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ABSTRACT

The preferred channel for listening to music is shifting to-
wards the Internet and especially to mobile networks. Here,
the overall traffic is predicted to grow by 45% annually till
2021. However, the resulting increase in network traffic chal-
lenges mobile operators. As a result, methods are researched
to decrease costly transit traffic and the traffic load inside
operator networks using in-network and client-side caching.
Additionally to traditional reactive caching, recent works
show that proactive caching increases cache efficiency. Thus,
in this work, a mobile network using proactive caching is as-
sumed. As music represents the most popular content cate-
gory on YouTube, this work focuses on studying the poten-
tial of proactively caching content of this particular category
using a YouTube trace containing over 4 million music video
user sessions. The contribution of this work is threefold:

First, music content-specific user behavior is derived and
audio features of the content are analyzed. Second, using
these audio features, genre and mood classifiers are com-
pared in order to guide the design of new proactive caching
policies. Third, a novel trace-based evaluation methodology
for music-specific proactive in-network caching is proposed
and used to evaluate novel proactive caching policies to serve
either an aggregate of users or individual clients.

Fsince May 2017: Multimedia Communications Lab, Email:
Christian.Koch @kom.tu-darmstadt.de

1. INTRODUCTION

The global mobile data traffic is predicted to grow by 45%
annually till 2021 [1]. At this time, video will account for
about 70% of the overall mobile traffic. This trend is sup-
ported by an increasing use of data-intensive multimedia ser-
vices like YouTube, Spotify and Netflix, as well as increasing
4G network coverage. The increasing demand of users re-
questing videos, e.g., on their smartphones creates a gap
between the available bandwidth and user demand [21]. For
example, more than half of YouTube s videos are watched
mobile’ and about 82% of all YouTube users watch music
videos [10]. Content Delivery Networks (CDNs) like Google
Global Cache or Akamai help delivering content from close-
by caches and, thereby alleviate the content provider from
traffic. A recent development, saving network traffic, is con-
tent caching by mobile apps, e.g., Spotify or Google Music
which reactively store requested music tracks on user de-
vices. Proactive caching is a novel advancement in the area
of network content caching. Thereby, content is prefetched
based on, e.g., social information or content properties in a
dedicated share of the cache, while the remaining share is
managed reactively, e.g., by traditional LRU. In a mobile
network scenario it is likely to have many in-network caches
deployed at different locations, e.g., at base stations or per
metropolitan area of a country. Hence, in comparison with
CDNs, 1t 1s likely to have more but smaller caches serving
fewer users. As music represents the most popular content
category on YouTube and 37% of video requests [16] in mo-
bile network, in this work, novel proactive caching policies
using music features for efficient music content placement
are proposed and evaluated for in-network as well as client-
side caches. Therefore, low-level features, e.g., tempo, tim-
bre, pitch as well as high-level features, e.g., mood and genre
are used. This information can be easily determined and of-
fered by the content provider or CDN, as it 1S common prac-
tice for them to already analyze their offered contents for
recommendation, e.g., per individual user or per geographic
region. This work states three contributions. First, requests
and audio features of music videos are derived and ana-
lyzed for their potential on proactive caching. Second, novel
proactive caching policies using the aforementioned audio
features are proposed. Third, a thorough trace-based simu-
lative evaluation of recommendation strategies for proactive
caching policies on in-network as well as client-side caches
1s conducted using a real network trace covering two weeks.

Thttps://www.youtube.com/yt/press/statistics.html
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The remainder of this paper is structured as follows: Sec. 2
discusses related work. Sec. 3 analyzes the dataset used
for evaluation. Sec. 4 presents the methodology used and
explains how mood and genre of a music video are classified.
In Sec. 5, proactive caching policies are proposed. Sec. 6,
presents the results of the proactive caching policies for in-
network as well as client-side caches. Finally, the paper is
concluded and potential future work is described in Sec. 7.

2. RELATED WORK

The related work consists of three parts. First, an emotion
model which is commonly used for mood classification is
introduced. Second, relevant mood and genre classification
approaches are discussed. Third, related papers in the areas
of caching, proactive caching, and prefetching are presented.

2.1 Musicclassification

Music classification aims for automatic assignment of a
certain class out of a pre-defined set of classes, e.g., genre or
mood to a given music audio sample. Thereby, they derive
high-level features such as genre or mood from character-
istic low-level audio features. A well-known group of such
features is named MFCC (Mel Frequency Cepstral Coeffi-
cients) [17]. In most of the related works discussed, feature
extraction frameworks are used to determine low-level fea-
tures. Most commonly used frameworks in scientific liter-
ature are depicted in Table 1 together with the number of
audio descriptors, and the year of their last update.

To classify the emotion or genre of a music track, the fol-
lowing procedure i1s widely used: First, a representative sam-
ple of the music file is selected, e.g., seconds 30-60 to avoid
the often not representative, intro. Second, the loudness
is normalized in order to make loudness-sensitive metrics
comparable between different tracks. Third, music features
are derived using one of the feature extraction frameworks
shown in Table 1. Fourth, a machine learning model, e.g.,
a Support Vector Machine (SVM), regression, clustering, or
nearest-neighbor search is trained which is able to classify a
mood state based on music features.

Genres are well-defined classes to which a music track can
belong to. In contrast to this, mood states are more com-
plex to represent. One widely accepted model representing
mood states is Thayer’ s mood model [23]. As depicted in
Fig. 1, the model defines a mood by a point in a 2D coordi-
nate system with a certain intensity of valence on the x-axis
and arousal on the y-axis. The arousal value is defined as
the intensity of the emotion, while the valence value refers
to how positive or negative the emotion is perceived. For
different domains, variants of this model have been derived.
A common representation is depicted by Fig. 1.

Mood Classification

Yang et al. propose a fuzzy approach for music emotion
recognition [28]. Fuzzy classifiers are characterized by not

Table 1: Music feature extraction frameworks

Framework Name #Descriptors | Last update
MPEG-7 descriptors [11] 17 2004
Marsyas [25] 30 2015
JAudio [18] 40 2009
MIRtoolbox [14] 55 2014
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Figure 1: Thayer' s mood model[27]

only computing the most probable class but returning a
fuzzy vector containing the probability of the music sample
belonging to each of the classes. They evaluate two clas-
sifiers: fuzzy k-nearest neighbors and fuzzy nearest mean.
Therefore, a dataset containing 195 popular music samples
of 25 seconds length is used. Each sample is manually an-
notated with a mood. The four mood classes considered
represent the four quadrants of Thayer’ s mood model. Ad-
ditionally, to track mood changes within a song, a track is
split in 10 seconds samples overlapping by 5' of the previ-
ous sample and the mood for each sample is evaluated. The
results show that a fuzzy nearest mean classifier with an
accuracy of 78.33% 1is superior to fuzzy k-nearest neighbors.
Trohidis et al. [24] extend Thayer’ s mood model by two
dimensions: pleasant/unpleasant and engaging/disengaging.
The authors select a multi-label classification approach, us-
ing 6 labels: amazed-surprised, happy-pleased, relaxing-calm,
quiet-still, sad-lonely, and angry-fearful. The dataset used
consists of 593 expert-annotated songs from the genres Clas-
sical, Reggae, Rock, Pop, Hip-Hop, Techno, and Jazz. These
genres serve as features for their multi-label classifier eval-
uation. As classifiers, they choose binary relevance (BR),
label powerset (LP), random k-labelsets (RAKEL), and mul-
tilabel k-nearest neighbor (MLKNN). Amongst these classi-
fiers, RAKEL provides the highest prediction accuracy with
80% but different accuracies for each class.

Laurier et al. [15] categorize music into one of Thayer s
mood model quadrants by using SVM, Decision Trees and
Random Forests, k-nearest neighbors, logistic regression, and
Gaussian mixture models. Out of the chosen models, a SVM
with polynomial kernel achieved highest mean accuracy of
90.44% for the categories angry, relaxed, and sad.

The highest accuracy is achieved by [15] compared with
[19, 6, 27, 22], even though they also use SVMs. Table 2
summarizes mood classification works showing their best
performing algorithm and the corresponding accuracy. Most
works achieve a high accuracy by manually annotating mu-
sic tracks and using a small training set in the range of a
few hundred tracks only. However, [4] achieves only 25%
accuracy by using on average ten mood classes. Therefore,
the classification performance is assumed to vary strongly
depending on the data and algorithm used as well as on the
number of classes chosen.



Table 2: Music mood classification approaches showing the
best performing algorithm of each paper

Paper Algorithm Accur.
Laurier et al. [15] SVM with polynomial kernel 90.44%
Trohidis et al. [24] | Random k-label set 76-90%

Rho et al. [19] SVM with radial kernel 87.8%

Han et al. [6 SVM with polynomial kernel 87.78%
Eerola et al. [3] Partial least squares regression | 75-85%
Yang et al. [28] Fuzzy nearest mean clustering 78.33%
Yang et al. [27] SVR 58.3%
Song et al. [22] SVM with polynomial kernel 54%
Gillhofer et al. [4] Random Forest 25%

GenreClassification

Gillhofer et al. [4] collect a dataset of 7,628 listening events
to 4,149 music tracks, obtained through a mobile app pro-
vided in the scope of a user study. For each event, time,
location, weather, device, network, and motion are logged.
Additionally, they acquired the genre and mood information
for each track from last.fm. For genre classification, k-NN,
decision tree and random forest, rule learner, and ZeroR are
evaluated. They achieve an accuracy of about 60% for the
genre prediction using a decision tree approach.

Huang et al. [9] propose a genre classification system us-
ing separate feature-selection for each genre class. The fea-
tures used are intensity, pitch, timbre, tonality, and rhythm.
For each pair of two genres, a local feature set is derived
by their self-adapting harmony search (SAHS) algorithm.
To get accurate results even for ambiguous genres, multiple
one-against-one SVM classifiers are trained. The final clas-
sification is computed by a classifier ensemble containing
the aforementioned SVMs. Evaluations of multiple strate-
gies are conducted on the GZTAN dataset? published 2002.
They achieved an accuracy of 97.2% for ten different music
genre classes. This is an 13% increase compared with just
using the original feature set.

To the best of our knowledge the work presented in this
paper is the first deriving audio features from a recent dataset
containing video requests from a mobile network to YouTube.
The data used for genre classification is more recent than,
e.g., the GTZAN dataset used in [9] and considerably larger
with over 4 million requests, than the datasets used in the
related work for mood classification.

2.2 Proactive Caching

Filling caches proactively, i.e., by prefetching objects, has
been thoroughly investigated in the area of CPU caching. In
the domain of network caching, recently papers have been
published on the effects of considering, e.g., content age or
the specific popularity distribution of the requested objects.
It has been shown that proactive caching policies can be
superior to reactive policies such as LRU.

An announcement-based caching approach for on-demand
videos 1s presented by Claeys et al. [2]. By respecting the
temporal structure of video segment requests, as well as the
chance that a user watches multiple episodes of a series con-
secutively, announcements are created to inform the caching
policy in advance. The evaluation is based on a dataset from
2010 containing 108,392 requests to 5,644 unique videos,
which are assumed to be 50 minutes long, using 1 Mbit/s.

2http://maursyasweb.apps,pot.com/download/data sets/

Simulations are conducted using a realistic network topology
and assuming an exponential distribution of video session
lengths. Thereby, the authors respect that most videos are
only watched partially [12]. By considering announcements
of the videos a user is going to watch in the near feature, the
cache hit ratio is increased by 11% compared with LRU. In
contrast to the paper proposed, the authors of [2] consider
episodes of a VoD portal dedicated to TV series which re-
sults in a small and homogeneous content catalog compared
with YouTube which is used in this paper.

Hasslinger et al. [7] compare LRU with statistic-based
caching strategies for Zipf-distributed popularity. They pro-
pose Score-gated LRU, defining a score for each object by
its popularity. Thereby, the items in the cache are kept con-
stant as long as content popularities do not change. This
is beneficial over LRU which always loads every newly re-
quested object into the cache, if not present already. Using
score-gated LRU, an object is only inserted in the cache if its
score surpasses the lowest score of all objects in the cache.
By implementing a variant of score-gated LRU, the authors
achieve about 10% hit rate increase compared with LRU.

Several works have investigated the potential of prefetch-
ing videos on mobile devices based on social network infor-
mation, e.g., SonNet [26], CPSys [5], and O?SM [29]. CPSys
is designed for mobile video prefetching of YouTube videos.
The system consists of two main modules, a prefetcher agent
running on smartphones and a central predictor which in-
forms the agent which videos should be prefetched. The
central predictor keeps track of all user requests and deter-
mines the most similar users to a given user, i.e., the nearest
neighbors by using the Jaccard index as a similarity mea-
sure. The number of videos to prefetch is determined by
the number of videos requested over the last 10 days for
each user separately. The videos to prefetch are selected,
per user, by a queue containing all the videos requested by
a user s neighbors. This queue is ordered firstly by pop-
ularity and secondly by recency if there are multiple items
with the same popularity. Downloading of the videos is only
conducted when a Wi-Fi connection is available. Overall 18-
20% of correct prediction ratio are achieved by CPSys. How-
ever, in the analysis of CPSys, music videos are explicitly
excluded as they show a different and more persistent pop-
ularity pattern compared with other video categories. Since
the requests to music videos constitute the major share of
YouTube requests in mobile networks, ignoring music leaves
a gap which the paper proposed fills.

0?SM is a middleware for smartphones predicting promis-
ing videos using a machine learning approach taking the
user’ s Facebook feed as an input. O?SM uses commenting,
sharing, liking of posts, the number of private messages ex-
changed, the number of viewed videos from friends or pages,
and the global post popularity of Facebook to determine
promising prefetch candidates. To derive the user engage-
ment, their own Facebook app needs to be used, which intro-
duces a bias, since the post ordering as well as the look-and-
feel differs from the native Facebook client. Furthermore,
most of the videos on OSNs are only watched partially [12]
which is not considered by their approach.

In contrast to related works using social relationships, this
work analyzes the potential of content-based and user-based
recommendation for proactive caching. As this information
1s more likely to be available at content providers and CDNs
compared with social information, it 1S more practical to use.
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Figure 2: Requests to different YouTube categories

3. DATASET ANALYSIS

The trace used was collected between Monday 14th and
Sunday 27th of April 2014 at the GGSNs (GPRS Support
Nodes) of a large European mobile network operator cov-
ering a whole country. It contains over 10 million requests
to YouTube caused by 700k users while being connected to
a mobile network. Overall, 1.6 million different videos have
been requested. The captured requests are anonymized at an
early processing step and contain only unencrypted HTTP
GET requests to YouTube. At this time, this is assumed to
be about half of all requests to YouTube.

3.1 Content Analysis

The trace contains YouTube videoIDs which are used to
enrich the dataset by meta data provided by the YouTube
Data API 3. This meta data provides information, e.g., about
the video upload date, the category assigned by the up-
loader, as well as the video title. In a first step, based on the
category, the requests belonging to videos with the category
music and to other categories are determined. Music is the
most popular category in the trace used causing about 42%
of all requests. In a previous study [16] on YouTube category
popularity, just 37% of all requests belonged to the category
music. Therefore, an increasing trend towards music video
watching on YouTube is likely.

The share of requests belonging to the ten most popular
categories is shown in Fig. 2. Categories of minor popularity,
1.e., with a request share smaller than 1% are summarized
in the category Others, which contains: Movies, Trailers,
Shows, Nonprofit, Animals, Travel, Tech, and Education.
Music is the largest category w.r.t video views, more than
four times larger than the second largest category Entertain-
ment with just 10.03%. Another interesting finding is that
about 35% of the YouTube channels appearing in the dataset
have uploaded videos belonging to the category music.

In the following, only music videos which have been re-
quested at least ten times within the two week trace are
considered as they are most relevant for caching systems.
Thereby, videos with a lower popularity, belonging to the
video popularity distribution’ s outer short tail are removed.
This results in 44,704 different remaining videos being used.

3https ://developers.google.com/youtube/v3/

3.2 User Analysis

The network load measured by the number of user re-
quests 1s shown in Fig. 3. For each day of the first week con-
tained in the trace, the number of requests per ten-minute
time intervals 1s depicted. It can be clearly seen, that on
weekdays, the traffic peeks short after noon, probably be-
cause of people watching videos during their lunch break.
After end of work, at around 5pm, the load shows a second
peak, probably while commuting in public transportation.
The load stays high but slowly decreases until around Sam.
Weekend days show a different pattern compared with week-
days. Here, the users tend to start watching later at the day
and request more videos overall. No dedicated peaks can be
observed, instead the traffic stays high between 1lam and
midnight. Overall, the user activities seem to be shifted in
time about 2 to 3 hours, as they start requesting later and
stay active for later hours.

Recommending content for users watching only a few videos
is hard and less effective in a network scenario where band-
width reduction is the major goal. Therefore, so-called heavy
users are selected out of all users. They are defined by watch-
ing at least 2 videos per day for at least 7 days within 2
weeks. This results in 5,351 heavy users representing 1.64%
of all users but cause 15.56% of all requests to music videos.
On average, they watch 7 videos per day.
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Figure 3: Normalized number of requests observed for each
weekday and the hours of the day

4. METHODOLOGY

In this section, an overview of the proactive caching method-
ology 1s given and the approach used to derive genre and
mood labels for each music track is explained. The method-
ology’ s main components are depicted in Fig. 4. The user
video queries extracted from the YouTube trace serve as an
input. In a first step, for each music track, the correspond-
ing tags from last.fm are requested (ref. Sec. 4.1) and audio
features are extracted from the video (ref. Sec. 4.2). Next,
mood and genre classifiers are trained on the low-level au-
dio features (ref. Sec. 4.3). The classifiers with the highest
accuracy are used and allow labeling each music track with
a genre and a mood, based on the low-level audio features
only. Therefore, even for tracks that are unknown on last.fm
genre and mood information can be determined. The video™ s
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Figure 4: Methodology of the proactive caching design workflow

audio features, as well as classified genre and mood serve
as an input to the recommendation component. The idea
is to fill a certain share of the cache actively according to
the videos recommended by one of the recommendation ap-
proaches, which is described in detail in Sec. 5. Furthermore,
two variants of caching systems are considered: in-network
caching, e.g., at a reverse proxy cache and caching on the
user premises, €.g., at a smartphone.

4.1 Genre and Mood Retrieval from last.fm

The performance of the proactive caching approach de-
pends on the correct information for the music videos. In
order to determine genre and mood for each music video,
the correct labels have to be determined. Therefore, the ti-
tle of each video is used to request the tags annotated to
this title by last.fm users. On last.fm, users can assign la-
bels to a music track indicating, e.g., mood and genre of
a song, but may also refer to the song’ s topic as they are
free to choose a label. In a pre-processing step, strings like
" officialclip” ,” officiel” , and similar strings are removed from
the track titles. Furthermore, in case a * - " surrounded
by spaces occurs in the title, the preceding part is assumed
as the artist, while the latter one is considered as the song
title. With this cleaned titles, all tags associated to them
are retrieved from the last.fm API *. Thereby, for 13,553
tracks, tags are retrieved. Overall, these are 30% of of the
44,7704 tracks considered. For very new or unpopular songs,
it is less likely to find information on last.fm. To assign a
mood and genre label for the other tracks as well, low-level
audio features are derived and a genre as well as a mood
classifier are trained on this features in conjunction with the
dominant genre or mood information obtained from last.fm.
This allows determining genre and mood also for tracks for
which no information could be retrieved for.

Deriving Mood

The platform last.fm allows users to freely assign tags to
songs. This results in a wide variety of tags. Therefore,
only tags with a last.fm-specific weight of at least 50 are con-
sidered in the mood classification, in order to avoid rarely
used and less representative tags. The information how this
weight 1s computed, is not made public by last.fm. One cate-
gory per quadrant of Thayer’ s mood model, namely: happy,
sad, angry, and relaxed are used as classes, following the
works of [15, 20, 28]. For each of the most often used tags,
a quadrant of the Thayer mood model is assigned manually.
Associated tags are used to group the tracks, as described
in Table 3. For example the tags: angry, aggressive, and
banger are assigned to the class: angry. This results in a

*http://www .last.fm/de/api

labeled dataset with the low-level audio features and their
corresponding genre and mood category. The classifier is
trained and tested with this dataset, which is considered as
the ground truth.

Table 3: Subset of associations between the quadrants of
Thayer’ s mood model and last.fm tags

Happy Sad Angry Relaxed

happy sad angry relaxed

energetic  nostalgia aggressive calm

positive depressive banger downtempo

fun bittersweet passion chillout

cheerful  sentimantal quirky dreamy
humorous melancholic annoying longing
feel good dramatic gangsta rap spiritual
Genre Classification

Following the approach in [9], this work uses the follow-
ing genre classes: rock, classical, pop, blues, jazz, country,
disco, hip hop, metal, and reggae. Additionally, the cate-
gories chanson, dance, electronic, and soul are considered as
last.fm reveals that a large amount of tracks in the trace
used belong to this categories which are not reflected in the
aforementioned set of genre classes. In the following, a list
of similar genres that are aggregated to one meta-genre is
given. For example, tracks with the dominant labels hip-
hop, hiphop, or rap are assigned to the meta-genre rap. For
each track, the genre label assigned by most last.fm users
1s chosen. Overall, following this approach, the genre could
be determined for 9,029 tracks. The number of samples per
category are highly heterogeneous, e.g., Pop with 2,004 and
Blues with 55 samples, as shown in Table 4.

Metal: metal, heavy metal

Rap: hip-hop, hiphop, rap

e Reggae: reggae, reggaeton

Rock: rock, classic rock

Soul: soul, mb

4.2 Audio Feature Extraction

In the following, the method for low-level audio feature ex-
traction is described. To obtain these features from each mu-
sic video, the Matlab package MIRtoolbox [14] (ref. Sec.2.1)
is used, as it allows deriving a wide range of audio features
from an audio signal, e.g., the MFCC values, tempo, spec-
tral entropy, timbre, and pitch. Furthermore, statistics such



Table 4: Absolute and relative occurrence of samples per genre in the dataset

Pop Rock Rap Electronic Soul Chanson Reggae Dance Metal Jazz Disco Classic Country Blues
2,004 1,633 1,397 970 784 543 520 467 197 159 142 96 62 55
2% 18% 15% 11% 9% 6% 6% 5% 2% 2% 2% 1% 1% 1%

as mean and standard deviation are derived from these fea-
tures, resulting in 392 features overall. For the feature ex-
traction, a representative sample of 30 seconds of each mu-
sic video 1s used, which is a common procedure [15, 24, 22].
The sample is taken from second 30 to 60 for tracks with
a duration greater than 60 seconds, to avoid the often not
representative intro. In case the video length is 60 seconds
or shorter, the first 30 seconds are used. For 37,732 videos,
the features are derived this way. To reduce the number of
features carrying similar information, sets of highly corre-
lating features are determined. For each of this set, only the
feature with the lowest entropy is kept as it carries most in-
formation. This excludes features that have for most tracks
the same or equal values. Thereby, 317 out of 392 features
remained.

4.3 Genre and Mood Classification

As the mood and genre information is not available for all
songs, a mood and a genre classifier are developed. Clas-
sifiers need to be trained on a labeled dataset. Therefore,
the low-level audio features derived by MIRtoolBox in con-
junction with the determined genre or mood obtained from
last.fm containing correctly annotated audio samples are
used for classifier training and testing. In a first prepro-
cessing step, all features are normalized to a number be-
tween O and 1, which is a common requirement for most
machine learning algorithms. With the goal to avoid using
less predictive and unnecessary many features, the classifier
1s trained on an iteratively increasing number of features,
thereby following a common subset heuristic. If an audio
feature can increase the classification accuracy, it is added
to the feature set used, otherwise it is discarded. However,
the classification accuracy did not increase significantly by
doing so. Therefore, all of the 317 features are kept.

Based on the literature presented (ref. Sec. 2.1), a SVM
is chosen as the classification model. Many combinations of
parameters C(penalty parameter of the error term), y(kernel
coefficient), and different kernels (linear, radial, polynomial,
and sigmoid) are tested to find the optimal SVM configura-
tion. To achieve a robust measure of accuracy, a 10-fold
cross-validation 1s performed. The python library scikit-
learn ® is used for training, cross-validation, and grid-search
for hyper-parameter optimization as well as class balanc-
ing. It is important to consider that the number of sam-
ples per class in the dataset vary, i.e., the dataset is un-
balanced. Therefore, classes are weighted inversely propor-
tional to their occurrence in the dataset to balance their
influence and, thereby achieve high classification accuracy.
Following this procedure, a mood and a genre classifier are
trained which can determine a track’ s mood and genre based
on its low-level audio features. It has to be noted that the
dataset used in this paper is significantly larger than the
ones stated in the related work. The achieved accuracy of
the mood classifier is 64% by using a radial basis function
(rbf) kernel and a test set size of 10%. As depicted in Fig. 5,

®http://scikit-learn.org

the accuracy differs for each class. This figure shows a con-
fusion matrix stating how many percent of the true labels
are classified correctly. For example, the category angry is
easily mistaken for happy, while happy and relaxed music
can be identified with a high accuracy of about 70%.
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Figure 5: Confusion matrix of the mood classifier

Surprisingly, the rbf SVM used, similar to the approach
of Rho et al.[19], outperforms the best reported results of
Laurier et al. [15]. However, the reason might be that the
training data available is larger than in the related work.
Furthermore, the approach in [15] performed only 1.6 - 6.7%
worse, depending on parameter configuration chosen for the
SVM. Still, this is a high accuracy compared against a ran-
dom classifier (25%) and a majority class classifier which
would always predict happy (40%).

For the genre classification, on the one hand, hip hop,
pop and electronic showed a high precision with up to 70%.
On the other hand, blues and country, the two smallest cat-
egories in the training data, performed with 0% and are,
therefore, usually misclassified. However, overall the genre
classifier showed an average precision of 50%, which is high
for that many classes, compared with a majority class clas-
sifier which would always predict pop (22%) or a random
classifier(7%). The confusion matrix for all genres is de-
picted by Fig. 6.

5. PROACTIVE CACHE POLICY DESIGN

The proactive caching policies proposed determine which
videos are cached into a dedicated share of the cache. In this
storage area, videos are placed on a regular basis, e.g., once
per day or 4 times per day. The rest of the cache space is
managed by LRU it is the most popular caching policy and,
therefore, allows high comparability with other works. For
proactive caching, different recommendation approaches are
used to determine suitable caching candidates. Two general
types of recommenders can be distinguished: content-based
and user group-based also known as collaborative filtering.
While the content-based approaches use just information re-
lated to the content requested by one user, the user group-
based approaches require a detailed history of many users
to work properly. Therefore, user behavior-based recom-
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Figure 6: Confusion matrix of the genre classifier

menders require much more resources and detailed informa-
tion of users. Hence, they are in contrast to content-based
approaches not privacy-preserving.

Independent of the approach used, it outputs an ordered
list of music video IDs, which are likely to be efficient can-
didates for proactive caching. This list is taken as an input
for the evaluation simulation, where the cache size and the
share of the cache used for proactive caching can be con-
figured. Depending on the size of the proactively managed
cache share, the top entries of the list recommended by the
policy used are taken and the respective videos placed within
the proactively managed part of the cache.

5.1 Content-based Caching Policies

Content-based approaches use only information from the
contents requested as an input. The underlying assumption
1s that if a user or a group of users have requested a video,
it is likely to request similar videos.

5.1.1 Popularity

A naive benchmark for proactive caching is to select the
most popular videos from the recent past. This approach
can be implemented easily and is likely to result in a good
performance for the near future. However, depending on the
dynamics of new videos added to the content catalog this
information can soon become stale. In addition, the recent
past used to derive the popular candidates might not be rep-
resentative for the near future, e.g., the watching behavior
correlates with a certain time or hour of the day.

5.1.2  Time-aware Caching

The drawback of the popularity policy, i.e., to consider
only potentially stale information from the recent past, is
avoided by leveraging seasonal patterns. To this end, time-
aware caching is proposed. Music taste is observed to shift
over the hours of the day, e.g., activating music during sport
activities and relaxing music in the evening [4]. Hence, a
caching approach that gives a higher priority to music videos
that match the most popular genre or mood of the current
hour of the day is likely to increase the cache’ s performance.
In order to investigate this hypothesis, the composition of
genre and mood categories is analyzed for each hour of the
day. The results are shown in Fig. 7. Surprisingly, only

small variations can be observed for different hours of the
day. This is observed for all 14 days captured in the trace.
While most categories’ popularity is relatively static, hiphop
and pop music are showing an interesting behavior. As both
categories vary in popularity, their summed share stays sta-
ble around 60%. One explanation for this might be that the
same users tend to request content from both categories.

Genre and Mood.

The time-aware caching policy proposed uses for a dedi-
cated feature, e.g., genre or mood its mean popularity for
each hour of the day. Next, for all requests within the cur-
rent hour of the day the dominating genre or mood is de-
termined, i.e., from which most videos have been watched.
The recommendation includes only items belonging to the
respective dominating genre or mood. Within this list, the
items are ordered by their global popularity. As an exten-
sion, not only one but many categories can be considered,
e.g., two categories where the space for pop and hiphop mu-
sic is divided proportionally to these genres’ popularity share
for the current hour of the day. The policies described above
are referenced as genre and mood in the following.

5.1.3  Audio Features

The following two policies are only applicable to the sce-
nario where the cache is installed on the user’ s premise, e.g.,
on a smartphone. They do not require information from
other users but a list of recently watched videos for the user
for which the proactive caching is performed.

Feature Vector.

For each user, music videos that are watched more than
once by the user are selected. Then, the cosine similarity
of the feature vector is calculated between the audio of the
videos watched by a user more than once and all previous
videos watched by other users. Afterwards, the list contain-
ing videos watched by other users is sorted according to the
computed similarity. Number of features is variable. How-
ever, in this paper, 100 features are used. Thereby, only the
features which do not correlate w.r.t. the Spearman rank-
order correlation are selected.

Feature.

This policy works similar as the feature vector policy, ex-
cept that just one low-level feature is used instead of all.
Thereby, the average value of this feature for all previously
watched videos 1s used to order the music video list. This
allows to evaluate which of the features is most relevant and
not to use less relevant features.

5.2 User Behavior-based Caching Policies

The user behavior-based approaches require a user-item
matrix that contains information about all requested items
from all users. Here, the idea is that users or group of users
which are similar with respect to their requesting behavior
are also likely to request videos one of them has requested
but the other has not yet requested.

5.2.1 Feature Range

This recommender i1s a combination of user-based collab-
orative filtering and content filtering. User similarities are
defined by their average value for a certain low-level au-
dio feature and their range of its variance using previously
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watched videos. The average reflects the suitability of this
feature for the users while the variance reflects how diverse
their music taste 1s w.r.t. this feature.

5.2.2  Matrix Factorization

It has been shown that for recommendation tasks collabo-
rative filtering, i.e., implemented by matrix factorization has
a higher accuracy than nearest-neighbor approaches[13]. In
this work, the ALS[8] (Alternating Least Squares) imple-
mentation of Apache Spark® is used.

The input data consists of triples (userID, videolD, rat-
ing) where the rating can be chosen by two variants. First,
implicit rating is used which represents how often a user
watches a video. Second, explicit rating is used which refers
to the percentage of the video watched. Thereby, jumping
over uninteresting videos can be distinguished from watch-
ing a video fully. Additionally, the explicit rating is weighted
by the number of times a user watches the video, e.g., if it is
watched 50% twice, the explicit rating is 2 X 0.5 = 1. This is
expected to significantly increase the policy’ s performance
as most videos on YouTube are not watched fully [12].

523 CPSys

CPSys [5] is a mobile video prefetching system. It uses
caches residing on mobile user devices. Videos for proac-
tive caching are selected based on collaborative filtering,
1.e., finding closest neighbors of a user and suggest videos
for prefetching which are consumed by his neighbors previ-
ously but not yet by the user. Thereby, preference is given to
most recent and most popular content. CPSys 1is evaluated
on a YouTube video request trace, but explicitly excludes
music videos as they show a different popularity pattern
compared with other videos’ categories. Furthermore, mu-
sic videos are more likely being consumed repeatedly, while
other types of content, for example news and sport events
are watched mostly once. It is expected that CPSys does
not perform well when contents of different categories are
used together. However, as this work is dedicated to music
videos only, since the majority of mobile video requests be-
longs to this category (ref. Sec. 3), in this paper, CPSys is
implemented and evaluated.

5.2.4  User Similarity

®http://spark.apache.org/

Similarity Measure.

This policy uses a user-item-matrix containing an entry
for every video a user has watched. If a video was watched
more than once, the number of watches is entered into the
matrix. Using this matrix, for each user, similar users are
computed, which are called neighbors in the following. The
similarity between a user and its neighbors is defined by the
Jaccard similarity coefficient. Thereby, neighbors that have
watched many of the videos also the user has watched are se-
lected. In a further step, the videos that have been watched
by the neighbors but not yet by the user are determined.
Their watch count, i.e., the matrix value, is weighted by
the similarity between the user and the neighbor that has
watched this video. Finally, this value is taken as a score
and the videos with the highest score are selected for being
proactively cached.

Modified Similarity Measure & Feature.

The similarity policy does not work for all users, as it re-
quires at least one other user who has watched the same
video as the user for which proactive caching is applied. For
a few users this leads to no results, as no neighbors exist.
This policy compensates for this by applying recommenda-
tion by feature policy if no neighbors can be determined by
the similarity measure policy.

Similarity Measure & Feature.

This policy is a hybrid policy between similarity measure
and feature; hence the feature policy does not serve as a
backup like in the previous policy but is always used. First,
both policies output list are computed separately. Next, the
union of both lists is build and the values are summed up
in case a video occurs in both lists. In case the similarity
measure cannot determine a neighbor, this policy results in
the same videos being recommended as the feature policy
does.

Aggregated Similarity.

In order to apply the similarity measure policy for in-
network caches, the recommendations for each user is con-
sidered as a tuple of (videolD, score). For all users, these



lists are concatenated and in case an entry occurs multiple
times in the resulting list, their scores are summed. The
resulting list can be perceived as an aggregated similarity
measure over all users. Thereby, this metric can be used not
just for one user, but also for a group of users in contrast to
the other similarity measure policies proposed before.

6. EVALUATION

This section evaluates the proposed proactive caching poli-
cies. Thereby, the size of the whole cache and the share
of the cache that is managed proactively are varied. The
remaining part of the cache, i.e., the reactively managed
share, 1s always managed by LRU as it provides a well-known
benchmark often used in the related work and enables a di-
rect and quantitative comparison to the related work. Each
policy evaluated results in a list of videos from which the
top items are chosen to fill the share of the cache which is
manages proactively. By default, this is done once per day,
which is assumed reasonable for a typical provider network.

User Selection.

For the evaluation, only users with a constantly high de-
mand for music videos are selected. These users can be easily
determined, e.g., by a mobile network operator or content
provider. Therefore, in the following, only users having re-
quested at least two videos per day for seven days within the
two weeks trace are considered. Thereby, 5,351 users, con-
stituting 1,64% of all users within the trace are used which
are responsible for 15.6% of the total video requests. On
average, each of these users watched seven videos per day.

6.1 In-network Cache Evaluation

This section evaluates caches covering many users, €.g.,
within the ISP, CDN, or content provider. In order to show
the influence of the cache size, it is varied from 100 to 1,500
videos. Additionally, the share of these caches managed by
the proactive caching policy is varied between 5% and 25%
to investigate the influence of the ratio between proactive
and reactive caching.

In the following, the evaluation of the policies: popularity,
genre, and aggregated similarity are described, as they are
three of the most different polices. In case all 700k users
are served by the same cache, each of the policies performs
comparably well. Therefore, only the cache hit rate (CHR)
of the popularity policy is chosen to be further evaluated. It
requires the lowest computational complexity and, therefore,
is the most reasonable choice. Fig. 9 shows the resulting
CHR if the popularity policy is used.

Furthermore, the cache size and the proactively managed
share of the cache are varied. The blue line represents 0%
space managed proactively, 1.e., a pure LRU cache. As de-
picted in the figure, the greater the share of proactively man-
aged cache share, the greater is the resulting CHR. Increas-
ing the proactive share in 5% steps shows a small positive
effect after each step, converging at a CHR of 28% and a
cache size of 1,500 video items.

In a further setup, five distributed caches are investigated,
e.g., placed in the metropolitan areas of a country. Thereby,
1 = 140k of the users are randomly assigned to one of the
five caches. For each of the three policies, the CHR differ-
ences compared to pure LRU are simulated to investigate the
effect of proactive caching using the average CHR of all five
caches. The results are depicted in Fig. 8. An interesting

finding is that independent of the policy, proactive caching
can notably increase the CHR for small (100-400 videos)
and for large cache sizes (1,300-1,500 videos) but less for
sizes in between. Especially for small cache sizes, proactive
caching can increase the CHR by up to 4% using the pop-
ularity policy. For cache sizes between 600 and 1,100, this
policy has a positive effect of up to 0.8% if smaller proactive
cache sizes are chosen. The policies genre and aggregated
similarity show a comparable performance for small cache
sizes and genre achieves slightly better results for small cache
sizes. For mid-sized caches, all policies are also able to de-
crease the CHR when the proactively managed share of the
cache is chosen too large, e.g., 25%. However, a proactive
cache share of 5% always increases the performance, even
slightly for mid-sized caches. Comparing the three policies,
it can be seen that the popularity policy is superior to genre
and aggregated similarity. Overall, the maximum CHR with
55.1% 1is achieved by the popularity policy with a proactive
cache share of 20% and a cache size of 1,500 items. Proactive
caching by popularity achieves the highest gain measured by
CHR with a cache size of 200 and a proactive cache share of
25%. Traditional LRU achieves just 8.9% CHR and, com-
bined with proactive caching, achieves 12.8% CHR. Summa-
rizing, the performance of proactive caching depends on the
cache size, the number of users served by the cache, and the
proactively managed cache share. Furthermore, the number
of videos in the content catalog is likely to influence the re-
sults. However, as a real trace is used, this parameter is not
further evaluated.

6.2 User Cache Evaluation

In the following simulations, a fixed number of cache en-
tries per user is assumed. This number is defined by the
average number of videos watched by a user over the two
weeks period captured by the trace. However, the number
of entries is limited by a maximum of ten to respect the
limited client storage capacities. Assuming the videos are
cached in 720p resolution, ten videos require 1.3 GB mem-
ory or 0.7GB for a resolution of 480p. Botch calculations
assume an average video length of 3.5 minutes and a bitrate
of 5 and 2.5 Mbps, respectively. For caching on mobile de-
vices, such as smartphones or tablets, a series of simulations
using different proactive caching policies are performed. As
a common evaluation metric for the different policies, the
F1 score also known as F-measure is chosen, as it consid-
ers both precision and recall. Precision is defined as the
number of videos placed in the cache that are later watched
by the users. Recall defines the share of videos that are
watched and previously placed in the cache and, therefore
correlates with the CHR. For recommender systems, like the
policies recommending videos for proactive caching are, this
1S @ common metric.

Policy Comparison

Fig. 10 depicts the F1 score of the proposed policies and
their 95% confidence intervals. Policies using the informa-
tion of all users tend do achieve a higher F1 score, except the
feature range policy which scores insignificantly higher than
the popularity policy. The policies feature vector, popular-
ity, and feature range archived the lowest performance with
a value smaller or equal than 0.019. Mood and genre are
both significantly superior compared with popularity, which
is the default benchmark when it comes to recommendation
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systems. Even though the genre policy uses a genre classi-
fier with many genre classes and, therefore, a relatively low
per-class accuracy compared with the mood policy’ s classi-
fier, the genre policy archives a significantly higher F1 score.
As the genre policy is able to work with either one or many
genres, different numbers of genres are evaluated but do not
have an impact on the policy’ s performance.

For the matrix factorization policies, both proposed vari-
ants are evaluated using a training dataset of seven days
for optimal performance. First, vanilla matrix factorization
which uses the number of video watches as the video s rat-
ing is simulated. Second, matrix factorization with explicit
rating, i.e., how many percent of a video have been watched
is evaluated. The second variant scores significantly higher
than the first variant but shows a larger confidence inter-
val, however not overlapping with the first variant’ s con-
fidence interval. CPSys shows better results than matrix
factorization but with a large confidence interval. The best
performance in the category of privacy-preserving policies is
achieved by the feature policy with an F1 score of 0.1. For
this policy, the feature spectrum mean is used, as it shows
to achieve the highest F1 score. Surprisingly, thereby, it
archives a better performance than the previously described
policies. Overall, the highest F1 score is achieved by the sim-
ilarity measure policy, with a value of 0.197. The number of
neighbors 1s set to 20 for all similarity measures as well as

for CPSys to guarantee comparability. Further hybrid poli-
cies which try to enhance the user similarity performance
by combining it with the best content-based policy, i.e., fea-
ture, cannot increase the performance of the pure similarity
measure policy.

So far, in one simulation a single policy is applied for all
users. However, choosing a policy on a per-user basis may
further increase the performance. To test this hypothesis,
for each user and day captured by the trace, it is evaluated
which of the two policies: feature or similarity is superior.
Surprisingly, for 21.5% of the users, feature is superior to
similarity for at most one day. For 6.8% of the users the
policy 1s superior for two days and for 2.7% of the users,
feature is superior for three days. Finally for <0.5%, which
are less than 10 users, feature is superior over Similarity for
7 days and more. The number of users and days where
feature results in a better performance than Similarity are
quite limited. Therefore, the performance gain of a per-user
policy selection is assumed quite limited as well and is not
further investigated.

Summarizing, the feature policy achieves a high F1 score
of 0.1 and is thereby even superior to matrix factorization,
the state-of-the-art recommender approach used, e.g., by
Apache Spark. However, at the cost of privacy-loss, sim-
ilarity measure policies achieve F1 scores twice as high as
the privacy-preserving feature policy. Yet, due to legal re-
strictions, they may never be applied in reality in certain
countries. The feature policy, in contrast to this, leverages
only public information of the content and the user that uses
this policy. As a result, the policy can be implemented at
the user device, e.g., as part of a locally operating Android
or 10S app. Thereby, the privacy-sensitive data never has
to leave the user’ s device.

Time Windows

For the results presented, proactive caching is performed
once a day, which is assumed reasonable for a typical provider
network. In the following, the frequency of proactive caching
as well as the size of data used as an input for a policy is
further investigated. Therefore, different time windows are
evaluated. At the beginning of each time window, the cache
is filled proactively and is not changed till the next time win-
dow starts. The data used for recommendations by proactive
policies is important to gain a good performance. A time
window contains the user requests between start and end of
the time window. It has two properties, the starting hour,
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i.e., midnight or noon and the length, i.e., 12, 6, 8 hours,
defining how many time windows exist per day, i.e., 1, 2, 3,
or 4. In the following, a configuration of two time windows
starting at midnight and noon are denoted as 2TW -0-12.
The default approach of recommending once a day is de-
noted as OD. If more than two time windows are used, e.g.,
3_TW_6, the last number represents the starting time of a
time window while its length is the remaining hours of the
day divided by the number of time windows, e.g., from 6am
till midnight (18 hours) results in three six-hour-long time
windows in the previous example. As shown in Fig. 3 there
are a few requests in the time between 1-6am. Therefore,
additionally to midnight, time windows can also start at
6am. While for policies like genre and other content-based
policies the time window does not significantly affect the
performance, it does so for the user similarity policy. As
this policy archives the best performance, its time window
analysis is described in the following. The results are de-
picted by Fig. 11.

Additionally to number and beginning of time windows,
in (a) all time windows data for the current day is used,
starting at midnight, while in (b) the results for just us-
ing the last passed time window is shown. It is important
to notice that using more data from more time windows
does not lead to a higher performance in general. Over-
all, using the last time window’ s data only leads overall to
higher performance values. Configuration 3-TW _6 achieves
the highest mean of F1 measures with 0.35, thereby being
significantly better than filling the proactive cache once a
day (0D), as well as configurations with two and three time
windows starting at midnight. As the configurations start-
ing at 6am achieve much higher F1 scores than the same
configurations starting at midnight, it is demonstrated that
using the video requests from the current day and filling the
cache at 6pm in the morning achieves better performance.

7. CONCLUSION AND FUTURE WORK

This work presents proactive caching policies based on a
novel set of content features, namely music-specific features.
A methodology for feature extraction using a request trace is
proposed and classification approaches for genre and mood
as promising new content features are compared. The pro-
posed caching policies are evaluated using a real network
trace. For the in-network cache scenario, different configu-
rations of cache size and its share used for proactive caching

(a) all of the day’ s passed time windows

(b) last time window only

Figure 11: F1 score of different time window configurations
for the user similarity policy with 95% confidence intervals

are evaluated. For the scenario applying caching on the user
devices, twelve policies are proposed and evaluated as well as
relevant aspects, e.g., how much they respect the user s need
for privacy. Additionally, the frequency and the amount of
data used for proactive caching is investigated. The key find-
ings of this work are: First, proactive caching is beneficial
for large caches with many users being served. However, also
caches smaller than 500 can benefit from proactive caching.
For cache sizes between 500 - 1,000, proactive caching has no
positive effect. Second, for proactive caching on mobile user
devices, the privacy-preserving feature policy achieves a per-
formance more than twice as high as matrix factorization, a
state-of-the-art approach used, e.g., by Apache Spark. Over-
all, the similarity measure policy achieves the highest per-
formance with an F1 score of 0.2. However, this performance
comes at the cost of user privacy, as the requests of all users
have to be known. Third, the frequency and the amount of
data used as an input for proactive caching policies are an-
alyzed. Proactive caching applied three times a day, every
six hours starting from 6am further increases the cache per-
formance with an F1 measure of 0.35 compared with 0.2 if
performed only once a day. Summarizing it can be said that
proactive caching using music features is a valuable method
to work together with reactive caching policies to increase
the overall cache performance.

In future work, the effect of different video qualities on
proactive caching algorithms is planned to be evaluated, as
well as considering video segments instead of whole videos.
Additionally, larger cache sizes and different content cata-
log configurations will be considered. Furthermore, policies
using deep learning and audio features are planned to be
developed and evaluated.
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