
P4-BNG: Central Office Network Functions on
Programmable Packet Pipelines

Ralf Kundel§∗, Leonhard Nobach†∗, Jeremias Blendin‡∗,
Hans-Joerg Kolbe†, Georg Schyguda†, Vladimir Gurevich‡, Boris Koldehofe§, Ralf Steinmetz§

§ Multimedia Communications Lab, Technische Universität Darmstadt, Germany
{ralf.kundel, boris.koldehofe, ralf.steinmetz}@kom.tu-darmstadt.de

†Deutsche Telekom Technik GmbH, Fixed Mobile Engineering Deutschland, Darmstadt, Germany
{leonhard.nobach, hans-joerg.kolbe, g.schyguda}@telekom.de

‡Barefoot Networks, Santa Clara, CA, USA
{jblendin, vgurevich}@barefootnetworks.com

Abstract—Large-scale telecommunications providers have to
continuously challenge and evolve their network infrastructure to
efficiently serve growing markets demands. They must increase
performance, lower time-to-market, provide new services, and
lower the cost of the infrastructure and its operation.

Network Functions Virtualization (NFV) on commodity hard-
ware offers an attractive, low-cost platform to establish inno-
vations much faster than with purpose-built hardware products.
Unfortunately, implementing NFV on commodity processors does
not match the performance requirements of the high-throughput
data plane components in large carrier access networks. In this
article, we propose a way to offer residential network access
with programmable packet processing architectures. Based on
the highly flexible P4 programming language, we present a design
and open source implementation of a BNG data plane that
meets the challenging demands of Broadband Network Gateways
in carrier-grade environments. The proposed evaluation results
show the desired performance characteristics and our proposed
design together with upcoming P4 hardware can offer a giant
leap towards highest performance NFV network access.

Index Terms—NFV, P4, Access Networks, Network Functions,
Hardware Acceleration, Computer Networks

I. INTRODUCTION

Internet Service Providers (ISPs) are challenged by com-
petition, regulators, and content providers to deliver high-
performance services to residential subscribers at ever lower
costs. Essential cost drivers are the high-performance network
functions required at the access edge. From a functional
perspective, besides offering Internet connectivity, the access
edge has to provide authorization and implement the quality
properties of Internet access contracts of residential sub-
scribers. Traditionally, residential network access is provided
by physical network functions called Broadband Network
Gateways (BNGs), which are purpose-built devices that pro-
vide high performance, but tend to be costly. One approach to
reduce the costs for network operators is Network Functions
Virtualization (NFV). NFV aims to increase cost-efficiency
and flexibility by implementing network functions on cost-
efficient commodity servers, commonly based on the x86
or ARM processing architecture. One way to realize NFV in

∗ The authors contributed equally to this paper

ISP networks is Central Office Re-architected as a Datacenter
(CORD) [1] which aims to transfer ideas from the data center
world to ISP networks. However, for high-performance packet
forwarding softwarized approaches have unfavorable perfor-
mance characteristics compared to fixed hardware solutions.
Our previous work investigated how commodity bare-metal
switches could be adapted to provide the function of residential
network access [2]. Commodity switch silicon in 2016 was
sufficient to implement the essential properties of a small-scale
BNG with a very high performance, but not with all features
needed by a large-scale network operator, like Point-to-Point
Protocol over Ethernet (PPPoE) encapsulation/decapsulation
or the required scalability.

With newer hardware designs and the highly-flexible P4
pipeline description language [3], packet processing can be
adapted to a variety of use cases. P4 shows the potential to ful-
fill all functional requirements that are desired for a BNG data
plane. Furthermore, it is expected that numerous vendors of
packet processing hardware will support the P4 programming
language to configure their upcoming switching chips (ASICs)
or network processors. ASICs or network processor generally
provide much better performance than software-based NFV
approaches for data plane tasks.

The goal of this paper is to present a P4-based design
and implementation of a BNG data plane, which runs in a
CORD environment and fulfills all requirements of a large-
scale telecommunications provider. In detail, the contributions
of our work are as follows:

• We analyze the functional requirements of a large-scale
telecommunications provider’s BNG in Section III.

• We present a design and open source implementation
a BNG data plane network function in a CORD-based
design for P4-targets, fulfilling these requirements.

• We provide an abstraction layer between a generic BNG
and the runtime environment.

After providing an overview over state of the art and related
approaches, we present the results of the requirements analysis
in Section III. Finally, we discuss the implementation and

rst
Textfeld
Ralf Kundel, Leonard Nobach, Jeremias Blendin, Hans-Joerg Kolbe, Georg Schyguda, Vladimir Gurevich, Boris Koldehofe, Ralf Steinmetz: "P4-BNG: Central Office Network Functions on Programmable Packet Pipelines". In: IEEE International Conference on Network and Server Management (CNSM), 21.-25. October 2019



present some evaluation results.

II. BACKGROUND AND RELATED WORK

To benefit from fast, programmable packet processing hard-
ware, our implementation of the BNG data plane is using
the P4 pipeline description language and targets upcoming
programmable hardware devices. Our implementation is de-
sign as a part of the CORD architecture which supports
the execution of central-office functionality, using Virtualized
Network Functions (VNFs) on commodity hardware. In the
following, we provide an overview of the CORD project, the
P4 programming language and related work.

A. Broadband Network Gateways

Central offices, the points connecting subscribers to the
telecommunications infrastructure, have evolved in the last
100 years from analog, human-driven switching centers to
digital packet gateways. Today, residential network access
functions in the central office are integrated in the BNG,
mostly implemented on purpose-built hardware. The BNG
function has been specified by several technical reports of
the Broadband Forum (TR-101 [4], TR-145 [5], TR-178 [6]).
According to IETF internet drafts, a BNG is defined as a server
which routes traffic to and from broadband access devices,
e.g., DSLAMs, on an ISP’s network [7]. Further terms are
Network Access Server (NAS) [8], Broadband Remote Access
Server (BRAS). In this work we use the common term BNG.

B. SDN for telecommunication networks

A major contribution of software-defined networking (SDN)
architectures is the separation of the control plane and the
data plane [9]. The usability of SDN for telecommunications
providers has been investigated within the Project SPARC [10].
Focus of the latter research project was the disaggregation
of the data plane, and multiple, hierarchical arranged, control
planes. However, the project found the existing OpenFlow [11]
protocol insufficient for the task and, therefore, proposed
numerous improvements to it.

Recently, the Open Networking Foundation (ONF) con-
ceived the “Central Office Re-Architected as a Data Center”
(CORD) project [1] to overcome the dependency on vendors
and proprietary hardware in carrier networks. Based on a
combination of capabilities provided by SDN and Network
Functions Virtualization (NFV) [12], the CORD project opens
up new possibilities to bring “‘economies of scale” and agility
of data centers into central offices. With CORD, network
functionality of central offices is implemented as VNFs, based
on open-source software components, such as Docker [13],
OpenStack [14] and ONOS [15]. The economies of scale of
commodity hard- and software promises reduced costs and
vendor lock-ins.

CORD focusses on Gigabit Passive Optical Networks
(GPON) as the access technology. Nevertheless, other tech-
nologies like XGS-PON, G.fast [16] or VDSL fit into the
system model as well. The distinction of the access lines is
ensured through VLAN tags, which are added or removed by

BNGONU/
ONT

OLT
(AN)RG

Core
NetworkGPON Ethernet

Customer Central Office

Fig. 1: Access topology assumption of the CORD project [1].

the Access Node (AN),in the concrete case of GPON this is
an Optical Line Termination (OLT), shown in Figure 1. For
each subscriber, a dedicated VNF instance, a virtual Subscriber
Gateway (vSG), provides traffic processing. CORD claims that
up to 1000 subscribers per server can be handled and a round-
trip latency through the POD below 1ms is possible. Although
this very promising approach achieves flexibility and vendor-
independence, the performance of the vSG docker containers
suffers from the software implementation of the data path,
compared to using a hardware implementation [17].

C. OpenFlow

Implementing complex network functions with commodity
OpenFlow hardware is not possible for numerous reasons.
First, OpenFlow [11] does not support the use PPPoE or
other special protocols [2]. Second, not all functionality that
is available in the OpenFlow protocol, is available in actual
OpenFlow switches.Thus, even a newer version of the proto-
col, e.g. supporting PPPoE, would be constraint by hardware
limitations.

D. P4 and Reconfigurable Hardware

The majority of currently available devices, including
OpenFlow-enabled switches, have fixed functionality that can
only be modified within narrow limits. Furthermore, the design
and production process for new ASICs is very time- and cost-
intensive. The flexibility of software for VNFs is branded by
limited bandwidth (PCIe, NIC, CPU) and its higher latency.
The P4 language [3], introduced in 2014, is designed to
describe the pipeline behavior of reconfigurable network de-
vices, and combines the benefits of flexible software and high-
performance hardware. This language has four main goals:
(1) reconfiguration of deployed hardware, (2) independence of
any network protocols, (3) independence of the specific target
hardware and (4) the ability to generate control plane APIs for
a given data plane program. P4 can be used to describe any
network protocol headers and processing algorithms which can
be expressed by a Direct Acyclic Graph (DAG). Thereby, new
protocols can be added to the target pipeline without buying
new hardware – only by updating the configuration.
Different vendors started introducing programmable hardware
for packet processing in the last years, for example Barefoot
Networks and Netronome. Furthermore, FPGAs can be used
to implement pipelines described in P4 or similar languages,
using high-level synthesis tools [18]. In this work, we show
how this language can be used to describe a high performance
BNG data plane.

E. Programmable Hardware for building VNFs

When implementing a high-performance VNF, offloading
to hardware accelerators should be considered, discussed



in [19] [20]. These approaches assume, as the traditional VNF
approach [21], a “off the shelf” server hardware which is
extended by hardware accelerators like FPGAs or GPUs.

III. REQUIREMENTS ANALYSIS FOR A CARRIER-GRADE
BNG

Implementing a fully-fledged P4-BNG requires detailed, in-
depth knowledge of all functional requirements for BNGs in a
DSL/GPON carrier environment. This section gives an insight
into these functional requirements, which we have obtained
by an requirements survey, based on [22], [23], [24] and own
requirements.

A. Network Access Lines and Nodes

Access lines are a fundamental part of the BNG model. They
are typically the limiting factor for the bandwidth that can be
offered to a customer. Therefore, a subscriber is effectively
sold a bundle of an access line and an Internet access service,
established and enforced by a PPPoE session.
An access node terminates the customers’ access line and
provides corresponding virtual wires that connect the access
lines to the BNG. Virtual wires are implemented using per-
access line VLAN tags unique to each access node.

B. Functional BNG Requirements

A BNG is a system composed of one or multiple devices,
which jointly implement residential and business access ser-
vices. Based on specific configuration parameters this sys-
tem assigns network resources including policy restrictions,
usually defined by contractual constraints. In general, the
Access service provisioning process is determined according
to four general phases: (1) User discovery and authentication,
(2) parameters assignment, (3) access control and features
enforcement and (4) connection monitoring [24], depicted in
Figure 2.

Starting from the top and moving down, the table illustrates
different functional services that the BNG system must pro-
vide, leading to several tasks of the BNG implementation:

1) PPPoE: For each access line a single PPPoE session
is used to authorize the subscriber and enforce restrictions
as described in the subscribers contract. The discovery and
session setup phase are conducted by the control plane, the
data planes task is to forward packets from and to the control
plane. After the session setup, the data plane handles PPPoE
encapsulation and decapsulation.

2) Number of Active Subscribers per BNG: Due to the
economies of scale, many subscribers should be treated by a
BNG. According to an Intel blog post [25], the current number
of subscribers per central office is around 5,000 but up to
35,000 are expected in the future.

3) IP Address Assignment to Subscribers and Reverse Path
Forwarding: IP addresses must be assigned to new subscribers
from the address pool by the control plane and installed in
the data plane. The data plane has to ensure that packets
to subscribers are forwarded using the correct PPPoE tunnel
information. Furthermore, packets sent from subscribers have

Discovery and
authentication

Parameters
Assignment

Access control and
features enforcement

Connection
monitoring

Customer
tunneling

Authentication Authorization

Layer 2 / Layer 3 packet forwarding

AccountingAccess control

Resource
allocation

Traffic rate
enforcement

Fig. 2: Access service creation phases of a BNG system.

to be filtered by the IP addresses assigned to the subscriber;
known as reverse path forwarding (RFC 3704).

4) QoS Control: QoS is in use to separate traffic of different
precedence and acuteness, e.g. normal Internet traffic, assured
forwarding for services like IPTV and expedited forwarding
for real-time services like Voice over IP (VoIP). As the
corresponding QoS header fields of incoming packets are not
trusted they should be overwritten by the BNG in order to
prevent abuse of traffic classes by identifying QoS-classes
based on L3-addresses for traffic from and to subscribers.

5) Rate Limiting and Prioritization: Rate limiting and
prioritization for upstream traffic should be performed by the
residential gateway and only upstream metering is required at
the BNG, preventing abuse. The downstream traffic is limited
and shaped at the BNG to ensure that the access network is
not overloaded and a constant bandwidth can be guaranteed,
based on customer contract and access network limitations.

6) Time to Live: The time to live (TTL) fields of forwarded
packets are reduced in the forwarding process. If the TTL
reaches zero the packet must be dropped and an ICMP
notification has to be forwarded to the sender. Since this
only happens very seldom, the processing can be done by the
control plane.

7) MTU and Fragmentation: Adding the PPPoE header
stack to traffic from the Internet to subscribers requires check-
ing the packet size for violations of the maximum transmission
unit (MTU). The residential gateway MTU is expected to be
1500 bytes for IP packets, the standard for Ethernet links.
Packets transmitted on this link include additional PPPoE and
VLAN headers as depicted in Figure 4. While the VLAN
header is part of the Ethernet header, the 8 bytes for the PPPoE
header decreases the MTU to 1492 bytes (RFC 4638). In case
of larger packets the BNG has two options: (1) fragment and
forward or (2) discard the packet and signal the event to the
sender by an ICMP message. In case of IPv6 or IPv4 “don’t
fragment” packets fragmentation is not possible and therefore
Path Maximum Transmission Unit discovery (PMTU) or TCP
MSS-determination is usually conducted (RFC 1191).

8) Multicast: IP Multicast is useful for IPTV products of
the ISP in order to reduce the total traffic by duplicating
packets at the BNG. Establishing the multicast streams from
upstream sources as well as processing IGMP messages from
subscribers is done by the control plane.



C. Fundamental functional tasks of a virtual BNG network
function

Based on these requirements the functional components are
listed in Table I. The functionalities and their descriptions
correspond directly with one of the access service creation
phases from Figure 2. The signs can be mapped later with the
design in Figure 4.

Function Sign Description

Customer tunneling Encapsulate customer traffic with
PPPoE

Authentication,
authorization and
accounting

IP-Address assignment, route
establishment and traffic counting

Traffic rate
enforcement

rate control, rate limiting and
traffic shaping

Traffic access control
Provide processing of packets
belonging to session authorized
subscribers.

Traffic separation Split control and data plane
traffic, f.e. TTL=0 packets

Quality of service Provide techniques that allow
prioritization of traffic

Service aggregation
Allow aggregation of the circuits
from one or more access link
platforms; virtual wire start point

Security assurance
Provide protection of the system
against misbehavior like address
spoofing, e.g. RPF

TABLE I: Functional components of BNG systems.

IV. CORD-BASED BNG ARCHITECTURE FOR
PROGRAMMABLE DATA PLANES

In this section we focus on the high-speed packet-header
processing part, the data plane; the control plane part is beyond
the scope of this paper, however, we discuss the interfaces to
that later. Our BNG design supports implementations for mul-
tiple P4 targets: (1) Barefoot Tofino, (2) Netronome SmartNIC,
(3) P4-NetFPGA and the (4) P4 behavioral model (bmv2). In
the following, we propose an integration of programmable data
planes into the CORD framework, fulfilling the functional re-
quirements of BNGs by disaggregation the BNG functionality:

A. Software Architecture Overview

One advantage over today’s BNGs is the split of the
functionality over three functional blocks, as depicted in
Figure 3: a programmable data plane, the data plane controller,
providing a control plane interface, and the BNG control plane
itself. Furthermore, an access technology specific Access Node
(AN), e.g. an OLT for GPON, is required. The functional
requirements for the data plane are implemented in the BNG
Header Processing component of the data plane, depicted
in light green. The heterogeneity of different P4 data plane
hardware implementations and their control plane interfaces
are hidden by the hardware-specific data plane controller
which provides a uniform interface towards the control plane.
The BNG data plane controller is running on the CPU of the
programmable data plane device. The BNG control plane is

BNG Header 
Processing 

Access Node 
and Queueing

BNG
Data Plane 
Controller

Access Node 
Data Plane 
Controller

OSSRadius Other 
Systems

Data Plane
ASIC/NPU

Data Plane
Control CPU

Virtual Network
Function (x86)

Telco Systems

CORD Datacenter BNG

BNG Control 
Plane

Fig. 3: CORD-Service Edge component overview.

operating as a x86-based VNF somewhere in the CORD data
center. Besides the programmable data plane the control plane
also controls the attached access nodes. External components,
such as the Radius server or the Operations Support System
(OSS), are attached on the northbound interface of the BNG
control plane.

B. BNG Pipeline Design

Based on the CORD data center architecture and on current
and future national (legal) requirements we propose a protocol
stack and design architecture as depicted in Figure 4 (see
Table I for the meaning of the symbols). The end-to-end
header processing works as follows: The residential gateway
(RG) sets up one PPPoE connection with the BNG. Different
services are identified by multiple VLAN tags. The access
line of a customer is expanded to the BNG by a VLAN-
based virtual wire. In addition, the packets are encapsulated
in two MPLS segment routing headers and a new outer
Ethernet header, as intended by the CORD fabric which
forwards the packets from the access node to the BNG. At
session setup, the PPPoE control messages arriving at the
BNG are forwarded to the control plane component. After
authenticating the subscriber, a PPPoE session is created and
all required flow rules, enabling packet forwarding from and
to the Internet, are installed in the BNG data plane. For
normal traffic, the BNG removes the access header stack as
well as the CORD MPLS headers, after applying reverse-
path filtering and ACLs, forwards the packet to the uplink
interface with two new MPLS headers. Downstream traffic is
processed accordingly in the opposite order. In today’s design
uplink rate limiting and traffic shaping is implemented in the
residential gateway. Therefore, policing at the access node
is sufficient for avoiding bandwidth violation. In contrast to
this, downstream traffic requires policing, traffic shaping and
prioritization at the central office in or close to the BNG. The
queueing requirements of ISPs in access networks, e.g. huge
buffers and hierarchical queues in large quantities, are not
met by today’s commodity packet switching ASICs. Therefore,
his functionality is implemented on the access node. Access
nodes typically include a non-programmable switching chip
which includes sufficient queueing capabilities for their own



CORD Data Center

.

Control
Plane

Uplink
GW

Core
NetworkAccess Node (AN), e.g. OLT

Residential Gateway (RG)

VLAN

IP

Payload

Service (7)

Payload

PPP Subscriber ID

MAC
src: RG
dst: SE

MAC

VLAN

Payload

src: RG
dst: SE

Service (7)

Payload

VLAN Subscriber ID

VLAN Service

VLAN Subscriber ID

MAC

Payload Payload

src:SE
dst:GW

SR:Node Uplink GW

SR:Service Subscr. Tun. SR:ServiceSubscr. Tun.

PPP Subscriber ID PPP Subscriber ID

MAC
src: AN
dst: SE MAC

src: AN
dst: SE

SR:Node SE

MAC
src: RG
dst: SE

IP src: RG
dst: Internet

IP
ToS
src: RG
dst: Internet

SR:Node SE

SR:ServiceStd Routing

ToS
src: RG
dst: Internet

... ... ......

Payload Payload

IP src: RG
dst: Internet

BNG Data Plane

Fig. 4: Design for implementing BNG functionality in a CORD site.

subscribers. As multiple of them are used in a CORD data
center, we assume the queueing functionality to be placed
there, as the resources are available anyway. We do not focus
on this further, but other solutions are possible as well.

V. P4-BASED PIPELINE IMPLEMENTATION

In this section, we describe our implemented P4 pipeline
of a BNG data plane based on the requirements obtained
in Section II and IV wich is OpenSource available as part
of the openCORD project on Github1. Figure 5 provides an
overview over the BNG pipeline modeled in P4. Note that
the pipeline of a BNG differs significantly between upstream
and downstream traffic processing. Thus, the depicted flow
diagram can be separated into an upstream (light blue) and
downstream (light-red) part.

The control traffic is forwarded to the control plane and
identified in the table t_cptap_outer_ethernet. Then,
a subsequent table t_usds decides based on the combination
of physical port and MPLS0 label, whether a packet comes
from a core or an access port and is destined to the Upstream
or the Downstream pipeline.

A. Upstream Pipeline

The Upstream pipeline (Figure 5 light-blue) first applies the
table t_line_map. This table maps each combination of a
physical port, MPLS0/MPLS1 label and a subscriber VLAN
ID to a unique line ID.

If the line is legitimate, the table t_pppoe_cpdp deter-
mines whether a packet is a PPPoE control plane packet or
a data plane packet for further processing; all unknown and
illegitimate packets are dropped for security reasons. Typical
packets destined to the controller, are PPPoE discovery, PPPoE
LCP protocol, or keep-alive packets. The decision, if a packet
is control traffic, can be done based on the inner L2 destination

1https://github.com/opencord/p4se

address, the service VLAN Ethertype, and the PPPoE Protocol
type. This table is preconfigured at startup, only requires a
few entries (< 16), and does not grow with the number of
subscribers or networks.

After authenticating the subscriber via PPP, the residential
gateway’s MAC address, the negotiated PPPoE session ID, the
service VLAN ID, and the line ID are used as input for the
table t_antispoof_mac, which write the subscriber ID to
the packet metadata. As a subscriber ID is unique per line, only
the combination of line ID and subscriber ID can identify a
subscriber.

After ensuring that only authorized subscribers can use the
data plane, IP source address spoofing is prevented. To this
end, we have to distinguish between IPv4 and IPv6 traffic.
For every authenticated subscriber, networks must be added to
the t_antispoof_ipv4 and t_antispoof_ipv6 tables
which ensures that the source address matches the allowed
address range. Packets without a valid source address are
dropped.

The last ingress table, t_us_routev4/6, decides to
which core interface and MPLS destination a packet should be
sent towards its destination address. Then, the original header
stack becomes replaced by the MPLS-SR/IP stack which is
used in the core network. Finally, an egress table applies the
correct outer destination and source MAC addresses, before
the packet is sent out.

B. Downstream Pipeline

Compared to the upstream, the downstream direction is
much simpler and requires fewer tables. If a packet enters
the BNG, we determine the authenticated subscriber (line ID
and subscriber ID) based on the destination IP address in
table t_ds_routev4/6 which is filled with all networks of
currently authenticated subscribers. If a match occurs, the cor-
responding action attributes contain all information, required
to construct the MPLS/VLAN/PPPoE header stack and the

https://github.com/opencord/p4se


0. What is the outer ethernet 
destination address and ethertype? 
(t_cptap_outer_ethernet)

MPLS,  
MAC==BNG

1. Upstream or Downstream?
  (t_usds)

CP
U2. Does a registered line
for the VLAN and MPLS fields in
the packet header exist  and 
set the line ID?  (t_line_map)

Upstream

U3. Does a PPPoE header exist and is
it auth/control traffic?  (t_pppoe_cpdp)

Control Plane Yes
Yes, user/IP
traffic

U4. Is the PPPoE session ID and RG MAC
address corresponding to an active
session on this line?  (t_antispoof_mac)

Yes

Yes
U5. Does the source IP address belong to a
network assigned  to this session? 
(t_antispoof_ipv4/v6)

U6. Based on the destination IP 
address, drop or route the traffic  to a
specific destination?  (t_us_routev4/v6)

Yes

Final actions: Set new MPLS
labels, source/destination MAC 
decrement TTL,  output packet.

Down-
stream

D2. Is the destination
IP belonging to any
subscriber network 
registered to a session? 
(t_ds_routev4)

Yes 

D3. Is it priority, best
effort traffic, or should
it be dropped? 
(t_ds_acl_qos_v4/v6)

Final actions: Set access header
stack, source/dest MAC, 

decrement TTL, set PPPoE 
payload length, output packet.

Fig. 5: Overview over the end-to-end packet pipeline.

output port. Furthermore, a per-subscriber meter is applied to
ensure not exceeding downstream bandwidths. Finally, in the
egress pipeline the PPPoE payload length is calculated based
on the IP header length field.

C. State Configuration Model

In the following, we suggest a higher-level control/data
plane interface for a BNG providing access to the func-
tionality of our implementation described before. We also
sketch the P4 tables required to make the given modifications.
The implementation of the control interface is provided in
p4 runtime mgr.py. Besides this generic implementation, a
specific implementation or each target, which is called by
this generic interface, is needed, e.g. for the P4-NetFPGA,
SmartNICs or the BMv2.

Just as one example, enableLabelPortAccess(port,
mpls0_label, ourOuterMAC, peerOuterMAC) sets
a combination of a physical port and outer MPLS label to be
considered for receiving upstream traffic from and transmitting
downstream traffic to the access network. Furthermore, the
function sets the expected outer MAC address of the BNG
and the communication partner’s expected outer MAC address
to the corresponding value and it adds entries to the tables
t_usds and table t_ds_srcmac. The insertion of the
table entries is performed by the corresponding BNG data
plane controller which has a unified interface to the control
plane.

Table addUpstreamRouteV4/V6(..) is another ex-
ample which sets a route for authenticated, reverse-path-
filtered subscriber traffic to next hops in the core network.
For a network prefix and a service ID, the next hop’s MAC
address and the MPLS segment routing labels can be defined.
It is possible to specify NULL for the upstream route to deny
traffic to a certain network, thus to implement an IP-based
ACL. It adds an entry to table t_us_routev4/v6 for the
downstream direction.
All other API methods, which are implemented and docu-
mented in the Open Source code as well, work very similar
to those.

VI. VERIFICATION AND EVALUATION

The functionality of the BNG can be divided into two parts:
(1) service creation and (2) packet forwarding from subscribers
to the Internet described in the next two subsections. The first
is executed only once per session and therefore its functional
correctness is more important than its performance. The latter
should be characterized by high throughout, low delay and
minimum packet loss. The sources of our P4-based BNG
implementation and the verification framework are available
online2.

A. Functional Verification

A BNG data plane implementation, targeted for productive
usage, must be verified for correct operation in various ways.
In particular, the following desired qualitative behavior has
been considered for testing:

• The control plane can send arbitrary packets on any port.
• On registered lines, subscriber authentication packets

(PPPoE) are forwarded to the control plane.
• Subscriber traffic is forwarded by the data plane to a core-

facing port if a PPPoE session is installed.
• Reverse path forwarding mechanisms are in effect. Pack-

ets with source addresses, subnets (Antispoof) or desti-
nation subnets (ACL) are dropped.

To validate this behavior, we implemented a Python based
framework based on the Scapy library for packet creation
and sending. The verification framework runs on a separate
computing node (Figure 6), sending packets and verifying the
behavior. Although the maximum achievable bandwidth is low
compared to high performance load generators, it is sufficient
for functional testing. In addition, the Packet Testing Frame-
work (PTF) of the P4 consortium turned out to be very helpful
and increases productivity. The tests are written in a target-
independent way by introducing two abstraction layers: First,
we propose a control plane abstraction layer for a simple
BNG network function, based on the interface suggested in
Section V-C, which translates control plane commands into

2https://github.com/opencord/p4se

https://github.com/opencord/p4se


Interfaces for 
packet testing

Control plane abstraction layer
BNG network function abstraction layer

addSubscriberLine (...), ...

Data plane abstraction layer
vendor-specific P4 state configuration layer

Testing Scenario (Simple Test, Churn Test, CP test, Antispoof test, ...)

Packet Generator/
Verifier

Device under test (DUT)
configured with the P4-programLogging

addTableRule (...), setMeter (...)

Thrift, C Headers, ...

MoonGen 1P4-based
Testtool MoonGen 2

Fig. 6: Data Plane Verification Framework with the abstraction
layer used for the evaluation. Either the “Packet Genera-
tor/Verifier” or “MoonGen + P4-Testtool” can be used.

the underlying P4 state configuration commands (e.g. add an
entry to a table). Example for control plane commands are:
adding subscriber circuits, activating/deactivating subscriber
sessions after authentication/de-authentication, and adding net-
work addresses, and subnets to the subscriber sessions at
runtime. Secondly, the framework consists of a P4 data plane
abstraction layer, which we had to introduce because the state
configuration interfaces for the P4 pipeline might be vendor-
specific. Unified control plane interfaces, e.g. P4-Runtime, will
simplify this in future. All performed functional tests have
shown the expected behavior, based on the capabilities of the
target (see VI-D) and thus BNG network functionality can be
implemented with P4 targets. Performance characteristics are
discussed in the following.

B. Performance Characteristics

Our generic P4 Implementation can be executed by the
software model bmv2, P4-NetFPGAs and Netronome P4-
SmartNICs. As the bmv2 is a software model for functional
prototyping a performance comparison to real hardware is
not useful. Thus, we compare the Agilio SmartNICs and the
P4-NetFPGA design with x86-based server which performs
simple packet forwarding (without PPPoE termination or any
other BNG functionality) in the Linux-kernel by docker-
containers. We assume that a docker based CORD [1] imple-
mentation (without kernel bypassing) of BNG functionality
will perform, in the best case, similar to the Linux kernel
in terms of throughput, packet loss and latency. In addition,
some estimations for the P4 programmable Barefoot Tofino
implementation, which as open source available as well, are
given.
The following metrics will be considered in the following:

• Reliability/packet loss of authenticated sessions
• The number of simultaneous supported sessions
• The total data plane performance (throughput, latency)
• The traffic is correctly limited based on meter settings
To investigate the performance, we used a testbed setup

as depicted in Figure 6. The device under test (DUT) is
connected with two ports (core and subscriber side) to a
P4-programmable switch (“P4-based Testtool”), stamping all
packets before and after the DUT with a timestamp inside
the packet in a 16 byte TCP option field of the payload.
Load generation is performed by two x86 servers with DPDK

capable NICs and the Moongen load generator [26], which
create packets from the access nodes (MoonGen 1) and the
core side (MoonGen 2), as depicted in Figure 4. By capturing
the packets, latencies can be extracted from the corresponding
header field. Due to link speed limitations of the NetFPGA
Sume, all tests are performed with 10Gbit/s link speed.
As additional 30 bytes (inner Ethernet, 2xVLAN, PPPoE) are
added to the packet in downstream direction, the downstream
traffic must be shaped before the DUT in the programmable
switch to 9.4Gbit/s in order to prevent packet loss. Upstream
traffic is not affected by that. The packet size before entering
the DUT is 532 bytes (including timestamp header).
Figure 7 shows the average latency of the different target
platforms depending on the throughput on a logarithmic scale
for 512 subscribers. The latency of the P4-NetFPGA is very
constant around 5µs whereas the P4-SmartNIC, which pro-
cesses the packets in many cores of the NPU, has a latency
of 10µs for low bandwidths and increases up to 22µs for
10Gbit/s which is still quite well. In case of Linux kernel
based packet forwarding the latency for 10Mbit/s is 53µs
on average and goes down to 33µs for 100Mbit/s. After
reaching a bandwidth of 1700Mbit/s the Linux kernel is not
able to handle more packets which leads to a rising packet
loss rate and an average latency of 2.2ms for 3000Mbit/s
and above. Increasing the number of subscribers to 4000
has no measurable impact. For Barefoot Tofino we assume
a latency below 1µs as long as no packets are queued due
to egress port oversubscription. The standard deviation of the
latency is given in Table II. The delay of a hardware pipeline,
as the P4-NetFPGA or Barefoot Tofino, is very constant. In
contrast to that, software approaches such as the Linux packet
forwarding has a higher variability in processing times because
of many influencing factors, but mainly the interrupt based
system architecture. NPUs, such as the P4-SmartNICs, are
in between. Table III lists the total latency (transceiver to
transceiver) dependent on the number of subscribers for a
constant downstream traffic rate of 9.4Gbit/s which is very

0 2000 4000 6000 8000 10000
Throughput [Mbit/s]

104

105

106

La
te

nc
y 

[n
s]

latency P4-NetFPGA
latency P4-SmartNIC
latency Linux
packetloss Linux

0%

20%

40%

60%

80%

100%

Pa
ck

et
lo

ss

Fig. 7: Latency for Linux-kernel, P4-NetFPGA and P4-
SmartNICs depending on throughput for downstream traffic
(512 subscriber). Packet loss of all P4 targets is constant 0.



Linux-Kernel Netronome-SmartNIC P4-NetFPGA
100 Mbit/s 13.2µs 1.7µs < 0.5µs

1000 Mbit/s 19.8µs 0.7µs < 0.5µs
90000 Mbit/s 157.9µs 1.6µs < 0.5µs

TABLE II: Latency Standard Deviation of different targets.

#Subscribers 32 128 512 2048 4000
P4-NetFPGA 5.08µs 5.08µs 5.08µs 5.08µs 5.08µs
P4-SmartNIC 22.12µs 22.13µs 22.15µs 22.03µs 22.06µs

TABLE III: Latency depending on number of subscribers for
9.4Gbit/s downstream traffic. packet size: 532 byte.

constant and does not depend on the number of subscribers.
The results for upstream traffic on SmartNICs and FPGA are
slightly higher (hundreds of ns).We assume that this is caused
by the more complex program (see Figure 5). As long as all
flow tables are realized in SRAM and not in external DRAM
we expect this behavior for all future programmable network
devices as well. Rate limiting can be performed by Netronome
SmartNICs and Barefoot Tofino, which have not shown any
violations of the configured limits.

C. Resource Utilization

Although the different target platforms have different hard-
ware architectures, we provide some values in order to point
out the bottlenecks. The P4-NetFPGA project is based on a
Xilinx Virtex-7 690T chip, introduced in 2010, which persists
mainly on many reconfigurable lookup tables (LUT) and
memory blocks (BRAM). The resource utilization of the P4-
NetFPGA with 4096 subscribers is given in Table IV and
shows the total consumption of the design and the P4 pipeline
only. This difference is caused by four 10G Ethernet IP-Cores,
a micro-processor and additional peripheral logic. The limiting
resource is BRAM, which is only available in selected areas of
the FPGA and thus a utilization of 100 % becomes very hard
due to timing constraints. However, newer FPGA generations
from Intel and Xilinx provide much more resources and by
that even more subscribers could be realized. The resource
utilization of our P4 service edge implementation for Barefoot
Tofino, given in Table V, shows that the number of subscribers
is not the only influencing factor of the resource consumption.
Depending on further requirements and parameters, the previ-
ously named goal of 35,000 subscribers per BNG [25] can be
achieved with additional optimization of the P4 program.

D. Language and Target Specific Limitations

Although P4 was designed as a target independent language
we observed that modifications of the P4 code are needed.
Netronome SmartNICs are able to execute P4 14 code, written
for software reference switch BMv2, without modifications; all
needed P4 functionality was supported. However, we observed

total P4-datapath available
LUT 202155 (47%) 163013 (38%) 433200

BRAM 1074.5 (73%) 952 (65%) 1470

TABLE IV: P4-NetFPGA resource utilization.

4096 Subscribers 8192 Subscribers
SRAM 12.81% 15.94%
TCAM 15.97% 15.97%

#Pipeline Stages 9 9

TABLE V: Resource utilization for Barefoot Tofino.

limitations, which can lead to dropped flow rules regardless
to the configured table size under special circumstances if the
number of installed flow rules becomes too high. Barefoot
Tofino has also shown a very good support of the language
and its features, however the P4 code requires minor mod-
ifications. The P4-NetFPGA project, based on the Xilinx
SDNet toolchain, supporting only P4 16 , does currently not
support P4 tables with longest prefix match or multiple match
inputs and parser value sets are not supported. As this is no
limitation of FPGAs itself, this might be supported with future
compiler releases. One benefit of P4 on FPGAs are external
functions which can be used to integrate logic not supported
by the P4-compiler, e.g. metering and traffic shaping.
QoS-aware flow classification can easily be done in P4.
Although describing scheduling behavior is currently target
dependent and outside of the scope of P4, the language
provides a mechanism (intrinsic metadata) allowing P4 pro-
grams to interface with any vendor-specific queueing and
scheduling component. We observed a similar situation for
multicast traffic, managed by vendor-specific logic which can
be controlled by intrinsic metadata as well.

VII. CONCLUSION

The P4 pipeline description language is a powerful instru-
ment that allows network designers to create highly functional
and versatile data plane programs. In this paper, we have pro-
posed a P4-based implementation of a BNG network function
data plane, which complies with all essential requirements of
a large operator of a telecommunications network. Together
with our implementation, we have also proposed a vendor-
and hardware-independent runtime configuration interface for
a BNG data plane, allowing control planes to be decoupled
from the latter. The latest advances in reconfigurable hardware
enable the execution of the P4 BNG implementation with
highest performance, demonstrated by our evaluation results.
Following the open-source idea, we have shared the code with
the networking community.

Next steps will be an in-depth integration and operational
testing – towards a flexible, programmable BNG network
function with highest performance in productive use. The BNG
use case would clearly benefit from any future enhancements
of P4 in the area of queueing and QoS behavior description.

ACKNOWLEDGEMENTS

This work has been supported by Deutsche Telekom through
the Dynamic Networks 6 project, and in parts by the German
Research Foundation (DFG) as part of the project C2 within
the Collaborative Research Center (CRC) 1053 – MAKI.
Furthermore, we thank our colleagues and reviewers for their
valuable input and feedback.



REFERENCES

[1] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das,
J. Hart, G. Palukar, and W. Snow, “Central office re-architected as a
data center,” IEEE Communications Magazine, vol. 54, no. 10, pp. 96–
101, October 2016.

[2] L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, and D. Hausheer,
“Bare-metal switches and their customization and usability in a carrier-
grade environment,” in Conference on Local Computer Networks (LCN).
IEEE, Oct 2017, pp. 649–657.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[4] T. Anschutz, “Migration to Ethernet-based Broadband Aggregation,”
Broadband Forum, Tech. Rep. 101 Issue 2, July 2011.

[5] A. Cui and Y. Hertoghs, “Multi-service Broadband Network Functional
Modules and Architecture,” Broadband Forum, Tech. Rep. 145 Issue 1,
November 2012, https://www.broadband-forum.org/technical/download/
TR-145.pdf. [Online]. Available: https://www.broadband-forum.org/
technical/download/TR-145.pdf

[6] C. Alter, Y. Hertoghs, H. Li, and J. Rius i Riu, “Multi-service Broadband
Network Architecture and Nodal Requirements,” Broadband Forum,
Tech. Rep. 178 Issue 1, September 2014, https://www.broadband-forum.
org/technical/download/TR-178.pdf. [Online]. Available: https://www.
broadband-forum.org/technical/download/TR-178.pdf

[7] fangwei hu, R. Hua, and S. Hu, “Yang data model for
configuration interface of control-plane and user- plane separation
bng,” Working Draft, IETF Secretariat, Internet-Draft draft-hu-
rtgwg-cu-separation-yang-model-01, January 2018, http://www.ietf.
org/internet-drafts/draft-hu-rtgwg-cu-separation-yang-model-01.txt.
[Online]. Available: http://www.ietf.org/internet-drafts/
draft-hu-rtgwg-cu-separation-yang-model-01.txt

[8] S. Ooghe, N. Voigt, M. Platnic, T. Haag, and S. Wadhwa, “Framework
and requirements for an access node control mechanism in broadband
multi-service networks,” Internet Requests for Comments, RFC Editor,
RFC 5851, May 2010.

[9] E. Haleplidis, K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer,
and O. Koufopavlou, “Software-defined networking (sdn): Layers and
architecture terminology,” Tech. Rep., 2015.

[10] W. John, A. Devlic, Z. Ding, D. Jocha, A. Kern, M. Kind, A. Köpsel,
V. Nordell, S. Sharma, P. Sköldström et al., “Split architecture for large
scale wide area networks,” arXiv preprint arXiv:1402.2228, 2014.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[12] M. Chiosi, D. Clarke, P. Willis, A. Reid, and et al., “Network functions
virtualisation: An introduction, benefits, enablers, challenges & call
for actions,” SDN and OpenFlow World Congress, 2012. [Online].
Available: https://portal.etsi.org/nfv/nfv white paper.pdf

[13] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[14] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, 2012.

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“Onos: Towards an open, distributed sdn os,” in Proceedings of
the Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. New York, NY, USA: ACM, 2014, pp. 1–6. [Online].
Available: http://doi.acm.org/10.1145/2620728.2620744

[16] M. Timmers, M. Guenach, C. Nuzman, and J. Maes, “G. fast: evolving
the copper access network,” IEEE Communications Magazine, vol. 51,
no. 8, pp. 74–79, 2013.

[17] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and
G. Carle, “Throughput and latency of virtual switching with
open vswitch: A quantitative analysis,” J. Netw. Syst. Manage.,
vol. 26, no. 2, pp. 314–338, Apr. 2018. [Online]. Available:
https://doi.org/10.1007/s10922-017-9417-0

[18] P. Benáček, V. Puš, H. Kubátová, and T. Čejka, “P4-to-vhdl:
Automatic generation of high-speed input and output network

blocks,” Microprocessors and Microsystems, vol. 56, pp. 22 – 33,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0141933117304787

[19] L. Nobach and D. Hausheer, “Open, elastic provisioning of hardware
acceleration in nfv environments,” in Networked Systems (NetSys), 2015
International Conference and Workshops on. IEEE, 2015, pp. 1–5.

[20] Z. Bronstein, E. Roch, J. Xia, and A. Molkho, “Uniform handling and
abstraction of nfv hardware accelerators,” IEEE Network, vol. 29, no. 3,
pp. 22–29, 2015.

[21] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[22] I. Agilent Technologies, “Understanding dslam and bras access devices
(white paper),” 2006.

[23] R. Bifulco, T. Dietz, F. Huici, M. Ahmed, J. Martins, S. Niccolini, and
H.-J. Kolbe, “Rethinking access networks with high performance virtual
software brases,” in Software Defined Networks (EWSDN), 2013 Second
European Workshop on. IEEE, 2013, pp. 7–12.

[24] T. S. Consortium, “Split architecture for large scale wide area networks
- deliverable d3.3,” 2012, accessed: 2017-07-03. [Online]. Available:
http://www.fp7-sparc.eu/project/deliverables/

[25] D. Rodriguez, “Next generation central offices transform network edge
with datacenter economics, cloud flexibility,” 2018.

[26] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings
of the 2015 Internet Measurement Conference, ser. IMC ’15. New
York, NY, USA: ACM, 2015, pp. 275–287. [Online]. Available:
http://doi.acm.org/10.1145/2815675.2815692

http://doi.acm.org/10.1145/2656877.2656890
https://www.broadband-forum.org/technical/download/TR-145.pdf
https://www.broadband-forum.org/technical/download/TR-145.pdf
https://www.broadband-forum.org/technical/download/TR-145.pdf
https://www.broadband-forum.org/technical/download/TR-145.pdf
https://www.broadband-forum.org/technical/download/TR-178.pdf
https://www.broadband-forum.org/technical/download/TR-178.pdf
https://www.broadband-forum.org/technical/download/TR-178.pdf
https://www.broadband-forum.org/technical/download/TR-178.pdf
http://www.ietf.org/internet-drafts/draft-hu-rtgwg-cu-separation-yang-model-01.txt
http://www.ietf.org/internet-drafts/draft-hu-rtgwg-cu-separation-yang-model-01.txt
http://www.ietf.org/internet-drafts/draft-hu-rtgwg-cu-separation-yang-model-01.txt
http://www.ietf.org/internet-drafts/draft-hu-rtgwg-cu-separation-yang-model-01.txt
https://portal.etsi.org/nfv/nfv_white_paper.pdf
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://doi.acm.org/10.1145/2620728.2620744
https://doi.org/10.1007/s10922-017-9417-0
http://www.sciencedirect.com/science/article/pii/S0141933117304787
http://www.sciencedirect.com/science/article/pii/S0141933117304787
http://www.fp7-sparc.eu/project/deliverables/
http://doi.acm.org/10.1145/2815675.2815692

	Introduction
	Background and Related Work
	Broadband Network Gateways
	SDN for telecommunication networks
	OpenFlow
	P4 and Reconfigurable Hardware
	Programmable Hardware for building VNFs

	Requirements Analysis for a Carrier-Grade BNG
	Network Access Lines and Nodes
	Functional BNG Requirements
	PPPoE
	Number of Active Subscribers per BNG
	IP Address Assignment to Subscribers and Reverse Path Forwarding
	QoS Control
	Rate Limiting and Prioritization
	Time to Live
	MTU and Fragmentation
	Multicast

	Fundamental functional tasks of a virtual BNG network function

	CORD-based BNG Architecture for Programmable Data Planes
	Software Architecture Overview
	BNG Pipeline Design

	P4-based Pipeline Implementation
	Upstream Pipeline
	Downstream Pipeline
	State Configuration Model

	Verification and Evaluation
	Functional Verification
	Performance Characteristics
	Resource Utilization
	Language and Target Specific Limitations

	Conclusion
	References



