
Ralf Kundel, Nehal Baganal Krishna, Christoph Gärtner, Tobias Meuser, Amr Rizk. Poster: Reverse-Path Congestion Notification:
Accelerating the Congestion Control Feedback Loop.

To appear in the Proceedings of 29th IEEE International Conference on Network Protocols (ICNP), IEEE, 978-1-6654-4131-5, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Poster: Reverse-Path Congestion Notification:
Accelerating the Congestion Control Feedback Loop

Ralf Kundel∗, Nehal Baganal Krishna‡, Christoph Gärtner∗, Tobias Meuser∗, Amr Rizk‡
∗Multimedia Communications Lab, Technical University of Darmstadt, Germany

{ralf.kundel, christoph.gaertner, tobias.meuser}@kom.tu-darmstadt.de
‡University of Duisburg-Essen, Germany

{nehal.baganal-krishna, amr.rizk}@uni-due.de

Abstract—Congestion control mechanisms in computer net-
works rely mainly on a feedback loop having a reaction time
equal to the flow RTT. Reducing this feedback time helps the
sender to react faster to changing network conditions such as
congestion. In this work, we propose reverse-path congestion
notification on top of programmable networking switches. Our
approach can significantly lower the reaction time, such that
the congestion control implementation can adapt much faster
to changing network conditions. The proposed approach aims
to work with current TCP implementations with no required
changes to the communication endpoints. Last, we show how the
presented approach could be realized by utilizing off-the-shelf
programmable switches.

Index Terms—Congestion Control, AQM, bufferbloat, P4

I. INTRODUCTION AND BACKGROUND

Prevalent transport protocols in computer networks, espe-
cially the Internet, use congestion control mechanisms to avoid
overloading network resources while utilizing and sharing the
available network capacity as best as possible. The working
mechanism of congestion control in almost every computer
network is as follows: If a congestion situation occurs in
the network, the packet experiencing this congestion is ei-
ther dropped or marked by an Explicit Congestion Notifica-
tion (ECN) bit. Next, one of the transport protocol endpoints,
e.g., TCP sender or receiver, detects the missing packet or the
ECN-marked packet leading to a reduction of the sending rate.
Decreasing the rate counteracts the overload at the bottleneck
and the system eventually converges to a stable and fair
bandwidth not overloading the bottleneck. A quick reaction
to congestion in the network state is crucial, not only to avoid
unnecessary high latency caused by bloated buffers but also
to prevent high and bursty packet loss.

This working mechanism can be described as a control loop
with a reaction time equal to the Round Trip Time (RTT) of
the congestion-controlled flow. Hence, it requires at least one
RTT from the time point when the congestion signal is created
until congestion control takes effect at the bottleneck. In fact,
the queueing delay at the bottleneck adds to this reaction time
as the congestion signal is usually queued together with other
packets. Obviously, a lower RTT improves the responsiveness
of the congestion control mechanism. This RTT sensitivity was
modeled as a relation between the RTT and the required buffer
capacity in switches [1], [2].

In summary, it is highly desirable to decouple the con-
gestion feedback from the bottleneck to the sender from the
path to the receiver and back. To that end, Feldmann et al.
proposed to send NACKs from the bottleneck directly back
to the sender [3]. This approach can enormously reduce the
control loop reaction time, however, the transport protocol
and especially the sender implementation must be adapted to
understand the newly introduced NACK packets.

In contrast to introducing NACK packets, the approach
presented in the following of this work is transparent to the
sender and receiver, which means no adaption is needed.
Therefore, our approach can be deployed in a single node
where congestion is likely to happen, e.g., a Broadband
Network Gateway (BNG) providing Internet access to many
customers [4].

II. APPROACH

We assume a scenario consisting of one TCP sender and
one TCP receiver connected via a programmable switch where
congestion may arise at the egress port towards the receiver
(see Figure 1). Congestion may arise on this path, e.g., due
to packet contention on this port, and as a consequence, the
egress queue in the switch would temporarily fill up.

Our approach denoted reverse-path congestion notification
utilizes existing Explicit Congestion Notification (ECN) mech-
anisms [5] of TCP. The decision of marking a packet with
an ECN bit is determined by any Active Queue Manage-
ment (AQM) algorithm within the switch. This decision can
be made either through a classical algorithm such as Random
Early Drop (RED) or a modern, stateful algorithm like CoDel,
which can be directly realized in programmable switches [6].

In contrast to related approaches, we perform the marking
action as a consequence of the AQM decision in the reverse
direction if possible. For that, the packet in the forward direc-
tion will not be modified or dropped. Instead, a hash value on
the packet flow will be computed and installed in the reverse
direction of the switch. Now the switch waits for another
packet traversing in the reverse direction that matches this hash
value and once detected, this packet will be ECN marked. Note
that it is required to swap source and destination IP addresses
and L4-ports in order to match packets in the reverse action.
The basis of this work is the programming language P4 which
is the current de-facto standard for programming switches [7].

Ralf Kundel, Nehal Baganal Krishna, Christoph Gärtner, Tobias Meuser, Amr Rizk. Poster: Reverse-Path Congestion Notification:
Accelerating the Congestion Control Feedback Loop.

To appear in the Proceedings of 29th IEEE International Conference on Network Protocols (ICNP), IEEE, 978-1-6654-4131-5, 2021.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

sender receiver

switch

AQM action

reverse_action

congested
linksync

RTT

sRTT

Fig. 1. Design of reverse path congestion notification.

For this approach to work, two assumptions must be ful-
filled: 1) The sender and receiver must support TCP ECN
signaling. 2) Data flows and their acknowledgment packets
traverse the same switch in both directions.

Note that both preconditions can be verified within the data
plane of the switch for each traversing packet:

(1) Dropping a single TCP ACK packet does not influence
the sender rate as the acknowledgment number is cumulative.
Therefore, ECN marking in the reverse direction is still valid.
ECN-capable flows can be easily detected in the forward
direction by checking the corresponding header fields in
the IP and TCP header. If a flow is not ECN-capable, the
switch can handle it in the traditional way in the forward
direction (fallback #1).

(2) If a hash value is installed in the reverse direction of
the switch and if no ACK-packet was marked within a timeout
period, future packets should be marked or dropped in the
forward direction as a fallback (fallback #2).

This data plane behavior is summarized in the pseudocode
of Listing 1 and aims at a realization in P4 programmable
switches or similar architectures. Note that this algorithm was
intentionally kept simple since a realization in programmable
switching hardware is intended.

III. EXPECTED GAINS OF REVERSE-PATH CONGESTION
NOTIFICATION

By applying the approach presented above, the feedback
time of congestion to the sender can be significantly reduced.
Specifically, as shown in Figure 1, the time between congestion
occurrence and the reduction of the sending rate is reduced
from RTT to signaling RTT (sRTT). The value sRTT
describes the latency from the sender to the congested switch
and back. Depending on the position of the switch along the
communication path, this reduction could be significant. In

1 P a c k e t p ; AQM aqm ; S t a t e f u l R e g i s t e r r e v e r s e P a t h ;
2 / / f o r w a r d d i r e c t i o n
3 i f (aqm . n o t i f y C o n g e s t i o n ()) :
4 i f (p . i sECNenabled ()) :
5 i f (! r e v e r s e P a t h . hasTimeout (p . f lowHash)) :
6 r e v e r e P a t h . i n s t a l l E C N r u l e (p . f lowHash)
7 e l s e :
8 p . markECN () / / f a l l b a c k #1
9 e l s e :

10 p . drop () / / f a l l b a c k #2
11 / / r e v e r s e d i r e c t i o n
12 i f (r e v e r s e P a t h . hasECNrule (p . f lowHash)) :
13 p . markECN ()
14 r e v e r s e P a t h . r e s e t E C N r u l e (p . f lowHash)

Listing 1. Pseudocode of Reverse-Path Congestion Notification that can be
realized in P4-programmable data planes.

addition to the shorter sRTT the connection, the egress queue
of the congested switch port is not in the control loop. If the
queue is filled in case of congestion, this additional queueing
latency is not added to the time for signaling congestion to
the sender, which is a strong advantage.

Given the previously mentioned example of a BNG, pro-
viding Internet access to several vDSL-customers of an ISP,
we can assume the following numbers to be realistic in
downstream direction: 50ms queuing delay, 50ms latency
(both-way) divided into 40ms before the bottleneck and 10ms
after the bottleneck. The proposed approach would lead to a
signaling RTT reduction from 100ms to an sRTT of 40ms.
In the upstream direction, the RTT can be reduced to the RTT
between the local computer and residential gateway, which
is an even higher benefit. For that, the proposed reverse-
path congestion notification would be installed within the
customer’s residential gateway instead of the BNG. Further,
a potential over-reaction of the congestion control due to
dropped and marked packets in parallel must be investigated
in future work.

IV. CONCLUSION AND NEXT STEPS

The flow RTT is a crucial factor influencing the effective-
ness of congestion control mechanisms in computer networks.
Here, we presented the idea of reverse-path congestion notifi-
cation to reduce the congestion feedback time and, by that,
enable a much faster reaction to changing network condi-
tions. The presented approach can be readily deployed using
programmable switches and does not require changes to the
transport protocol end-points. We estimate a significant reduc-
tion of the feedback time, especially for residential upstream
scenarios. In future work, we will focus on realizing this
approach in programmable switches and residential gateways.

ACKNOWLEDGMENT

This work has been supported by Deutsche Telekom through
the Dynamic Networks 9 project, and in parts by the German
Research Foundation (DFG) as part of the projects B1, B4,
and T3 within the Collaborative Research Center (CRC) 1053
MAKI as well as the project SPINE.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
SIGCOMM Comput. Commun. Rev., vol. 34, no. 4, p. 281–292, 2004.

[2] C. Villamizar and C. Song, “High Performance TCP in ANSNET,”
SIGCOMM Comput. Commun. Rev., vol. 24, no. 5, p. 45–60, 1994.

[3] A. Feldmann, B. Chandrasekaran, S. Fathalli, and E. N. Weyulu, “P4-
enabled network-assisted congestion feedback: A case for nacks,” in
Workshop on Buffer Sizing, ser. ACM BS ’19, 2019.

[4] R. Kundel, L. Nobach, J. Blendin, W. Maas, A. Zimber, H.-J. Kolbe,
G. Schyguda, V. Gurevich, R. Hark, B. Koldehofe, and R. Steinmetz,
“OpenBNG: Central office network functions on programmable data plane
hardware,” International Journal of Network Management, 2021.

[5] S. Floyd, “Tcp and explicit congestion notification,” SIGCOMM Comput.
Commun. Rev., vol. 24, no. 5, p. 8–23, Oct. 1994.

[6] R. Kundel, A. Rizk, J. Blendin, B. Koldehofe, R. Hark, and R. Steinmetz,
“P4-codel: Experiences on programmable data plane hardware,” in IEEE
International Conference on Communications (ICC), 2021, pp. 1–6.

[7] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87–95, 2014.

