
Ralf Kundel, Christoph Gärtner, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe over
Programmable Data Planes.

To appear in the Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 978-1-7281-4973-820, 2020.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Flexible Content-based Publish/Subscribe over
Programmable Data Planes

Ralf Kundel∗, Christoph Gärtner∗, Manisha Luthra∗, Sukanya Bhowmik†, Boris Koldehofe∗
∗Multimedia Communications Lab, Technische Universität Darmstadt, Germany

{ralf.kundel, christoph.gaertner, manisha.luthra, boris.koldehofe}@kom.tu-darmstadt.de
†IPVS Stuttgart, Germany

sukanya.bhowmik@ipvs.uni-stuttgart.de

Abstract—Publish/subscribe systems have to react fast on
changes in their environment while handling many events with
low end-to-end latency and high throughput. Moving the broker
functionality of publish/subscribe systems to the underlying
network layer reduces the path length of events and, in addition,
forwarding benefits from powerful and programmable hardware.
So far attempts of underlay publish/subscribe depend on a
specific API of the network devices, e. g., the OpenFlow protocol,
which have restrictions in dealing with dynamic devices and
corresponding changes in the introduced attribute names for
matching and filtering events.

In this work, we focus on the next generation of network
devices, which are envisioned to provide reconfigurable hardware
components, specified by the open P4 description language.
We introduce two new approaches that enable a flexible and
generic attribute/value encoding, understandable by P4-capable
packet processors, to benefit from the performance properties
of hardware. Furthermore, the proposed approaches reduce the
effort in encoding and decoding event messages.

Index Terms—Publish/Subscribe, P4, Dataplane, Offloading

I. INTRODUCTION

Publish/subscribe is a key paradigm to establish scalable and
robust communication between producers and consumers of
information, especially, in dynamic environments like the IoT
or mobile networks where hosts frequently join and leave the
network. Therefore, it is of tremendous importance to enable a
decoupled communication between producers and consumers,
i. e., producers do not need to know their consumers and
vice versa. Decoupled communication is traditionally accom-
plished by a broker-based overlay network which is in charge
to forward events to interested subscribers [11]. Especially,
content-based publish/subscribe allows to specify fine-grained
subscriptions, e. g., by constraints on values of specific event
attributes. While publish/subscribe systems in general focus
on bandwidth efficiency, a fast adaptation of changing envi-
ronments and low latency is required as well in more and more
usecases, e. g., IoT. Therefore, existing work has focused on
improving the performance of publish/subscribe systems by
making the overlay topology more agnostic to the network.
More recently proposed publish/subscribe systems move the
broker functionality into the network benefiting from the hard-
ware acceleration capabilities of the networked devices, e. g.,
by building on hardware acceleration with FPGA/GPUs [10],
using SDN capabilities [2] and some even base on the data
plane programming language P4 [14]. A key limitation of

these approaches is that they build on a static encoding of
attributes in the header fields. Dynamic IoT environments
impose significant costs in reconfiguring systems in these
environments, e. g., by updating data plane descriptions or
encoding entire routing trees in events [14]. In this work,
we intend to enable flexible attribute/value encoding while
dealing with the challenges of (i) dynamic environments and
(ii) addressing low latency applications.

By doing so, we build on a new generation of programmable
network devices whose behavior can be reconfigured by the
P4 description language. The main contributions of this paper
are: (1) two approaches of flexible attribute/value encoding
in packet headers which can be interpreted by programmable
data planes and (2) a proof-of-concept P4 data plane imple-
mentation for these attribute encodings.

In the following, we first discuss background information
and related work. In Section III, we introduce our system
model and approach of encoding attribute/value pairs in
parsable packet headers. Finally, in Section IV, we briefly
evaluate our approach and conclude with Section V.

II. BACKGROUND

This work focuses on facilitating publish/subscribe in the
data plane using the open programming language P4 [3].
This language enables easy data plane programming in a C-
like syntax which can be compiled to a hardware specific
configuration file, e. g., network switches, SmartNICs and
FPGAs. The language allows the definition of any packet
header format which enables the introduction of new network
protocols with ease. Furthermore, application specific logic
with custom control flows and application specific match
tables, exceeding the functionality of common switches, can
be realized within the P4 program and capable hardware.

A. Related Work

Programmability on the networking devices and hardware
acceleration has been investigated in existing work. For in-
stance, Margara et al. [10] exemplified the potential of hard-
ware acceleration for publish/subscribe with a multi-threaded
and GPU-based broker implementation. Pleroma [2] is a
content-based publish/subscribe approach using OpenFlow, a
software-defined switch configuration protocol. The approach
uses an encoding technique based on spatial indexing to map

Ralf Kundel, Christoph Gärtner, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe over
Programmable Data Planes.

To appear in the Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 978-1-7281-4973-820, 2020.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

Broker 1

Publisher 1

Subscriber 1

Subscriber 2

Broker 2 Subscriber 3

...

Fig. 1: Broker based overlay publish/subscribe system in a
typical network environment.

advertisements, subscriptions and events to header fields sup-
ported by OpenFlow, e. g., the IPv6 multicast address range.
The approach supports at line-rate performance content-based
publish/subscribe, but (1) limits the number of attribute value
pairs because of the fixed size header fields, (2) approximates
only encoded values and (3) creates additional overhead for
the publishers to encode the content attributes [1].

P4 is an emerging data plane programming language for
networking hardware which gives flexibility to define own
protocol independent header fields in favor of OpenFlow.
Wernecke et al. [14] realize —like our work— content-based
publish/subscribe with P4 by sacrificing a key property to
scalable content-based publish/subscribe: the decoupling of
publishers and subscribers. The header of each packet is
required to carry the entire dissemination tree. Jepsen [5] et
al. investigated applicability of P4 for publish/subscribe at
3.2Tbit/s at Barefoot Tofino ASIC with a fixed attribute/value
encoding. With a special purpose compiler they created a
custom P4 data plane for the given use-case and all packets
have to match this fixed header format. P4 has also been
investigated to accelerate other middleware paradigms such as
complex event processing [7]. Similar concerns were raised as
part of INetCEP [9] for information-centric networking.

Another promising alternative is to realize publish/subscribe
over fully programmable hardware [6]. For example Tsoi et
al. [12] discussed the usability of FPGAs, a very flexible
technology with good performance but also high complexity.

To summarize, related work has shown up a huge poten-
tial to accelerate the performance publish/subscribe systems.
Nevertheless, these approaches are very limited in flexibility
in terms of dealing with dynamics in environment while
providing low latency.

III. CONTENT-BASED SUBSCRIPTION MATCHING IN DATA
PLANES

In this section we describe flexible attribute/value pair en-
coding in packets and how to match them in a general way. The
approach can be separated in three parts: (1) attribute/value
encoding at the publisher, (2) parsing the attributes in the data
plane and (3) matching the previously parsed values.

A. System Model

A publish/subscribe system is comprised of three main
system entities: (1) publishers, (2) subscribers, and (3) bro-
kers (cf. Figure 1). Publishers announce events they indicate to
publish in form of advertisements, while subscribers announce

Publisher 1

Subscriber 1

Subscriber 2

Subscriber 3

...

P4-based
pub/sub data plane

P4-based
pub/sub-
data plane

L2-switchL2-switch

Controller

Fig. 2: Underlay publish/subscribe system with P4-capable
switches instead of brokers.

their interest in form of subscriptions. The brokers of the pub-
lish/subscribe system forward published events to subscribers
with a matching subscription.

We will use the content-based subscription model, i. e.,
events are represented by < name, value > pairs, e. g., event
e = [< temp, 25 >,< hum, 30 >]. Subscriptions and adver-
tisements are represented as logical expressions over predi-
cates on the attribute values. For example, a subscriber may re-
quire to receive all events matching [temp < 30&hum > 15].

In contrast to traditional overlay-based publish/subscribe
systems (cf. Figure 1), the broker functionality of this work is
realized by P4 programmable switches (cf. Figure 2). Further-
more, the P4-brokers can co-exist with traditional L2-network
elements. The figures illustrate the potential in reducing hops
and benefiting from hardware-accelerated matching operations
inside the P4-brokers. For instance, an event from Publisher 1
to Subscriber 2 & 3 has a reduced number of hops as the
connections to and from Broker 1 & 2 are not existent any
more. In addition, we expect a lower latency and higher
event rates as hardware typically performs much faster than
software.

B. Flexible Attribute/Value Encoding in Packet Headers

One major point of P4-based publish/subscribe systems is
the encoding of attributes and values, which we discuss in
this section. The first and only assumption in our and any
other Ethernet-based system is the existence of a valid Ethernet
header in the beginning of a packet. By that, the L2 addresses
can be extracted and the value of the EtherType field is known.
Based on the EtherType value, the following header type,
e. g., IPv4 or IPv6, can be identified and subsequently its
fields can be extracted. Our approach works as part of the
network layer and does not rely on IP protocols. To identify
our introduced protocol by all system components, we use the
EtherType=0x9001, which is currently unused.

As the goal of this work is a flexible attribute/value en-
coding, two header fields are required per attribute: (1) kind
of attribute and (2) corresponding attribute value. Due to
matching constraints of hardware architectures, our approach
is limited to integer and fixed-point based values on most
architectures. In the following we present two approaches of
attribute encoding:

• Attribute/Value pairs: For each attribute a tuple of kind
of attribute and value is encoded.

• Bitmask: One reserved bit per possible attribute indicates
whether this is part of the event.

Ralf Kundel, Christoph Gärtner, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe over
Programmable Data Planes.

To appear in the Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 978-1-7281-4973-820, 2020.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

0 8 16 24 32 39

Ethernet Header (14 byte)
EtherType=0x9001

Attr. ID0 Value[Attr. ID0] (Timestamp)
Attr. ID2 Value[Attr. ID2]
Attr. ID6 Value[Attr. ID6]

0x00 Payload

Fig. 3: ID-based attribute/value pair encoding.

Each attribute has a special meaning which is encoded by an
unique attribute ID, e. g., the air pressure of an IoT sensor
could be encoded with the ID = 2 as illustrated in Table I.

Attribute/Value Pairs: The first approach, encoding at-
tribute/value pairs as tuples, is depicted in Figure 3. The
EtherType=0x9001 indicates that a publish/subscribe header
follows the Ethernet header. The first bits of this publish/sub-
scribe header indicate the kind of the first attribute by its ID.
Hereafter, the corresponding value of this attribute is encoded.
In the depicted example, the ID is 0, which means, referring
to Table I, that the first value describes the timestamp of the
event. Afterwards, the next following bits indicate the next
attribute, enabling a recursive attribute/value pair extraction.
The final ID 0x00 indicates the end of the attribute stack,
similar to stacked MPLS-labels. As every event contains at
least one attribute and the ID 0 has to be encoded first or
never, this can be used again to indicate the end of stack.

The parser-code, given in Listing 1, describes the recursive
attribute/value pair extraction. It is important to note that ini-
tially the state parse_first_id (Line 12–Line 16) extracts
only the first attribute ID. After that, in state parse_event
(Line 17–Line 23), the attribute value of the previously parsed
attribute ID will be extracted. Furthermore, the next attribute
ID will be parsed always as well. Until the next ID is not zero
(0x00 indicates end of attribute list), this extraction will be
performed recursively.

The attributes are stored in a P4 header stack, similar to a
C array data structure, and the value of attribute i is stored in
the stack entry at position i independent of its packet’s header
position.

Bitmask: The second approach of representing the attributes
and values is depicted in Figure 4. As before, the type field of
the Ethernet header indicates that the following header con-
tains a publish/subscribe specific header. As first part of this
header, a bitmask represents which kind of attribute values are
part of this event and consequently encoded in the following
header fields. In the given example bitmask (10100010000),
from left to right, the bits of Attribute 0, 2, and, 6 are set.
Thus there will be three attribute values. After the bitmask,
all attribute values are listed, sorted by their corresponding
attribute ID, without any further additional information. In

Attribute ID
timestamp 0

temperature 1
air pressure 2

... ...

TABLE I: Exemplary attribute encoding.

0 8 16 24 31

Ethernet Header (14 byte)
EtherType=0x9001

Bitmask (10100010000...)
Value[Attr. ID0] (Timestamp)

Value[Attr. ID2]
Value[Attr. ID6]

Payload

Fig. 4: Bitmask based attribute/value encoding.

contrast to the first approach, the ordering of the values must
be ascending to their attribute IDs as there is no explicit
attribute ID before each value. Parsing this header structure
is similar to the first approach: initially, the bitmask will
be extracted. Afterwards, the values are extracted recursively
based on a slicing bitmask which fade out the already extracted
attributes and terminates with the last high bit.

C. Subscription matching in programmable pipelines

The matching algorithm can be performed within one single
generic P4-table as depicted in Listing 2. All attribute values,
stored in the event header stack fields, and a bitmask of valid
attributes form the input of this table. A ternary match operator
on the bitmask allows a selection of interest attributes (Line 3).
Longest prefix matches (lpm) enable a content-based range
matching by creating multiple lpm flow rules (e.g., in Line 4).
For example, the predicate p2 = [16 ≤ temp ≤ 47] must be
divided in two lpm-matchable flow rules ([16 ≤ temp ≤ 31]
and [32 ≤ temp ≤ 47]) because a single lpm match can
not cover exactly this range. In P414, range matching can
be used instead of lpm matching. Multiple overlapping flow
rules cause no problem since each flow rule has a priority and
by that only one entry of the table will match, ensured by
the controller logic. It is important to note that our current
approach matches on a P4 header stack which has valid and

1 t y p e d e f b i t <8> n e x t I d t ; n e x t I d t l a s t ;
2 h e a d e r e v e n t t {
3 b i t <32> v a l u e ;
4 n e x t I d t n e x t I d ;
5 }
6 s t a t e s t a r t {
7 p a c k e t . e x t r a c t (hdr . e t h e r n e t) ;
8 t r a n s i t i o n s e l e c t (hdr . e t h e r n e t . e t h e r T y p e) {
9 0 x9001 : p a r s e f i r s t i d ;

10 d e f a u l t : a c c e p t ;
11 }}
12 s t a t e p a r s e f i r s t i d {
13 p a c k e t . e x t r a c t (hdr . e v e n t p r e f i x) ;
14 l a s t = hdr . e v e n t p r e f i x . n e x t I d ;
15 t r a n s i t i o n p a r s e e v e n t ;
16 }
17 s t a t e p a r s e e v e n t {
18 p a c k e t . e x t r a c t (hdr . e v e n t [l a s t]) ;
19 l a s t = hdr . e v e n t [l a s t] . n e x t I d ;
20 t r a n s i t i o n s e l e c t (l a s t) {
21 0 : a c c e p t ;
22 d e f a u l t : p a r s e e v e n t ;
23 }}

Listing 1: P4-pseudocode of extracting attribute/value pairs
from packet header fields recursively.

Ralf Kundel, Christoph Gärtner, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe over
Programmable Data Planes.

To appear in the Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 978-1-7281-4973-820, 2020.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

1 t a b l e e v e n t {
2 r e a d s {
3 m e t a d a t a . b i t m a s k : t e r n a r y ;
4 hdr . e v e n t [0] . v a l u e : lpm ;
5 . . .
6 hdr . e v e n t [3 1] . v a l u e : lpm ;
7 }
8 a c t i o n s {
9 sendToGroup ;

10 }}

Listing 2: Generic attribute/value matching in P4 data planes
independent on header structure.

invalid entries if only a subset of the attributes are contained
in the event. These fields are ignored by the match rule as
the lpm match is “/0” which is equivalent to a wildcard(*)
match. Forwarding is realized by assigning the packet to a
multicast group in the action sendToGroup which contains
all destinations for this event (Line 9).

D. Controller Centric Subscription Handling

The controller of the publish/subscribe system, handling
advertisements and subscriptions, has to compute flow rules
for every P4 switch in the system. This includes setting up
all needed multicast groups and aggregation of subscriptions.
As this work focus on the data plane feasibility, we will not
discuss the control logic in detail.

E. Limitations of P4 Implementations

During our tests we observed some minor hurdles, e. g., the
sample source code in Listing 1 addresses the header stack
event with the previously extracted ID. However, regarding
the P4 specification, this feature is optional and might not be
supported. Tests with the behavioral model 2 (bmv2), which
is the reference implementation for P4, have shown that this
is not supported. We tackled this issue by creating one parser
state per attribute ID with a constant header stack address and
moved the ID specific logic to the state transition logic.

Besides that, header fields like the attribute ID in Figure 3
might be restricted to a size which is byte aligned (8, 16, 24
bit).

As the attributes are extracted to a generic header stack,
not all stack entries are valid. Applying this vector of headers
to a table might cause, depending on the target, an undefined
behavior. A workaround is using metadata stacks instead of
header stacks which behave similar but are always valid.

Furthermore, physical scaling limitations of P4 architectures
should be considered. The language does not limit the size of
parsed headers, header stack data structures, and tables but
hardware architectures have limited resources.

IV. RESULTS & DISCUSSION

We validated this approach by an implementation for the
P4 reference switch behavior model 2 (bmv2), embedded in
a mininet topology consisting of 3 switches. The publishers
and subscribers are realized with the python framework Scapy,
allowing the easy creation and parsing of custom packet
headers. This work focuses on the most common language

0 4 8 12 16 20 24 28 32
Number of Attributes - n

0
16
32
48
64
80
96

112
128

Ov
er

he
ad

 [b
its

] Bitmask
Attribute/Value pairs

Fig. 5: Required bits for encoding n used attribute types for
maximum allowed attributes nmax = 32 and k = 4 attribute
ID bits (ID-based approach).

P4, but we assume a feasibility in other upcoming languages,
each driven by a single vendor, as NPL (Broadcom), MicroC
(Netronome), and SDNet (Xilinx), as well. The source code
is openly available for reproducing and continuing our work1.

In this work, we proposed two different approaches of how
to encode attributes in packet headers. The first approach
(Figure 3) requires k bits, e. g., 8 bits, for each of the ni
attributes of event i to encode its type. The second approach
requires nmax bits for the bitmask in every event independent
of the number of attributes per event. Both, k and nmax,
are parameters which can be configured. Figure 5 illustrates
that above a certain average threshold (here: n=8) the bitmask
approach performs better and vice versa.

We assume, based on existing work [8] [4], a forwarding
delay of ≤ 1µs for P4-ASICs and 2µs − 15µs for P4-
FPGAs/NPUs compared to ∼ 250ms for software based
approaches [13] can be achieved. Event rates of upto 100
million events/s for NPUs/FPGAs and 1 billion for P4-ASICs
are realistic.

Note: The flexibility of current programmable data planes
allows only numeric matches, e. g., integer and fixed-point
based. If at all, string and floating-point matching requires the
use of P4 external functions and supported hardware, currently
only FPGAs. Parsing string and floating-point based attributes
and values is possible in P4 pipelines.

V. CONCLUSION & OUTLOOK

With this work we have illustrated and analyzed the power
of P4-programmable data planes in the context of content-
based publish/subscribe. Compared to existing approaches,
based on hard-coded header structures, the proposed ap-
proaches for attribute encoding provide high flexibility regard-
ing diverse attribute/value sets of the advertised messages.
Our analysis highlights the encoding overhead of the two
approaches and point out the break-even point. Furthermore,
adding newly used attributes does not require an update of the
current system state, consisting of attribute ID mappings and
flow entries. The feasibility of this approach was demonstrated
by a prototypical implementation based on the P4 software
switch bmv2. Next steps are (1) an in depth evaluation in a real
P4-based network mesh and (2) improvement towards resource
efficient match-tables and rules.

1https://github.com/ralfkundel/p4bsub/

Ralf Kundel, Christoph Gärtner, Sukanya Bhowmik, Boris Koldehofe. Flexible Content-based Publish/Subscribe over
Programmable Data Planes.

To appear in the Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS), IEEE, 978-1-7281-4973-820, 2020.

The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial
basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood
that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission
of the copyright holder.

ACKNOWLEDGMENT

This work has been supported by the German Research
Foundation (DFG) as part of the project C2 within the Col-
laborative Research Center (CRC) 1053 MAKI. We thank our
colleagues and reviewers for their valuable input and feedback.

REFERENCES

[1] S. Bhowmik, M. A. Tariq, J. Grunert, D. Srinivasan, and K. Rothermel,
“Expressive content-based routing in software-defined networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 29, no. 11, pp.
2460–2477, Nov 2018.

[2] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Dürr, T. Kohler, and
K. Rothermel, “High performance publish/subscribe middleware in
software-defined networks,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1501–1516, Jun. 2017.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[4] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer, “Towards
Understanding the Performance of P4 Programmable Hardware,” in Sym-
posium on Architectures for Networking and Communications Systems
(ANCS). IEEE, 2019.

[5] T. Jepsen, M. Moshref, A. Carzaniga, N. Foster, and R. Soulé, “Packet
subscriptions for programmable asics,” in Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, ser. HotNets ’18. New York,
NY, USA: ACM, 2018, pp. 176–183.

[6] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and
P. Nikander, “Lipsin: Line speed publish/subscribe inter-networking,”
SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, p. 195–206, Aug.
2009. [Online]. Available: https://doi.org/10.1145/1594977.1592592

[7] T. Kohler, R. Mayer, F. Dürr, M. Maaundefined, S. Bhowmik, and
K. Rothermel, “P4cep: Towards in-network complex event processing,”
in Proceedings of the 2018 Morning Workshop on In-Network
Computing, ser. NetCompute ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 33–38. [Online]. Available:
https://doi.org/10.1145/3229591.3229593

[8] R. Kundel, L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, V. Gure-
vich, B. Koldehofe, and R. Steinmetz, “P4-bng: Central office network
functions on programmable packet pipelines,” in 15th International
Conference on Network Service Management. IEEE, Oct 2019.

[9] M. Luthra, B. Koldehofe, J. Höchst, P. Lampe, A. H. Rizvi, R. Kundel,
and B. Freisleben, “Inetcep: In-network complex event processing for
information-centric networking,” in Proceedings of 15th ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, Sep 2019.

[10] A. Margara and G. Cugola, “High-performance publish-subscribe match-
ing using parallel hardware,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, pp. 126–135, Jan 2014.

[11] M. A. Tariq, B. Koldehofe, G. G. Koch, I. Khan, and K. Rothermel,
“Meeting subscriber-defined qos constraints in publish/subscribe
systems,” Concurr. Comput. : Pract. Exper., vol. 23, no. 17, pp. 2140–
2153, Dec. 2011. [Online]. Available: http://dx.doi.org/10.1002/cpe.1751

[12] K. H. Tsoi, I. Papagiannis, M. Migliavacca, W. Luk, and P. Pietzuch,
“Accelerating publish/subscribe matching on reconfigurable supercom-
puting platforms,” in Many-Core and Reconfigurable Supercomputing
Conference (MRSC), Rome, Italy, vol. 3, 2010, p. 2010.

[13] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, “Drizzle: Fast and adaptable
stream processing at scale,” in Proceedings of the 26th Symposium on
Operating Systems Principles, ser. SOSP ’17. New York, NY, USA:
ACM, 2017, pp. 374–389.

[14] C. Wernecke, H. Parzyjegla, G. Mühl, P. Danielis, and D. Timmermann,
“Realizing content-based publish/subscribe with p4,” in 2018 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN), Nov 2018, pp. 1–7.

