
Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Host Bypassing: Direct Data Piping from the
Network to the Hardware Accelerator

Ralf Kundel∗, Kadir Eryigit∗†, Jonas Markussen¶‡, Carsten Griwodz‡, Osama Abboud§, Rhaban Hark∗, Ralf Steinmetz∗
∗Multimedia Communications Lab, Technical University of Darmstadt, Germany

ralf.kundel@kom.tu-darmstadt.de
†Zoi TechCon GmbH, Stuttgart, Germany

‡Department of Informatics, University of Oslo, Norway
¶Dolphin Interconnect Solutions AS, Oslo, Norway

§Huawei Technologies, Munich, Germany

Abstract—Computer networks have become very important
and influential over the last years for many common services
such as Internet connectivity as well as time-sensitive applications
such as videotelephony. Furthermore, approaches like in-network
computing enable the offloading of latency-critical and high-
performance network functions into the network, e.g. 5G network
functions, to enable such time-sensitive applications.

In this work, we show how FPGAs in PCIe-based systems,
which are typically used as hardware accelerators for latency-
critical in-network functions, can be integrated into the data path.
Our approach, named host bypassing, allows direct data transfer
from the network interface to the accelerator and accomplishes
substantial performance benefits over existing state-of-the-art
approaches. Our detailed evaluation results demonstrate the
possibility of achieving deterministic low latency while operating
under heavy load without any packet loss. In addition, fewer
CPU resources are required.

Index Terms—PCIe, FPGA, Offloading, Bypassing, DPDK

I. INTRODUCTION

The continuously growing number and scale of digital
services in the Internet and all underlying networks has led to
numerous challenges for network and data center operators.
First, due to the very high demand for digital services, a
lot of computing power is needed at the lowest possible
energy consumption. Second, high flexibility and scalability
are required in networks in order to meet the continuously
changing needs of on-top applications [1].

While CPUs are highly flexible and capable of serv-
ing arbitrary computing applications, most network switches
and network interface cards (NICs) are realized with
non-programmable Application Specific Integrated Cir-
cuits (ASICs). Since ASICs can only provide fixed and limited
functionality, the Network Function Virtualization (NFV) [2]
paradigm has resulted in a movement of more network-
ing functionality onto the CPU for flexibility reasons. NFV
describes the execution of network functions in virtualized
software environments, demanding flexibility that is typically
achieved by executing them on standard x86 or ARM servers
and not on purpose-built devices. However, this reduces the
overall performance [2].

Many recently arisen applications have strict Quality of
Service (QoS) requirements, including the requirement of
time-critical processing within the data path. 5G networks,
in particular, impose extreme demands in terms of latency,
throughput and jitter while moving increasingly towards soft-
warized networks. 5G O-RAN systems are examples that
require low latency, high throughput and lower jitter between
their Radio Units and Distributed Unit [3]. This gives rise to
a need for flexible hardware acceleration within the data path.

While achieving these QoS requirements is inhibited by
today’s common approach to NFV, which sacrifices perfor-
mance to gain flexibility, in-network computing approaches
focus on bringing the functionality back from servers into
the data path of the network. Combining the ideas of NFV
and hardware acceleration for in-network computing opens up
huge potentials to fulfill the constraints of time-critical net-
working functions. However, integrating programmable hard-
ware accelerators, such as Graphics Processing Units (GPUs)
and Field Programmable Gate Arrays (FPGAs), into the data
path is challenging. In the context of commodity servers with a
standard PCIe infrastructure, moving network packets between
the NIC and an accelerator requires copying data via system
memory, which introduces additional latency in the data path.

To illustrate this, we introduce a simple reference architec-
ture for a computer system with an FPGA as a hardware accel-
erator in Figure 1. State-of-the-art approaches store incoming
data from the network first in the main memory (DRAM).
The incoming data is then transferred via Direct Memory
Access (DMA) from the main memory into the FPGA in a
second step. After being processed by the accelerated network
function implemented on the FPGA, named fx, the data is sent
out via the same path. The data is moved at least four times
within the system, and CPU interaction is needed.

In this work, we present host bypassing to drive
commodity NICs with an FPGA directly as shown in Figure 1.
It reduces the number of memory copies to two that do not
require CPU involvement. As a consequence, we expect an
increased throughput, lower latency and strongly reduced CPU
utilization. This approach can be realized with any poll-mode



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

NIC

FPGA P
C
I
e

...
...core 1

core n

DRAM

CPU

DDR4

2
x 

1
0
G

computer systemstate-of-
the-art
host-
bypassing

fx

Fig. 1. Reference computer system with a PCIe-based FPGA accelerator. The
red path represents the current state of the art for packet I/O to accelerators.
The host bypassing approach utilizes PCIe peer-to-peer capabilities.

Fig. 2. Example of a PCIe subsystem topology in a computer system. Several
devices are connected to the CPU through the root complex. Devices may read
from or write to system memory (DRAM) using DMA.

capable hardware and no special NIC is needed. In addition, it
can be extended to chain several hardware-accelerated network
functions within the same PCIe domain [4].

The outline of this paper is as follows: First, the fundamental
basics of the PCIe subsystem and NIC drivers are introduced.
Second, we present the design and implementation details of
the host bypassing approach. Third, we evaluate and discuss
the performance characteristics of the presented approach in
several scenarios. Finally, after discussing related works of
other researchers, we conclude this paper.

II. BACKGROUND

This section introduces the two main technologies under-
lying on our work: 1) the PCIe bus standard for integrating
peripheral devices and hardware accelerators into computer
systems, and 2) user space poll mode drivers for NICs.

A. PCIe Subsystem

PCIe is the de facto standard for high-speed computer
expansion that connects hardware devices such as NICs, GPUs
and FPGAs to a computer system [5]. Figure 2 depicts an
example of a PCIe subsystem topology: Several devices are
connected to the CPU, either directly or via a PCIe switch
on the motherboard. Each connection is a point-to-point link,
consisting of 1 to 16 lanes. Each lane is a full-duplex serial
connection. Data is striped across multiple lanes, so broader
links yield higher bandwidth. Connecting the CPU to the
PCIe subsystem is the so-called “root complex”. Devices are
mapped into the same physical address space as the CPU, and
memory transactions are routed in the PCIe subsystem based
on these mapped addresses. Because of this mapping, CPU
applications can access device memory in the same way as
system memory (DRAM). Likewise, if a device is capable of

NIC
user space
application

shared memory:

. . .

mbuf:

rx-ring:

head pointer

tail pointer

∅
∅ ∅

∅
∅

#1#2

#3

direct write

Fig. 3. DPDK principle of receiving incoming packets directly into the user
space. Synchronization between the application and NIC is realized by a
descriptor ring and a shared memory buffer.

DMA, it can directly read from and write to the main system
memory.

A device may even access other devices in the PCIe
subsystem directly, as they are mapped into the same address
space. This is called “peer-to-peer” in PCIe terminology.
PCIe switches are assigned the combined address range of
their downstream devices, allowing memory transactions to
be routed over the shortest path in the subsystem instead of
passing through the root complex. In Figure 2, transactions
between device 3 and device 4 would be routed directly
through the switch without involvement of the root complex.

B. User Space Poll Mode Driver

The idea of driving NICs directly from user space has
become very popular over the last years, as this provides
several benefits over kernel based approaches. In contrast to
the whole Linux kernel stack, only the required functionality
is implemented in the application in a simplistic manner [6].
In addition, zero-copy mechanisms are possible, which means
that the arriving packets are stored in a memory region where
the application can process them. By that, huge performance
benefits can be achieved.

In this work, we build upon the Data Plane Development
Kit (DPDK) library, a user space driver supporting a wide
range of NICs [7]. The main principle of DPDK is using ring
buffers to exchange packets between NIC and application, as
shown in Figure 3 for receiving packets. In a first step, the
NIC reads from a free descriptor ring entry indicated by the
head pointer. This entry contains the physical memory address
where the next received packet should be stored. As soon as
the packet arrives, the NIC writes it to this memory address.
Last, packet metadata and the information that a packet was
received are written into the descriptor ring and the head
pointer is advanced by one. The user space application polls
the descriptor ring at the tail pointer location asynchronously
to the NIC for new packets. When the application has read
a packet, the rx tail pointer is advanced by one and written
into the NIC. This tail pointer indicates the range of free
descriptors to the NIC. In Figure 3, the NIC currently receives
three packets but are not yet processed by the application.



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

PCIe
IP-Core

AXI4

BRAM ctrl.

BRAM ctrl.

BRAM ctrl.

BRAM ctrl.

BRAM ctrl. tx buffer

tx ring

rx ring

rx buffer

config reg.

AXI4
direct write

fx

descriptor
control packet

handler

descriptor
control packet

handler

AXI4-stream

AXI4-stream

convert
rx/tx tailpointer
update

FPGA specific logic target platform independent design

delay

delay (optional)

NIC

FPGA design

E

C

A

D

B

A
B
C
D
E 0X10_2000 - 0x10_2FFF

0X10_1000 - 0x10_1FFF
0X10_0000 - 0x10_0FFF
0X08_0000 - 0x0F_FFFF
0X00_0000 - 0x07_FFFF
address range

rx-handler

tx-handler

Fig. 4. FPGA internal design for host bypassing. The left side is FPGA type specific while the right side is platform independent. Modules in light green
depict the receive logic, while red modules represent the transmission part of the DPDK driver. Compare Section II-B for ring and buffer functionality.

III. DESIGN AND IMPLEMENTATION

The overall design can be divided into several modules
within the FPGA, as shown in Figure 4. In the following
subsections, we first focus on the PCIe data path that maps
the ring memory structures and packet buffer memory into
the FPGA. Second, we describe the software driver stack for
initializing the NIC and FPGA. In the third subsection, the
design of the NIC driver within the FPGA is explained.

A. Shared Memory Mapping into the FPGA

The host bypassing approach presented in this work operates
with commodity poll-mode capable NICs. Consequently, the
same behavior as the software driver is emulated by the
FPGA. As introduced in Section II-B, current user space poll-
mode drivers communicate with applications through a shared
memory region in the main memory of the host system. For
the FPGA implementation, four shared memory regions, two
descriptor rings and a memory buffer, are realized within the
FPGA and accessible via DMA by the NIC. Figure 4 shows
the implementation of these data structures in the FPGA. The
two descriptor rings and two memory regions for receiving and
sending packets are realized with internal SRAM-based block
RAM (BRAM) memory cells. In addition, a fifth module with
a BRAM interface was specified for configuration purposes.
Together, these five memory blocks provide a simple interface
to the BRAM controller. The PCIe module, realized by an
Intellectual Property Core (IP-core) of the FPGA vendor, is
connected by a crossbar to the five memory controllers, and
the module forwards read and write requests according to the
mapping table shown in Figure 4. In the implementation for
Xilinx FPGAs, we used the AXI4 data bus with a data width
of 256 bit and running at 250MHz, supporting a theoretical
symmetric throughput of 64Gbit/s within the FPGA. The
PCIe module was configured to Gen. 3 and 8 lanes, providing
a symmetric throughput of up to 64Gbit/s. As the NIC used
in our prototype has a link speed of 10Gbit/s, this memory-
mapped design should not cause any bottlenecks.

As the block memories create an abstraction layer between
the platform independent NIC driver and the FPGA-specific
logic on the PCIe-side, our open-source prototype imple-

mentation1 supports Xilinx and Intel FPGAs. For that, only
modifications of the FPGA specific logic are needed. Note
that an IP-core for PCIe, memory interconnect and BRAM
controllers are available for both vendors.

In addition to the memory-mapped I/O, it is also necessary
to update both tail pointers in the NIC as described in
Section II-B. For that, a low-throughput write channel from
the rx and tx logic to the PCIe module is used.

B. Software Driver Modifications
Our prototype is based on the DPDK library, which required

minor changes to work with the host bypassing approach. We
added the functionality to provide a custom physical memory
address for the rx and tx descriptor rings. In addition, we
created access to the DPDK device wrapper by the newly
added function rte eth dev *eth dev get(uint16 t port id);.

In the FPGA driver, only one function is required to
initialize the configuration register of the FPGA with 1) the
physical base address of the NIC, 2) the physical base address
of the FPGA and 3) the start command. Finally, a kernel
module is loaded for the FPGA whose only purpose is to make
the physical memory address regions available. After this, all
required functionality is implemented on the FPGA.

C. FPGA-based NIC Driver
After having mapped the shared memory regions into the

internal BRAM of the FPGA successfully, the next step is the
implementation of the DPDK driver functionality within the
FPGA. As the rx and tx logic can be treated independently,
implementing these two directions is also done independently
from each other. The driver logic has therefore been split up
into two modules:

rx-handler: This module is connected to the rx descriptor
ring and the rx packet buffer on the PCIe side. Towards
the application, it provides the received packets through a
standardized AMBA AXI4-stream interface.

tx-handler: Mirroring the rx-handler, this module receives
packets on an AXI4-stream interface from the network func-
tion running on the FPGA and sends it out via PCIe. It is
connected to the tx descriptor ring and tx packet buffer.

1https://github.com/ralfkundel/HostBypassing



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

NIC

P
C
I
e DRAM

CPU

10G

NIC

FPGA P
C
I
e DRAM

CPU

10G

NIC

FPGA P
C
I
e

...

10G

NIC

FPGA P
C
I
e

...

10G

10G

31

2 4

Fig. 5. Evaluation scenarios for host bypassing. Scenario 1+2: baseline/state-
of-the-art, scenario 3+4: bidirectional/unidirectional bypassing.

Besides having access to the shared memory rings and
buffers, both handlers write directly into the NIC’s physical
address range in order to update the rx and tx tail pointers.

The rx-handler polls the rx descriptor ring continuously for
new packets. While busy waiting would use the capacity of an
entire CPU core, this is done by the FPGA with little compu-
tational effort. As soon as a new packet has been received, the
rx handler reads it out from the rx buffer and sends it out on
the AXI4-stream interface. The descriptor control of the rx-
handler then increases the rx tail pointer and writes an empty
rx buffer memory address into the descriptor ring to allow
the NIC to receive a new packet on that descriptor. Last, the
descriptor control starts polling the next descriptor ring entry.

The tx path works analogously to this. The packets are
first stored in an empty region of the tx buffer. Second, the
tx-handler updates the tx ring entry accordingly. Third, the
descriptor control of the tx-handler updates the tail pointer in
the NIC to indicate the packet to be sent.

Updating the rx and tx tail pointer is a 4 byte write access
on the NIC via the direct write data path. Even though this
is comparatively little data compared to network packets (of
up to 1514 bytes), it is still an independent PCIe bus access
with a corresponding overhead. In order to decrease this
overhead, multiple tail pointer updates are batched together
by the optional delay modules. This module updates the tail
pointer either after some time or after a number of packets to
be sent, e.g., 2500ns or 8 packets.

IV. EVALUATION

In the following, we demonstrate the performance of the
host bypassing approach by presenting several performance
characteristics. Note that while the results presented here are
from our implementation using Xilinx Alveo U50 FPGAs,
experiments with Intel Stratix 10 FGPAs yield similar results.
For that, we compare two baseline scenarios (scenario 1+2)
with two host bypassing scenarios (scenario 3+4) as shown in
Figure 5.

In the first scenario, we consider the performance of a
DPDK application running in the user space without any
hardware acceleration. In this scenario, the data is transferred
only between the NIC and the main memory of the CPU. The
second scenario realizes packet I/O over the main memory
of the CPU and copies the data for processing to the FPGA.

P4STA-Stamper

Loadgen 1

Loadgen 2

Loadgen 1

Loadgen 2

NIC FPGAPCIe

...
...core 1

core n
DRAM CPU

host bypassing system (DUT)

DDR4-
controller

10G 10G

Fig. 6. Testbed setup for generating test traffic and measuring QoS charac-
teristics. Packets can be injected and received either by a 10Gbit/s link to
the commodity NIC or the FPGA. The FPGA port is only used for measuring
single-direction delays. The stamper device of the P4STA setup can create
fine-shaped test loads and measure latency and loss with very high accuracy.

These two scenarios represent the state of the art of high-
performance packet processing without/with hardware acceler-
ators. In the third scenario, all incoming and outgoing packets
are transmitted directly between NIC and FPGA via PCIe
without going through the main memory and CPU.

As the used FPGA also provides a native Ethernet port,
we can evaluate sending and receiving over PCIe separately.
Therefore, we include a fourth scenario where we use this
Ethernet port to send out packets received by the NIC and
copied via PCIe to the FPGA. Incoming packets on the
Ethernet port of the FPGA are sent by the NIC via PCIe. While
this is similar to the third scenario, as packets can be sent and
received over PCIe directly from the NIC, this last scenario
allows the investigation of one-way delay measurements.

The descriptor size was 64 on the FPGA and did not affect
the performance. In software, 256 descriptor ring entries are
used as this has shown up the best performance.

A. Testbed Setup

For gathering performance evaluation results, we built upon
the existing open-source framework P4STA for benchmarking
and validating network functions [8]. In the following, we
consider the host bypassing implementation as Device under
Test (DUT), directly connected to the P4STA stamper as
shown in Figure 6. Depending on the evaluation scenario,
packets can be injected and received either on the NIC port or
directly from the FPGA via a 10Gbit/s port. Test packets are
created by the load generators and are aggregated, counted and
timestamped within the stamper. In addition, packets can be
duplicated in order to generate very high loads. This setup
allows the detection of one single lost packet in a multi-
million packet test and latency measurements with only a
few nanoseconds error. Furthermore, packet reordering can be
easily detected. All tests are performed with UDP test packets
of 300bytes-size and 10Gbit/s load, except the tests that are
explicitly denoted differently. Even though packets in com-
puter networks typically have a size of close to the Maximum
Transfer Unit (MTU), e.g. 1500 bytes, with smaller packets we
can stresstest the system as the packets/s rate increases at a
constant link speed. Furthermore, latency-critical applications
typically have much smaller average packet sizes [9].

All measurement results are latency corrected by the mea-
surement overhead of the setup and the length of the used



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Fig. 7. Measured latency over time for the DPDK baseline, receiving +sending
packets via PCIe, receiving only and sending only via PCIe.

fibers. By that, all results show the port-to-port latency only.

B. General Forwarding Behavior

As mentioned in Section II-A, PCIe devices can be either
attached directly to the CPU root complex or an external
PCIe switch. In the following, we will consider only the
PCIe-topology of both PCIe devices, NIC and FPGA, are
connected to a PCIe switch of the type Broadcom PEX8747.
The CPU root complex is not involved in the data path, and
in contrast to state-of-the-art approaches, no additional CPU
utilization occurs. The congestion control between NIC and
FPGA, which causes descriptor writebacks after successfully
sending packets, and tailpointer batching are disabled.

In Figure 7, four measurement results are presented. First,
baseline scenario 1 in green is shown. It is apparent that the
forwarding latency is mostly below 25µs with medium jitter
but increases every 2s strongly. This pattern is very repro-
ducible. We assume this to be caused by the DRAM controller
of the CPU used for storing the packets. In general, DRAM
memory technology is known to provide non-deterministic
behavior due to refresh cycles. However, we could not identify
the source of this jitter.

Second, the black curve depicts the latency over time for
evaluation scenario 3, where the FPGA receives and sends
packets over PCIe. The average latency is 7.99µs and the
standard deviation 99.02ns. The blue and red lines show
the latency for evaluation scenario 4 with only receiving or
sending packets via PCIe. For receiving packets via PCIe and
sending them out over an Ethernet port on the FPGA we
measured an average latency of 3.37µs and 40.01ns standard
deviation. Receiving packets with the FPGA and send them out
via PCIe has 4.56µs latency and 46.96ns standard deviation.

Note that the sum of the rx and tx latency is 60ns lower
than the bidirectional latency. In addition, the native Ethernet
ports, including the intellectual property core of the FPGA,
also cause a slight latency increase. This latency variation is

0 2000 4000 6000 8000 10000
input rate [Mbit/s]

101

102

la
te

nc
y 

[μ
s]

dpdk baseline (1)
dpdk+fpga (2)
Intel (3)
Broadcom switch (3)
AMD (3)

loss Intel (3)
loss dpdk+fpga (2)
 
 

0%

20%

40%

60%

80%

100%

pa
ck

et
 lo

ss

Fig. 8. Observed packet loss and latency for three different PCIe root/switch
architectures. The DPDK baseline, Broadcom switch and AMD root complex
scenarios did not show up any packet loss.

avg. goodput avg. latency loss
Intel Xeon 4110 7.77Gbit/s 36.63µs 1.84%
AMD Epyc 7402 9.28Gbit/s 13.89µs 0.00%
Broadcom PEX8747 9.29Gbit/s 13.12µs 0.00%

TABLE I
PERFORMANCE CHARACTERISTICS OF THE RECEIVING + SENDING

EVALUATION SCENARIO NR. 3. THE TRAFFIC LOAD GENERATION WAS
PERFORMED WITH TCP AND A PACKET MTU LIMIT OF 1514 BYTES.

caused by the higher utilization of the PCIe bus as each packet
is transferred twice. As shown later in Section IV-C, a higher
bus utilization slightly increases the latency. All in all, we
can observe that the latency for sending packets via PCIe is
significantly higher than for receiving packets.

C. PCIe Infrastructure Implications

In order to investigate further the impact of PCIe architec-
tures, we performed several input-rate sweeps on evaluation
scenario 3 for different architectures. In addition, we did the
same measurement for the pure software forwarding baseline
implemented in DPDK (scenario 1) and the state-of-the-art
approach for copying data from the network into FPGAs and
back (scenario 2). For the latter, we build a high-performance
DPDK application in software that is receiving all packets and
handing over a pointer to the FPGA. After that, the FPGA
fetches the packet via DMA and writes it back to the main
memory without any processing. From there, the software
applications hands the packet over to the NIC for sending.
Note that this application is single-threaded and with two
threads for receiving and sending the packets, the performance
might be doubled. We investigated an Intel Xeon Silver 4110,
AMD Epyc 7402 and a Broadcom PEX8747 external PCIe
switch as shown in Figure 8. Each curve consists of at least
20 measurements, dependent on its characteristically points.
All tests are performed for 10 seconds and are statistically
significant as each run contains multiple millions of packets.



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

The baseline of forwarding packets with DPDK shows up a
slight increase of latency for higher loads. Only when reaching
the link speed, the average latency increases strongly. Note that
this scenario is not comparable to our approach, as it does not
contain the forwarding of packets to and from the hardware
accelerator within the system.

The second baseline, dpdk+fpga, represents the state of the
art. We observed an increased latency at 2Gbit/s rate and
between 2.35Gbit/s and 2.4Gbit/s first packet loss occurs.
After that point, the latency is constantly high as the system
is overloaded and the packet loss increases with the input rate.

In the case of both PCIe devices being connected to the Intel
CPU, we observed a latency between 6.3µs and 8.2µs in the
range between 100Mbit/s and 7Gbit/s. After that, the latency
strongly increases and we observed the first packet loss at
8.42Gbit/s. This means, within a range of around 1.4Gbit/s,
the increasing latency is an excellent indicator for reaching
the system performance without any packet loss. We observed
only packets of up to 64bytes arriving from the NIC on the
PCIe transaction layer. In the case of the PCIe switch they
were much bigger. This might be the cause of the comparable
bad performance.

The results for the external PCIe switch do not show up any
packet loss and are pretty good in general. Only the latency
increases slightly with the input rate.

The root complex of the AMD CPU shows up surprising
behavior. First, it is noteworthy that no packet loss was
observed at any input rate. Second, for low rates the latency is
much higher. We observed this behavior for the first packets
of high throughput tests as well but could not determine
the reason behind this. However, the behavior resembles the
characteristics of caches. The lowest latency was observed at
a rate of 5.5Gbit/s.

In addition to the UDP test with small packets of 300bytes,
we did a TCP test with three flows and maximum packet size
as shown in Table I. As TCP detects packet loss and reduces
the sending rate, a packet loss of only 1.84% was detected for
the Intel CPU. The average goodput is measured by TCP and
does not contain the packet header overhead. 9.29Gbit/s TCP
throughput corresponds to 9.99Gbit/s on the link layer.

Overall, the results for the external PCIe switch are best.
This is not surprising, as these devices are made for this
purpose and CPUs are currently designed for PCIe devices that
want to access the system memory. However, the presented
results are still all good and could be improved even better if
CPU vendors would optimize for this use case.

D. Controlled vs. Uncontrolled Packet Loss

Exceeding the maximum system performance causes un-
avoidable packet loss as previously shown in Figure 8. How-
ever, we can distinguish between controlled and uncontrolled
packet loss. As mentioned before in Section III-C it is possible
to enable an optional congestion control between NIC and
FPGA for transmitting packets. As soon as a packet was sent,
the NIC marks the tx-descriptor entry on the FPGA as sent.

By that, overruns of the tx-descriptor ring can be prevented.
However, it causes an additional overhead on the PCIe bus.

Figure 9 shows measurement results for evaluation scenario
3, receiving and sending packets on the NIC via PCIe. In the
case of connecting the FPGA and NIC directly to the CPU root
complex, we observed a quick increase in latency and out-of-
order packets on the tx-port of the NIC (marked by red shading
in the background) if no congestion control between NIC
and FPGA is enabled. In total, 176, 761 out of 35, 784, 597
forwarded packets were out of order. In the beginning, the
latency increases quickly as a queue builds up in the system
due to limited PCIe performance. The results with enabled
congestion control show up a similar increase of latency in
the beginning but no out of order packets occur. Assuming 64
ring buffer slots, a packet size of 300bytes and 10Gbit/s link
speed, this would cause a latency jitter of 15µs every time the
descriptor ring runs over. This can be observed in the scenario
without writeback and the devices being connected via the
root complex of the CPU. In the case of enabled congestion
control, this latency jitter can not be observed. The NIC is
causing the remaining latency of almost 400µs as the received
packets can not be transferred faster to the FPGA and packets
are buffered in there. It is noteworthy that the latency in case
of writing back the descriptors is higher. First, this is caused
by back pressure within the FPGA caused by the congestion
control mechanism. Second, only a lower sending rate can be
achieved due to the additional PCIe bus overhead and thus the
delay of the fixed-size buffers increases.

Without congestion control we observed a packet loss rate
of 9.90%, writing back the state for each sent packet increases
the loss rate to 15.79%. This means, if packet reordering is
less critical than a lower rate, it might be beneficial to disable
the writeback congestion control.

The last plot in the figure depicts the latency over time for
enabled and disabled congestion control and the devices being
connected to the PCIe switch instead of a root complex. The
measured latency was exactly the same. In both scenarios, the
latency is constant low as the NIC can read and write packets
at line rate in the FPGA memory. Consequently, in case of
having a PCIe switch, the congestion control is not needed.

These results show that a descriptor writeback might be
needed if the FPGA can send packets faster than the NIC
can execute these requests. In the scenario of PCIe devices
attached directly to the root complex this is caused by limited
PCIe peer-to-peer bandwidth. Note that this might be the case
as well for 1) NICs with higher link speeds, e.g. 40/100 Gbit/s,
or 2) in case the FPGA creates new packets or increases the
packet size and by that the rate within the FPGA is higher
than the tx link speed of the NIC.

E. Batching tailpointer updates

The FPGA driver of the NIC must write the tailpointer for
sending and receiving packets periodically into the NIC. As
previously described in Section III-C, this pointer increase can
be either done for each send/received packet or only after n
packets in order to reduce control overhead. By that, packets



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Fig. 9. Observed latency and reordered packets in case of an overloaded
system with hardware accelerator and NIC directly attached to the root
complex. Red shading in the background mark out of order packets. Packet
reordering occured only in case of root complex and no writeback.

batch-factor/ latency [ns] PCIe transfers [bytes/pkt]
timeout [ns] average std. deviation outgoing ingoing

1/- 8.14µs 101.23ns 324 316
8/2500 9.43µs 98.93ns 317 316

16/2500 9.92µs 65.33ns 316.7 316

TABLE II
IMPACT OF INCREASING RX/TX TAILPOINTER ONLY FOR EVERY n PACKET.

are handed over in batches to the NIC in tx direction and rx
descriptors freed in batches respectively. In order to determine
the exact overhead increase, we recorded and evaluated a trace
of the FPGA internal PCIe data bus with the Xilinx Integrated
Logic Analyzer. A tailpointer update will be only performed,
e.g., for every 8th packet or after 2500ns latest. In addition,
we measured the end-to-end latency and its variation for both
scenarios. The results are shown in Table II.

First, an increase of the batch size lowers the written bytes
per packet on the PCIe bus. The number of bytes written and
read out via DMA from the NIC on the FPGA is constant, but
the number of direct writes from the FPGA to the NIC has
decreased. Second, it is noteworthy that the latency increases
with a higher batch factor in tx direction. The NIC can not
start sending a packet before being notified that there is a new
packet as the NIC is not polling the descriptor ring. By that,
packets are not sent out immediately after being received. In
the case of packet sizes of 300bytes, a link speed of 10Gbit/s
and batches of 8 packets this leads to a theoretical increase
of latency by 7 · 300B/10Gbit/s = 1680ns. The measured
increase in latency was only 1.29µs. We assume the remaining
390ns being contained in the baseline with no tailpointer
batching but could not confirm this. In the case of 16 packets
per batch, the timeout of 2500ns will be reached before 16
packets have been accumulated and by that, the tailpointer on
the NIC will be increased every 2500ns. Indeed, the measured
latency increase is slightly smaller, presumably for the same
reason. However, it is noteworthy that the latency standard
deviation, which is a good indicator for jitter, has decreased.
The rx tailpointer is only used for indicating free descriptor
entries to the NIC and as long as enough free entries are
available for receiving new incoming packets, this optimization
has no negative implication on the system performance.

F. Resource Utilization

The resource utilization of the NIC driver on the FPGA is
negligible in terms of logic cells and acceptable in terms of
memory. It is noteworthy that a PCIe module is needed requir-
ing some resources. Nevertheless, this module is integrated as
fixed silicon by the vendor of modern FPGAs and requires
only little additional programmable resources. Further, this
module is also needed for hardware acceleration approaches
without host bypassing. Our design for sending and receiving
packets via PCIe on the Xilinx Alveo U50 utilized 2.08%
of lookup tables, 1.44% of the available flip flops, 23.14%
of BRAM and 0 ultra ram. In total, 311 BRAM cells were
used while 128 cells are used for the rx and tx buffer each.
Further 8 cells for the rx and tx descriptor rings are needed.
The remaining cells are used for the PCIe module and its
infrastructure, realized with intellectual property of the FPGA
vendor. The utilization could be decreased by reducing the
PCIe bandwidth, which is currently Gen.3 x8, and by that the
input data width of the BRAM memory from 256bit to 64bit.
However, we did not investigate this further.

V. RELATED WORK

Reconfigurable hardware for networking purposes is an
ongoing research issue. Newly introduced concepts for pro-
grammable NICs and switches enable reconfiguration with the
same performance as ASICs with fixed functionality [10], but
their flexibility is limited. Domain-specific languages which
are made for such hardware architectures, such as P4, allow
the description of the data plane behavior for use cases
with low and medium complexity [11]. However, complex
network functions, e.g., the encoding of radio signals within
the Distributed Unit of 5G O-RAN systems, can not be realized
with such programmable networking hardware, and more
general accelerators are needed [12], [13]. Using FPGAs as
hardware accelerators for network functions not only increases
the system’s energy efficiency [14], we have also shown in
previous work that it enables higher and more deterministic
performance characteristics [15].

In addition to FPGAs, offloading network functions on
GPUs has been discussed as well. GASPP is a framework
for network packet processing on a GPU [16]. It uses page-
locked host memory that is accessible by both an Ethernet
NIC and the GPU, but must still be transferred for processing
in case of discrete GPUs. Sun et al. [17] propose an extension
of the Click router for packet processing on GPUs. Also
their solution copies packets via the system’s main memory.
Kalia et al. [18] evaluate the benefits of GPUs for network
packet processing critically. Their main finding is that a pure
CPU-based implementation can outperform the GPU for some
simple network functions due to fewer packet copies. They
mention that the “NVIDIA GPUDirect” technology, which
is similar to our host bypassing approach, could improve
the performance. GPUnet [19] employs GPUDirect for direct
communication between GPU and InfiniBand NIC using PCIe
peer-to-peer, bypassing host memory. The focus of the work is,
however, the simplicity of GPU programming and not network



Ralf Kundel, Kadir Eryigit, Jonas Markussen, Carsten Griwodz, Osama Abboud, Rhaban Hark, Ralf Steinmetz. Host Bypassing: Direct Data
Piping from the Network to the Hardware Accelerator.

To appear in the Proceedings of the 14th IEEE International Symposium on Embedded Multicore/Many-core Systems-on-Chip, IEEE, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

function processing on GPUs. Moreover, these GPUDirect
approaches require support in GPUs and specialized NICs that
is usually not available in commodity hardware, while our
solution is open source and uses standard NICs.

The benefits of direct data exchange between FPGAs and
GPUs via PCIe without any CPU interaction have been shown
for several applications [20], [21]. Markussen et al. [22]
propose a solution for sharing devices in a PCIe-interconnected
cluster system. They demonstrate similar performance benefits
from peer-to-peer PCIe transfers, avoiding unnecessary copies
to main memory, but they also observe a similar reduction
in bandwidth as observed in our own evaluation when DMA
transactions are routed through the root complex of an Intel
Xeon CPU instead of a PCIe switch.

VI. CONCLUSION

It is crucial for many applications and use cases to have an
underlying network infrastructure with in-network computing
capabilities that provides high throughput, minimal latency and
jitter, and avoids packet loss. This work has shown how PCIe-
based hardware accelerators, specifically FGPAs, can be more
efficiently integrated into the network data path, thus enabling
such network infrastructures.

The presented host bypassing approach implements a
mechanism for driving a commodity NIC from an FPGA. Our
implementation allows receiving and sending network packets
from commodity NICs without requiring any CPU interaction
or unnecessary memory copies via system memory. Our evalu-
ation results show that even for commodity CPU architectures,
which are not optimized for direct communication between
different devices, huge performance benefits can be achieved
by building on peer-to-peer host bypassing.

We believe that with optimization of PCIe root complex
architectures of future CPU generations for this particular
scenario, even better performance can be observed.

In future work, we will investigate the host bypassing
approach with GPUs. Related work has already demonstrated
performance benefits from network function offloading using
GPUs, which we believe can be improved further by utilizing
host bypassing and relying on PCIe peer-to-peer capabilities.

ACKNOWLEDGMENT

This work has been funded by the Federal Ministry of Ed-
ucation and Research (BMBF, Germany) within the Software
Campus Project ”5G-PCI” and by the German Research Foun-
dation (DFG) as part of the project C2 within the Collaborative
Research Center (CRC) 1053 MAKI. We thank Xilinx and
Intel for their software and hardware donations. Furthermore,
we thank our reviewers for their valuable feedback.

REFERENCES

[1] W. Kellerer, A. Basta, P. Babarczi, A. Blenk, M. He, M. Klugel,
and A. M. Alba, “How to measure network flexibility? a proposal
for evaluating softwarized networks,” IEEE Communications Magazine,
vol. 56, no. 10, pp. 186–192, 2018.

[2] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[3] R. Kundel, T. Meuser, T. Koppe, R. Hark, and R. Steinmetz, “User plane
hardware acceleration in access networks: Experiences in offloading
network functions in real 5g deployments,” in Proceedings of the
55th Hawaii International Conference on System Sciences. Computer
Society Press, 2022, p. 1–10.

[4] R. Kundel, T. Burkert, C. Griwodz, and B. Koldehofe, “Chaining of
hardware accelerated virtual network functions in pcie environments,”
in Proceedings of the 20th International Middleware Conference Demos
and Posters. New York, NY, USA: Association for Computing
Machinery, 2019, p. 13–14.

[5] PCI Express 3.1 Base Specification, Peripheral Component Interconnect
Special Interest Group (PCI-SIG), 2010.

[6] P. Emmerich, M. Pudelko, S. Bauer, S. Huber, T. Zwickl, and G. Carle,
“User space network drivers,” in 2019 ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS), 2019,
pp. 1–12.

[7] T. L. Foundation, 2010, https://www.dpdk.org/.
[8] R. Kundel, F. Siegmund, J. Blendin, A. Rizk, and B. Koldehofe,

“P4STA: High performance packet timestamping with programmable
packet processors,” in Network Operations and Management Symposium
(NOMS). IEEE/IFIP, 2020, pp. 1–9.

[9] B. R. Opstad, J. Markussen, I. Ahmed, A. Petlund, C. Griwodz, and
P. Halvorsen, “Latency and fairness trade-off for thin streams using
redundant data bundling in tcp,” in Proceedings of the 2015 IEEE
40th Conference on Local Computer Networks (LCN 2015), 2015, p.
287–294.

[10] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in ACM
SIGCOMM Computer Communication Review, vol. 43, no. 4, 2013.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[12] J. Bishop, J.-M. Chareau, and F. Bonavitacola, “Implementing 5g nr
features in fpga,” in 2018 European Conference on Networks and
Communications (EuCNC), 2018, pp. 373–9.

[13] J. C. Borromeo, K. Kondepu, N. Andriolli, and L. Valcarenghi, “An
overview of hardware acceleration techniques for 5g functions,” in
2020 22nd International Conference on Transparent Optical Networks
(ICTON), 2020, pp. 1–4.

[14] L. Nobach, B. Rudolph, and D. Hausheer, “Benefits of conditional fpga
provisioning for virtualized network functions,” in 2017 International
Conference on Networked Systems (NetSys), 2017, pp. 1–6.

[15] R. Kundel, L. Nobach, J. Blendin, W. Maas, A. Zimber, H.-J. Kolbe,
G. Schyguda, V. Gurevich, R. Hark, B. Koldehofe, and R. Steinmetz,
“OpenBNG: Central office network functions on programmable data
plane hardware,” International Journal of Network Management, 2021.

[16] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis,
“GASPP: A gpu-accelerated stateful packet processing framework,”
in 2014 USENIX Annual Technical Conference, USENIX ATC ’14,
Philadelphia, PA, USA, June 19-20, 2014, G. Gibson and N. Zeldovich,
Eds. USENIX Association, 2014, pp. 321–332.

[17] W. Sun and R. Ricci, “Fast and flexible: Parallel packet processing with
gpus and click,” in Architectures for Networking and Communications
Systems, 2013, pp. 25–35.

[18] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the
bar for using gpus in software packet processing,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX Association, May 2015, pp. 409–423.

[19] M. Silberstein, S. Kim, S. Huh, X. Zhang, Y. Hu, A. Wated, and
E. Witchel, “GPUnet: Networking abstractions for GPU programs,”
ACM Trans. Comput. Syst., vol. 34, no. 3, pp. 1–31, sep 2016.

[20] Y. Thoma, A. Dassatti, and D. Molla, “Fpga2: An open source frame-
work for fpga-gpu pcie communication,” in 2013 International Confer-
ence on Reconfigurable Computing and FPGAs (ReConFig), 2013, pp.
1–6.

[21] R. Bittner, E. Ruf, and A. Forin, “Direct gpu/fpga communication via
pci express,” Cluster Computing, vol. 17, no. 2, pp. 339–348, 2014.

[22] J. Markussen, L. B. Kristiansen, R. J. Borgli, H. K. Stensland, F. Seifert,
M. Riegler, C. Griwodz, and P. Halvorsen, “Flexible device compositions
and dynamic resource sharing in pcie interconnected clusters using
device lending,” Cluster Computing, vol. 23, pp. 1211–1234, June 2020.


