Modeling Static and Dynamic Behavior of Routes in Mobile Ad hoc Networks
Tronje Krop, Matthias Hollick, Frederik Krist, Parag Mogre, Ralf Steinmetz
Multimedia Communications Lab (KOM), Department for Electrical Engineering and Information Technology
Technische Universität Darmstadt, Merckstr. 25, D-64283 Darmstadt, Germany
[Tronje.Krop;Matthias.Hollick;Frederik.Krist;Parag.Mogre;Ralf.Steinmetz]@KOM.tu-darmstadt.de

Analysis and Extension of Models Describing the Static and Dynamic Behavior of Routes in Mobile Ad hoc Networks				
	Static Models for Distribution of Connection Distances of Links and Paths		Dynamic Models for Lifetime of Links, Paths, and Routes	
Basics	Unit square area, x and y coordinates of nodes are i.i.d. Link distance vs. path distance	Unrestricted area, x and y coordinates of nodes are i.i.d. Number of possible destinations for each source increases with distance	Single-path route between source and destination Source Destination Link breaks (uniformly distributed) lead to route breaks (exponentially distributed)	Multipath route between source and destination Source Destination Link breaks lead to path breaks and, depending on the number of multipaths, to route breaks
Model	PDF of distance between two randomly selected nodes $f_{a}(x)=\left\{\begin{array}{ll} 2 x\left(x^{2}-4 x+\pi\right) & , x \leq 1 \\ 8 x \sqrt{x^{2}-1}-2 x x^{3}-4 x & 4 x\left(\arcsin \left(\frac{1}{4}\right)-\operatorname{arcoss}\left(\frac{1}{x}\right)\right), \end{array}, 1<x \leq \sqrt{2}\right.$ Probability measure for succesfully established routes $f_{x}^{n(x)}= \begin{cases}(1-q)^{4(x)} 2 x\left(x^{2}-4 x+\pi\right) & , x \leq 1 \\ (1-q)^{\prime(x)}\left(8 x \sqrt{x^{2}-1}-2 x^{3}-4 x\right) \\ +(1-q)^{(x)} 4 x\left(\arcsin \left(\frac{1}{x}\right)-\arccos \left(\frac{1}{x}\right)\right), & , 1<x \leq \sqrt{2}\end{cases}$	Number of destinations in distance d Measure for the number of succesfully established routes $f_{d}^{m}(x)= \begin{cases}(1-q)^{h(x)}(2 h(x)-1) \frac{\pi \pi^{2} r^{2}}{2 \sigma^{2}} & , x \geq \frac{r}{\sqrt{2 \delta}} \\ (1-q)^{h(x)} h(x)^{2} \frac{\pi \pi^{2} \pi^{2}}{2 \sigma^{2}} & , 0 \leq x<\frac{r}{\sqrt{28}}\end{cases}$	PDF of route lifetime for multipath routes (includes the if all paths link-disjoint (only source node maintains alternate routes)	ial case of single-path routes) $f_{\theta\left(T_{t}\right)}(t)=\sum_{k=1}^{n}\left(f_{\theta\left(\omega_{\theta}\right)}(t) \prod_{i=1}^{n}\left(1-F_{\theta\left(u_{u}\right)}(t)\right)\right)$ if alternate paths are not link-disjoint but each node on the primary route maintains an alternate (backup) route
Results	PDF of distance between two randomly selected nodes The shown results borrow the parameter set (radio range, node density, etc.) from [Hollick2004]	Number of possibly established routes of distance d The shown results borrow the parameter set (radio range, node density, etc.) from [Hollick2004]	Number of route-breaks over	

Formulation of a Combined (Static \& Dynamic) Model
Number of available routes of length d at time θ
Number of route breaks of length d until time θ
for the generalized multipath case Number of route breaks of length d until time θ Number of available routes of length d at time θ
\qquad for the generalized multipath case for the special case of equal-length multipaths

而

