduction

In recent years developing video games became considerably easier than it used to
be due to the broad use of off the shelf game engines [1]. The leading game engines
provide a big collection of different tools and technical components, from level
editors to the low level components which make applications work on a plethora
of target platforms. The market is dominated by just two engines - Unreal and
Unity - and a difficult hardware situation (large diversity of Android devices,
technical challenges in developing for video game consoles,...) makes it hard for
new engines to catch on and dangerous to use in-house technology solutions.
Like with any kind of monoculture this comes not without problems. It is a
hindrance for innovations like new rendering technologies or support for unusual
hardware. This situation is especially tragic for Serious Games which can benefit

Robert
Textfeld
Konrad, R., Caserman, P., Göbel, S., Steinmetz, R. (2017, November). Conceptual Approach Towards Recursive Hardware Abstraction Layers. In Proceedings of the Third Joint International Conference on Serious Games (pp. 284-295). Springer-Verlag New York, Inc..



greatly from innovations and often have to be tailored for very specific hardware
environments (old school-computers, integration with exercise hardware,...).

Custom game engines could be made viable again if it would be possible to
run them inside of one of the market leading engines. Depending on the capa-
bilities and the distribution models of a game engine (open- or closed-source)
it can be possible to do exactly that - to avoid all higher level functionality
of an engine and target its underlying portability layer more or less directly.
This so called hardware abstraction layer (HAL) is the lowest level component
in a typical game engine architecture. To abstract the underlying hardware a
HAL provides an interface which is functionally equivalent to the common set
of features of the targeted hardware devices. As the functionality is dictated by
current hardware specifications, different HALs are very similar in the feature
sets they provide. Therefore it is feasible to modify a HAL of one game engine
to target the HAL of a completely different game engine. If sufficient underlying
functionality of a target game engine is accessible, one game engine can conse-
quently be made to run on top of another game engine, inheriting additional
cross-platform functionality in the process.

2 Related Work

Targeting a game engine is conceptually similar to the implementation of a multi-
platform game engine. Instead of targeting system APIs directly, the HAL of a
game engine (if it can be accessed) is targeted and HALs tend to be similar to
the APIs they abstract. Functionally complete hardware abstraction layers are
relatively rare however. Most openly accessible game engines and game libraries
do not implement an abstraction for the graphics APIs and instead solely rely
on OpenGL for multi-platform graphics support. Notable exceptions are Oryol1

and Unreal Engine 42. A second type of applications which implement similar
functionality are web browsers. When running on Windows operating systems
web browsers do not use OpenGL to provide the closely related WebGL API but
instead rely on Microsoft’s competing Direct3D APIs for better compatibility.
Google’s Chrome and Mozilla’s Firefox in particular use the ANGLE library3

for this purpose.

Graphics APIs are by far the most complex system APIs used by game
engines and as such multi-platform graphics APIs like OpenGL [2] and Vulkan
[3] are relevant as are libraries which purely aim to abstract graphics APIs like
bgfx4 and gfx-rs5.

For running code written for one game engine on top of another game engine
it can be necessary to cross-compile source code from one programming language

1 https://github.com/floooh/oryol
2 https://www.unrealengine.com
3 http://angleproject.org
4 https://github.com/bkaradzic/bgfx
5 http://gfx-rs.github.io



to another. The Haxe6 compiler can compile the Haxe programming language
to multiple different target languages, among them are most programming lan-
guages which are popular in the games industry like C++, JavaScript, C# and
Lua. The emscripten7 compiler in combination with the LLVM8 compiler suite
translates C and C++ code into an especially efficient subset of JavaScript.
SPIRV-Cross9 compiles SPIR-V bytecode into different GPU programming lan-
guages like GLSL, HLSL and the Metal Shading Language.

3 Kha and Kore

Kha10 and Kore11 are frameworks for cross-platform multimedia application de-
velopment. They are especially well suited for games as they tend to be the
most complex type of multimedia applications but instead of providing a com-
plete game engine they concentrate purely on providing very complete hardware
abstraction layers, including a cross-platform build system, asset management
and shader cross-compilation.

Kha and Kore are functionally very similar, the primary difference being that
the former is implemented in the aforementioned Haxe programming language,
which can be cross-compiled to other programming languages, therefore boost-
ing its cross-platform capabilities and the latter being implemented in C++,
providing lower level access and a potential for higher performance.

Compared to conventional game engine packages the usage of Kha and Kore
requires a much deeper understanding of the technological foundations of video
games. This is an explicit design goal for both of these frameworks. Kha was
originally created in an educational context and Kore is currently used to teach
a Game Technology course at the Technische Universität Darmstadt.

4 Conceptual Hardware Abstraction Requirements

In the following a minimal viable feature set for a hardware abstraction layer is
defined based on theoretical observations as well as practical experience based
on the implementation of the Kha and Kore frameworks.

On the most basic level a computer consists of different input and output
devices as well as internal units for computation. The computation devices in
most modern computers are CPUs and GPUs (often residing on the same chip).
Output is restricted to visuals and audio on most systems and common input
devices are keyboards, mice, gamepads, touch surfaces and accelerometer data.
Additionally computers include networking hardware and storage devices.

6 http://haxe.org
7 https://github.com/kripken/emscripten
8 http://llvm.org
9 https://github.com/KhronosGroup/SPIRV-Cross

10 https://github.com/Kode/Kha
11 https://github.com/Kode/Kore



4.1 Computation on CPUs and GPUs

In theory access to a turing-complete programming language is sufficient to
provide all necessary functionality [4] but especially in the context of video games
execution speed has to be considered. Game engines are often split in part in
an engine-implementation language (typically C++) and a game-logic language
(often Lua). When only the latter is accessible to a developer, performance might
be unacceptable for running an additional game engine inside of it.

GPUs are programmed using so-called Shaders which are programs which
execute in parallel on the GPU’s many execution units. Shader programming is
generally not turing-complete, disallowing recursive function calls, but provides
access to many special graphics hardware features. Proving the equivalence of
different shading languages is therefore difficult but the actual current situation
is less complex as game engines tend to use just one of two established shader
programming languages: GLSL or HLSL. Cross-compilation from GLSL to HLSL
and from HLSL to GLSL is widely used in practice, for example in Unreal Engine
and Unity [5] as well as in any modern web browser running on the Windows
operating system. Therefore support for either GLSL or HLSL shaders by a game
engine makes it a viable target regarding computations on the GPU.

4.2 Graphics Output

Visual output is internally represented by a dedicated memory area for which the
content is replicated on a monitor - the so called framebuffer [6][7]. On modern
systems however the framebuffer can not be directly accessed by an application.
Instead GPU APIs are used to write to the framebuffer indirectly using shader
programs in combination with several blocks of configurable graphics function-
ality.

Although GPU feature sets are constantly advancing a reasonable minimum
configuration can be defined based on OpenGL ES 2 which is designed to run
on the majority of today’s hardware and as of now nearly 40% of all Android
devices still support only OpenGL ES 2 [8].

Apart from the shading language GLSL the OpenGL ES 2.0 specification [9]
contains the following functional blocks:

Draw calls Fundamentally GPUs rasterize triangles and the OpenGL API re-
solves around this. So called draw calls are the actual commands which
initialize geometry drawing processes.
OpenGL ES 2’s draw calls support rendering of points, lines and triangles
based on vertex buffers and optional index buffers, the former defining the
points of the geometry and the latter defining which points make up each
geometrical primitive. Points and lines however are not mathematical lines
of zero size or thickness - actual mathematical points and lines are invisible
and therefore not useful for displaying graphics. A line with a thickness is in
mathematical terms a rectangle as is a point of a certain size and rectangles
can be triangulated trivially and therefore it is sufficient to only support
triangles.



When no index buffer is provided, OpenGL works as if it uses an implicit
index buffer containing the numbers from 0 up to the size of the index buffer
minus one. This index buffer could also be provided explicitly thus eliminat-
ing the need to make index buffers optional. Considering these simplifications
only a single kind of draw call is necessary, supporting indexed vertices to
draw triangles.

Screen clearing OpenGL provides an explicit screen clearing call which can
be simulated by drawing two triangles. The clear call can be optimized in
hardware and therefore be faster but it is not strictly necessary.

Backface culling The front and back-face of a triangle are defined by its wind-
ing order [10]. Culling of back facing triangles is an optimization technique
but is also important for rendering semi-transparent objects - without back-
face culling the innards of a semi-transparent object would be visible which
is generally not intended. Backface culling is therefore a necessary feature.

Textures Texture mapping is the process of mapping image data to geometry
[11] and it is fundamental to modern realtime 3D graphics. OpenGL ES 2
supports texturing including mip mapping and cube maps.

Mip maps improve scaling quality. Optimal scaling quality requires reading
all pixels of an image to produce what can be a single pixel on screen which
is highly inefficient and not supported by GPUs. Mip maps are arrays of
pre-scaled images and depending on the necessary scaling the most fitting
mip layer is used to read actual pixel data [12].

Cube-maps are arrays of six images which represent the inner six sides of
a cube [13]. Cube-maps are used to pre-calculate lighting environments. As
cube maps consist of six regular textures sampling a cube map can be sim-
ulated by implementing the texture coord calculations in a shader but care
has to be taken when sampling at the edges of a single texture. Emulating
cube-maps degrades performance and, depending on the implementation,
image quality.

Texturing support itself is essential while mip maps and cube maps are not
strictly necessary.

Frame- and Renderbuffers More complex rendering techniques and any kind
of post-processing require access to data from previously executed render
passes. OpenGL supports this by provide functionality for rendering into
a texture instead of the framebuffer. These textures can then be used as
normal. This functionality can not be achieved otherwise and is therefore
necessary.

Write Masks Depth and stencil channels as well as individual color channels
can be masked. This is useful for some rendering tricks like writing special
data to the alpha channel of an image. This functionality can not be trivially
replicated by a shader because it has no read access to its own render target
and can not write to only a component of a color by itself. Multiple render
targets can be used alternatively at great performance costs but as write
masks are not widely used this compromise would be acceptable for most
applications.



Stencil operations The stencil buffer is a special drawing buffer which can be
used in combination with predefined comparison functions. Stencil buffers
are best known for the stencil shadows algorithm [14]. Stencil operations are
useful in special cases but not used much if at all in modern engines. Stencil
shadows in particular have been replaced by shadow mapping and therefore
do not seem to be absolutely necessary.

Blending On most hardware shader programs do not have read access to the
current render target to increase parallelization efficiency. Blending colors is
therefore not programmable and instead achieved using predefined blending
modes.

Blending modes have historically become more and more complex but most
commonly colors are either mixed directly based on the alpha values (newcolor∗
alpha + oldcolor ∗ (1 − alpha)) or use additive blending which is typically
used in combination with premultiplied alpha images [15][16].

Blending could be emulated using render targets but performance would
likely be unacceptable, making support for at least the most basic blending
modes necessary.

Scissoring Scissor support can be used to mask rectangular screen regions
which is especially important for components of graphical user interfaces e.g.
for scroll-views. Scissoring can trivially be emulated using render-targets but
with severe performance implications. Alternatively triangles can be clipped
beforehand, resulting in potentially large CPU overhead. Due to performance
considerations and the omnipresent usage of graphical user interfaces scis-
soring is highly important.

Viewports Viewports define rectangular regions to which a scene is mapped.
This is important for rendering different views of a scene at the same time.
This feature can be emulated using render targets with reasonable perfor-
mance.

Reading back pixels OpenGL allows reading pixel data from the framebuffer
but this is a very slow operation because the GPU has to finish drawing and
then transfer data back to CPU memory and is therefore avoided in modern
game engines. Apart from features like screenshots or image analysis on the
CPU reading back pixels is not necessary.

Monitor Synchronization For fluid animations applications have to be synced
with the monitor refresh rate. Many game engines provide callback mecha-
nisms which are triggered when a new frame can be rendered. This is not
strictly an OpenGL feature as it is commonly provided by the operating
system in a platform-specific way - nonetheless it is a necessary feature.

Graphics Intricacies Apart from the listed feature sets graphics APIs include
several definitions about how they work and how data is structured which
eventually have to be adapted: Images data can start at the top or bottom
of an image. Matrices can be row or column major. Clip space - the final ren-
dering coordinate system - can be defined differently. All of these situations
can be handled in the shader cross-compilation step when the definitions are
clear.



4.3 Remaining Hardware

Audio Current operating systems represent audio output by a small ring buffer
which is written to by software and read by the audio hardware. As with
the visual output modern systems do not allow direct access to the global
audio ring buffer but the same concept is in use - applications are provided
with their own audio buffers which are then mixed into the global buffer by
the underlying system software. A hardware abstraction layer can use this
concept of an audio ring buffer directly to provide all audio features easily
and every more advanced audio can be built on top.

Input Common input devices are conceptually very simple, only consisting of
buttons and two-dimensional movements. Touch input can be represented
as an array of 2D positions. All of this can typically be mapped trivially
between different game engines.

Networking UDP is the most basic networking protocol supported in the
world’s networking infrastructure, adding only a target port to an IP pack-
age. All other networking functionality can be built on top and UDP support
is therefore sufficient.

Storage Devices Some method to read and write data, preferably based on
files and directories, is of course required.

5 Feasibility analysis for targeting game engines using a
hardware abstraction layer

5.1 Unreal Engine 4

Unreal Engine 4 is distributed including the full C++ source code and it is
possible to directly access Unreal’s own hardware abstraction layer inside of a
regular Unreal project. Consequently apart from some small complications all
required functionality can be accessed:

Computation on CPUs and GPUs Unreal projects are implemented in C++
making it an ideal target for other game engines in this regard.
Shaders for Unreal are written in HLSL but Unreal has no direct support
for per project shader files and all new shader files have to be copied into
Unreal’s own directory tree, which is usually global per system. This is an
unfortunate situation but can be handled satisfactorily using name mangling.
Shaders also can only be loaded during Unreal’s PostConfigInit phase which
itself only works inside of a plugin. Unreal plugins can be components of
regular Unreal projects but the project structure becomes more complicated.

Graphics Output Unreal’s RHI package represents the graphics hardware ab-
straction layer. It is used similarly to a graphics API like OpenGL and actu-
ally provides more advanced features than Open GL ES 2 with an API that
more closely resembles newer APIs like Metal using concepts like pipeline
states and command buffers but retaining a relatively simple interface for set-
ting shader parameters unlike Vulkan and Direct3D 12. This is to be expected



as the current iteration of Unreal Engine (version 4.x) is relatively new, be-
ing first released to the public in 2014 and requires relatively recent graphics
hardware. Monitor synchronization can be achieved by overriding the Tick
method of the AActor class. To then run the code on the render thread one of
the
ENQUEUE UNIQUE RENDER COMMAND macros can be used.

Remaining Hardware Unreal’s USoundWaveProcedural API provides access
to an audio ring buffer which is all that is required for full audio support.
The UInputComponent class can be used for all input functionality, which
is provided in the SetupPlayerInputComponent method of the APawn class
which is a subclass of AActor. Unreal provides network access via a UDP
socket API using the FSocket, FUdpSocketBuilder and FUdpSocketReceiver
classes. For further functionality Unreal contains a source package which is
called HAL and does indeed contain the hardware abstraction layer - exclud-
ing however any graphics or audio functionality but including file access.

5.2 Unity

Unity is fundamentally a closed source platform and source licenses are expensive
(actual prices are not disclosed publicly) making it a potentially problematic
target.

Computation on CPUs and GPUs Unity applications are developed on top
of a .NET runtime, the actual C++ engine is inaccessible. The .NET code
is either executed using the Mono runtime or a custom .NET to C++ cross-
compilation based solution. Performance is not as fast as running compiled
C++ code but fast enough to run at least lower end game engines on top of
it.
Shaders for Unity are written in HLSL but fragment and vertex shaders
reside in a single file next to some additional data and use special HLSL in-
put semantics. A shader cross-compiler requires small adjustments to target
HLSL for Unity.

Graphics Output Unity supports draw calls via the Graphics.DrawMeshNow
method which draws triangles based on vertices and indices but does not
support subranges of indices which is a surprising omission which can result
in performance problems.
All other required functionality is supported but some of it like blending and
culling is not controlled by a programming API but instead defined in the
shader files.
Whether image data starts at the top or bottom of an image is not abstracted
and applications have to read the UNITY UV STARTS AT TOP define and
handle the situation themselves.
Monitor synchronization is achieved using the OnPostRender callback.

Remaining Hardware Generating audio programatically is supported using
OnAudioFilterRead. The input API is called Input and provides methods
to access keyboards, mice, gamepads, touch and accelerometer state. Being



based on .NET Unity supports the
System.Net.Sockets API which includes support for UDP sockets. Files have
to be added to the Unity project structure. Directly supported file types can
be loaded using Unity’s Resources.Load calls. For binary access filenames
have to end with a ”.bytes” extension. Bytes files can then be cast to the
TextAsset class which provides a bytes member.

5.3 Prototypical implementations in Kha and Kore

Two prototypical implementations have been implemented to verify the pre-
sented concepts.

Kore provides a prototypical implementation of an Unreal backend which is
not yet fully automated but all basic functionality could be verified to work.
C++ code can be directly linked into an Unreal project and direct access to the
HAL - which is provided trivially for all regular Unreal projects - provides all
necessary features in a direct way. Kore applications can optionally run inside of
any Unreal texture which can be used freely within a 3D scene. Not being able
to add shader files directly to a project sadly complicates project export and
in combination with Unreal’s shader caching and loading behavior proved to be
the most challenging aspect of targeting Unreal.

Kha provides a fully working Unity backend. Kha’s Haxe code is cross-
compiled to C# with no special adjustments. Kha’s GLSL based shaders are
cross-compiled to Unity’s special form of HLSL shaders but the differing con-
cepts of how shaders are used in Kha and Unity proved problematic - Kha uses
separate vertex and fragment shader files and sets all rendering state via APIs
while Unity combines vertex and fragment shaders together with some render-
ing state in single files. To fully support Khas feature set all possible shader
and render-state combinations have to be create beforehand resulting in a large
number of shader files and currently the functionality is compromised to reduce
that number. API mapping showed no further problems apart from the slightly
restricted draw call API.

6 Development of Serious Games with Kha and Kore

A focus on understandable low level technology sports a number of additional
advantages beyond educational aspects. Common game engines suffer from tech-
nological drawbacks because they tend to be optimized for the mass market
hardware situation only although it can make a lot of sense for Serious Games
to target hardware which does not fulfill these criteria. Unity recently stopped
supporting Direct3D 9 [17] which is required for proper Windows XP support.
Nonetheless many schools around the world continue to use very old hardware.
The Raspberry Pi is a very popular platform for building custom hardware so-
lutions (for example an ergometer containing integrated exercise games) but is
neither supported by Unreal nor Unity. Arguably the most successful serious
game - Dr. Kawashima’s Brain Training - was only ever released on Nintendo



DS. The most recent sequel - Dr. Kawashima’s Devilish Brain Training - was re-
leased exclusively for Nintendo 3DS which is not supported by Unreal or Unity.
Even a popular software platform proves problematic: Web browser support is
not ideal due to the typical RAM requirements of large, cross-compiled C++
game engines (a non-standardized http extension is supported by Firefox for
that reason [18]).

Kha and Kore - in contrast to Unreal and Unity - do not dictate a spe-
cific workflow and embedding into other applications is easy - Armory3D and
StoryTec are two examples which demonstrate this approach.

6.1 Armory3D

Armory3D embeds a Kha-based realtime 3D graphics engine in Blender. With
Blender being a full 3D modeling suite such a combination offers features be-
yond what Unreal and Unity can provide and demonstrates the feasibility of
implementing high end realtime rendering pipelines (see figure 1) in Kha.

Fig. 1. Armory3D

It is aimed specifically at artists, creating a more efficient workflow for 3D
asset creation by utilizing technology and algorithms originating from the game
development community. It also provides options to add interactivity using a
graphical programming system, empowering artists to target new application
domains.

6.2 StoryTec

StoryTec is an authoring environment for Serious Games with a focus on nar-
rative design. It provides an integrated environment including editors for the
overall structure of a game, the creations of game scenes and for graphical in-
teraction programming. It is aimed at users with very little or no programming
experience, making it possible for a teacher to implement game-based e-learning
courses or for a curator in a museum to create a virtual tour guide.



StoryTec exists in two different versions. One is a complex application devel-
oped for offline usage in C# and WPF. The other is a simplified online version
running entirely in HTML5. Both versions of StoryTec make use of Kha. Sto-
ryTec uses it for broad multiplatform export support and to create a runtime
component which can be used independently (on all target platforms) as well as
integrated in a scientific analysis application. The integration in the web version
of StoryTec goes even deeper. The editor itself uses an integrated Kha runtime,
executing the same code which is also used to run the stories (see figure 2).

Fig. 2. StoryTec

Many serious games have already been developed and released using Story-
Tec, some examples are NeuroCare12, Der Chaos-Flush13 and the IUNO-Serious
Game14.

7 Conclusion

This paper provides a conceptual approach for Hardware Abstraction Layers as
basic game technology to support cross-platform publishing of games and seri-
ous games using in-house game technology combined with sophisticated game
engines. Running two game engines on top of one another is a development
strategy which works in theory and practice but the benefit of better hardware
compatibility has to be weighted against the disadvantages of additional com-
plexity. Nonetheless a game engine HAL backend is a useful fall-back plan for
compatibility challenges like the very diverse market of Android devices or for

12 https://neurocare-aal.de
13 http://darmstadt-marketing.de/fileadmin/spiel/
14 https://www.iuno-projekt.de/veranstaltungen/termine/eventdetail/44/-

/hessentag.html



hardware which is hard to access for smaller development teams - for example
Nintendo for a time only supported Unity based development for small teams
on its Wii U games console. The initial implementation of a HAL backend for a
game engine can take a lot of effort because this use-case is typically not con-
sidered in the accompanying documentation, which proved to be true for Unreal
and Unity, but the current implementations in Kha and Kore are useful starting
points which can speed up this process immensely.

References

1. Statista (2014). https://www.statista.com/statistics/321059/game-engines-used-
by-video-game-developers-uk/. Accessed April 2017

2. Frazier, C., Leech, J., Brown, P.: The OpenGL Graphics System: A Specification
(2016)

3. The Khronos Vulkan Working Group: Vulkan 1.0.48 - A Specification (2017)
4. Turing, A. M.: On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London mathematical society, 2(1), 230-265.
(1937)

5. Pranckevicius, A.: Cross Platform Shaders in 2014 (2014). http://aras-
p.info/blog/2014/03/28/cross-platform-shaders-in-2014/. Accessed April 2017

6. Newman, W. M., Sproull, R. F.: Principles of interactive computer graphics.
McGraw-Hill, Inc.. (1979)

7. Foley, J. D., Van Dam, A.: Fundamentals of interactive computer graphics (Vol.
2). Reading, MA: Addison-Wesley. (1982)

8. Android (2017). https://developer.android.com/about/dashboards/index.html.
Accessed April 2017

9. Munshi, A., Leech, J.: OpenGL ES Common Profile Specification Version 2.0.25
(2010)

10. Hultquist, J.: Backface culling. In Graphics gems (pp. 346-347). Academic Press
Professional, Inc.. (1990)

11. Heckbert, P. S.: Survey of texture mapping. IEEE computer graphics and applica-
tions, 6(11), 56-67. (1986)

12. Williams, L.: Pyramidal parametrics. In Acm siggraph computer graphics (Vol. 17,
No. 3, pp. 1-11). ACM. (1983)

13. Voorhies, D., Foran, J.: Reflection vector shading hardware. In Proceedings of the
21st annual conference on Computer graphics and interactive techniques (pp. 163-
166). ACM. (1994)

14. Bilodeau, W., Songy, M.: U.S. Patent No. 6,384,822. Washington, DC: U.S. Patent
and Trademark Office. (2002)

15. Porter, T., Duff, T.: Compositing digital images. In ACM Siggraph Computer
Graphics (Vol. 18, No. 3, pp. 253-259). ACM. (1984)

16. Smith, A. R.: Image compositing fundamentals. Microsoft Corporation. (1995)
17. Gram, M.: Deprecating DirectX 9 (2017). https://blogs.unity3d.com/2017/07/10/

deprecating-directx-9/. Accessed August 2017
18. Mozilla Developer Network - Large-Allocation (2017).

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Large-
Allocation. Accessed April 2017




