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Abstract. While the performance of peer-to-peer (p2p) systems largely
depend on the cooperation of the member nodes, there is an inherent
conflict between the individuals’ self interest and the communal social
welfare. In this regard, many interesting parallels between p2p systems
and cooperation in human socicties can be drawn. On the one hand,
human socictics arc organized around a certain level of altruistic behav-
ior. Whilst, on the other hand, individuals tend to overuse public goods,
if they are free to do so. This paper proposes a new incentive scheme
that extracts and modifies sociological incentive patterns, based on the
Tragedy of Commons analogy, to work efficiently in a p2p environment.
It is shown through simulations that this scheme encourages honest peers
whilst successfully blocking non-contributors.

1 Introduction

It has long been understood that the performance of peer-to-peer (p2p) systems
rely on the cooperation of the member nodes. This realization creates a social
dilemma for the users of such systems, as the necessity to altruistically provide
resources goes against the selfish desire to limit one’s own personal sacrifice. Con-
sequently, users’ self interests results in the free-riding problem [1,2] by trying
to exploit others while not contributing themselves. Hence, cooperation amongst
peers becomes sparse unless an incentive scheme can encourage participants to
contribute their resources.

Considering the tensions between individuality and communal social welfare
in human societies, many intercsting parallels to p2p systems can be drawn. On
the one hand, individuals tend to overuse public goods resulting in the Tragedy
of Commons [3]. On the other side, human societics are organized around coop-
crative interactions and a certain level of altruism. Rich analysis in evolutionary
sociology has tried to answer this issue and has largely concluded that indirect
reciprocity explains the evolution of cooperation among unrelated individuals [4,
5]. In an extensive study, [6] analyzed how the concept of reputation is used in
human socicties to encourage coopcration. As an outcome, important incentive
patterns were identified that are mandatory for the evolution of cooperation.

Inspired by these findings and the similarities observed between p2p systems
and human societies, wc propose a new reputation-based incentive scheme that
aims to encourage honest users to participate in the system whilst successfully
blocking free-riders. Our major contribution can be summarized as follows: we



present a new point in the design space of reputation systems by using cxtremely
limited, non-local reputation information, amounting to a single bit per partic-
ipant. By adopting insights of sociologists, we show that the classification of
nodes as either good or bad offers high potential to encourage cooperation while
still encoding as much information as necessary to prevent rational/malicious
attacks. We further introduce a similarity-based approach to filter out false rec-
ommendations submitted by dishonest nodes.

The paper is organized as followed: in Section 2 an overview of related work
is provided. Section 3 describes the design of our system, highlighting both the
representation of reputations and how they are utilized. Section 4 then outlines
a number of practical deployment issucs and how we resolve them. Subsequently,
Section 4 evaluales, using game theoretic modeling, the eflectiveness of our ap-
proach whilst, Section 5 concludes the paper, outlining futurc work in the field.

2 Background

Any participant in a p2p system is both a service provider and a service con-
sumer. A transaction is the process in which a provider voluntarily grants a ser-
vice to a consumer. Accordingly, the consumer benefits from this service whilst
the provider pays the cost (e.g. upload bandwidth).

In general, a well-designed incentive scheme has to meet several challenges
in order to be robust, notably:

— Different user types: Users can be classified into two categories: obedient and
dishonest. The former are consistent with the system specifications and thus
contribute to the system whereas the latter try to maximize their benefit at
the expense of others.

— Asymmetry of interests: For example, peer A is interested in receiving a
service from peer B whilst not being able to offer a valuable service in return.

— Newcomers: In general, it is impossible to distinguish dishonest nodes from
so called legitimate newcomers. Thus, a newcomer policy is mandatory.

— Untraceable actions: In decentralized systems, it is impossible to monitor all
occurred transactions. Thus, decentralized mechanisms are required to prove
that two peers were involved in a distinct transaction.

2.1 Prior Incentive Schemes for Cooperation in P2P

In the area of p2p, various incentive schemes have been proposed to encourage
users to contribute their own resources. Some of them are based on monetary
payment schemes in which peers have to pay for the resources they consume
[7-9]. However, many of these algorithms require a centralized infrastructure to
enable micro payments and accounting.

An alternative is reciprocity-based schemes in which peers use historical in-
formation of past behavior of other peers to decide whether they want to share
resources or not. These schemes can be further separated into direct and indi-
rect reciprocity. In direct reciprocity, user offer resources only to those who have
helped them before based on local observations, e.g., BitTorrent [10]. However,



it assumes frequent repeated mectings between the same peers which might not
be the case in large, diversc p2p cnvironments.

In contrast, indirect reciprocity [11,12] allows peers to claim back their co-
operativeness from any peer as cach participant is associated with a reputation.
Users earn a reputation based on the fcedback from others they have inter-
acted with; this, in turn, is used to differentiate between contributors and free-
riders. These schemes, accordingly, rely on local obscrvations, and additionally
on sccond-hand information distributed among all nodes in the system [13, 14].
However, this share of own experiences enables malicious nodes to disseminate
false information about cooperative participants. To tackle this problem, a sound
solution is to determine transitive chains of trust among known and reputable
nodes [15, 16]. On the other side, the share of information additionally introduces
the collusion problem in which peers artificially increase each other’s reputation.
A countermeasure against this threat is to apply the computational expensive
min-cut max-flow theorem, as proposed by [17,18].

Different from all studies above, our system design neither relies on transitive
trust nor on the often applied min-cut max-flow theorem.

2.2 The Tragedy of Commons Analogy

Many social scientists, as well as psychologists, have tried to explain cooperation
in human societies. This problem is also known as the Tragedy of Commons.
From the societies’ point of view, the community does best if all individuals
mutually cooperate. However, it can be observed that individuals or groups will
exploit the generosity of others, if they are free to do so.

By means of game theory, sociologists try to find evolutionary stable be-
havioral strategics (ESS) to explain the question of cooperation. In particular,
[19] found indirect reciprocity to enable cooperative ESSs in human societies.
Further, [6] identified certain key properties of successful reputation schemes to
encourage cooperation among unrelated individuals. In particular, these incen-
tive patterns have been proven to be highly robust and stable against different
patterns of defection, even in the presence of observational errors concerning
individuals’ reputation.

In spite of the fact that our work is inspired by these observations, we are
aware that the aforementioned studies are carried out in environments that differ
from p2p systems in the following points: (1) permanent identities (players do not
leave the system), and (%) traceable actions (both defection and cooperation).
However, both conditions are challenged in p2p systems, and the transfer of
these insights to p2p systems must be deliberate.

3 Reputation-based Incentive Scheme

The fundamental aspects of reputation-bascd p2p systems can mainly be divided
into: (i) a rcputation-based incentive scheme and (4¢) a distributed reputation
infrastructure. The former is of major importance as it describes how reputation
is computed within thc system. The underlying mechanisms are therefore crucial
for the scheme’s overall performance and must be carefully designed. The latter,
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Fig. 1. The 8 reputation transitions

on the other hand, is responsible for implementing (¢) in a fully distributed
manner; it maintains and stores reputation values, and allows peers to access
the reputation of the others.

3.1 Representation of Reputation

In our work, reputation values are represented by a globally binary digit that
can be either 0 or 1, indicating a good (G) and bad standing (B) respectively.
Let N be the population of peers in our system. Then, the global reputation
score r of an individual is given by 7 : n — {0,1}, n € N.

3.2 Assignment of Values

Reputation values are dynamically assigned to peers based on their last action
when performing the role of service provider. In more detail, if a node takes an
action A, cither to cooperate (C) or to deny cooperation (D), when there is the
option of providing a service, our system assesses the goodness of this action by
using reputation transitions. In general, each reputation transition m depends
on three factors:

— the current reputation value of the service provider rp,

— the reputation score of the service consumer r,

— the taken action A (either C or D) by the service provider.

Thus, each transition is well-defined by a triple m which is mapped to cither

0 or 1 as defined in the following:

m(rp, Te, A) — {0,1} (1)

Fig. 1 shows a statc diagram of this transition process, highlighting the 8
possible steps between states leading a service provider to cither a good or a
bad standing®. The design of these transitions is inspired by the observations
made in [6]. As stated before, this extensive study identified important incentive
patterns that are mandatory to encourage cooperation in human societies. The
so called "keys to success” have been defined in the following properties: being
nice (maintenance of cooperation among contributors), reteliatory (identifica-
tion of dishonesty, punishient and justification of punishment), forgiving, and
apologetic. All of them arc incorporated in the depicted transitions:

3 Depending on the application, a good standing is bounded on predefined time inter-
val, in order to encourage nodes to continuously take the role of a provider. However,
we will not pursue this issue any further in this paper.



(1) Maintenance of cooperation: m(1,1,C)=Good. If two nodes in a good
standing cooperate, the donor should maintain its good standing.

(2) Identification of Dishonesty: m(0,1,D)=Bad, (1,1,D)=Bad. Nodes not
providing services have to fall into bad standing, irrespective of their reputation.

(3) Apology and Forgiveness: m(0,1,C)=Good. Once (mistakenly) fallen into
bad standing, there should be an opportunity to allow immediate forgivencss to
regain a good standing again.

(4) Punishment and Justification of Punishment: m(1,0,D)=Good. When a
dishonest node is detected and identified, other nodes contributing to the system
should refuse to provide services to it, and should not be punished for this.

The remaining three transitions are degrees of freedom, which we fixed run-
ning several expcriments measuring the impact of each combination.

3.3 Behavior of Nodes

We define the way a peer uses the reputation scores as its behavioral strategy
denoted by & In more detail, each peer uses a decision function f to decide how
to behave towards requesting service consumers. f takes as input parameters
the reputation score of both itself and the consumer. There are four possible
situations in which a peer ¢ would want to assess another peer j with respect to
the reputation scores (fi; == f(i,7)):

— foo: both peers are in bad standing

— fo1: pecr i is in bad standing whereas peer j is in good standing

- fio: pecr ¢ is in good standing whereas peer j is in bad standing

— f11: both peers are in good standing.
Thus, § consist of four components (=(foo, fo1, fi0, f11)) whilst each of them
describes whether to cooperate (C) or to deny cooperation (D).

f:{0,1}2—>{C',D} (2)

For example, altruistic peers would follow bchavioral strategy S, = (C, C,
C, C) whercas free-riders arc described by §tre. = (D, D, D, D). The built-
in incentive in our scheme is based on the assumption that cooperative peers
will favor cach other. Thus, peers are encouraged to take the role of a service
provider in order to gain a good standing. In turn, this greatly enhances the
probability of obtaining services provided by others. As shown later on, peers
using the discriminator strategy 3y = (D, C, D, C) can successfully block
non-contributors.

3.4 Newcomers

Up to now, we have assumed that nodes alrcady have a standing within the sys-
tem. Newcomers, however, do not have a transaction history, and arc therefore
marked as strangers. In order generate a good standing, they have initially to co-
opcrate with another stranger or a peer already enjoying a good standing. When
requesting services, discriminators will deny to provide services. Accordingly, our
system assigns no profit to newcomers.



4 Reputation Infrastructure

Here, we address the practical issues of our approach. In particular, it is specified
which nodes are authorized to update reputation values, how reputation values
can be globally accessed, and how peers are able to protect themsclves against
false reports. We assume that users participating in the system are characterized
by anonymous identities. Each node owns a public/private key pair suitable for
establishing signed messages between nodes. In addition, each participant in
the system is identified by a random unique overlay identifier (OId). To ensure
that node Ids are chosen randomly from the identifier space, we use trusted
certification authorities (CA). These CA’s bind a random node id to the node’s
public key, a process conventionally done offline.

4.1 Replica Set

Due to the lack of a centralized authority, the task to rcliably store and update
global reputation values is none-trivial and challenging. The pecr’s reputation
must not be stored locally, where it can become subject to manipulation. Storage
on a randomly chosen peer similarly does not guarantce that this one is honest.
Thus, we assign this task to multiple nodes in the system.

Each peer ¢ is assigned a replica set R;, consisting of a small number of &
random peers. To this cnd, we interconnect all participants in the system using a
distributed hash table, c.g. Chord [20]. The members of R; are then determined
by applying a set of k£ one-way secure hash-functions hg(2), by (%), .., hx—~1(2) to
i’s overlay id. The hashes derived from these functions constitute the overlay
identifiers of the replica set nodes. This ensures that peer 7 cannot select the
members of its own replica set R;.

If a peer wants to request the reputation of another one, it individually con-
tacts the responsible replica set members. The provided information is legitimate
if, and only if, more than half of the reports are identical. This implies that the
majority of the replica set members must be obedient.

To quantify this, we define a replica set as reliable if more than half of the
nodes are obedient. Let 0 and m be the amount of obedient and malicious pcers in
the system, respectively. The probability to chose an obedient peer for a replica
set is —2—. From this, the probability of obtaining at least [£] obedient peers

o+m’

. . I k k n k—n
in a replica set is given by Z":fﬂ ) (Dfm) (1 - o_fm) .

For example, the probability of obtaining a reliable replica set in a population
consisting of 100.000 nodes, of which m = 5.000 nodes arc malicious, is 99,88%
for k = 5. It can easily be verified that k£ must only be slightly adapted with
continuing increase of m.

4.2 'Transaction Process

Consumers must submit experiences about the outcomes of transactions (whether
a distinct provider p has delivered a service or not) to the provider’s replica set
R,. As stated above, this replica sct is then authorized to update the reputation
value of the provider based on its decision (cf. Sect. 3.2). Since R, constitutes



a third party not directly involved in the transaction process, a mechanism is
nceded that proves that two distinet peers have interacted with cach other. Each
transaction therefore consists of five sequential steps:

Step 1. The consumer c¢ creates a service request message containing the
following fields < r.,pKey., Old.,OId;, >, where 7. is the consumers current
reputation value; pKey, is its public key; OId, is its overlay id; and OId, is the
overlay id of the pecr that has lastly rated ¢ in the role of provider. Aftecrwards,
¢ signs the request with its private key and sends it to the chosen provider.

Step 2. Upon receipt, the provider contacts the consumer’s replica set R,
to verify the corrcctness of the information contained in the message.

Step 8. If correct, the provider signs the message and sends it back to the
consumer. Thereafter, the service delivery takes place.

Step 4. After the transaction phase is completed, the consumer rates the
cooperativeness of the provider (1= service received or f=service not received)
and submits its decision to the provider’s replica set R,.

Step 5a. Each replica set member R,(x), Vz € [hg..ht-1], first checks
whether the service request has been actually signed by provider p. Afterwards,
it stores the OId of ¢ as the one of the provider p’s last voter, and updates p’s
reputation value by applying the appropriate reputation transitions.

Step 5b. Additionally, each member of R, is mapped in the z-th position
to its respective counterpart in R, forming k-pairs. For each pair, the provider’s
replica set member contacts its counterpart to inform it about the rating ¢ has
given on p; this is matter of consequence, as explained in the following.

4.3 Similarity-based Trustworthiness

To reflect the personal experience a consumer has had with distinct providers,
cach peer 4 in the system owns a global vector &;, where #; = (£, s tyny) for
all n € N. Each component of £; contains in the n-th position the arithmetic
mean of all ratings peer 7 has submitted on a distinct peer n. Hence, this value
describes the subjective trust peer i places in peer n. Since ecach rating can either
be 0 or 1, the component values will also be between 0 and 1. According to Step
5b, these trust vectors are stored and maintained by the peer’s replica set and
are publicly available.
The purpose of thesc vectors is to definc a notion of trust Peer A places in
the recommendations of Peer B. To this end, we introduce a similarity function
L. 1 |V]
sim(fa,ip) = WZI — |ta(z:) —ts(z:)| € [0,1) 3)
i=1
which in its basic functionality component-wisc compares whether both peers
have rated the same provider. If so, the deviation between both ratings is calcu-
lated and summed up to an overlay similarity S. We define the recomnendations
of Pecr B as trustworthy for Peer A, if S exceeds a certain similarity threshold
t. In our system, providers apply this function on trust vectors of requesting
consumers, in order to determinc whether they have maliciously rated obedi-
ent providers as bad. Also, it is applied on the last voter of a distinct peer to
determine the trustworthiness of his recommendations.



5 Evaluation

In the following, the performance of our scheme is examined against threats
of selfish users. Our main goal is to explore which behavioral strategy is the
dominant onc among a sct of chosen strategics. Further, we will examine the
effectiveness of our reputation infrastructure against malicious attacks. For that
reason, we adopt a game theorctical approach as explained in the following.

5.1 Generalized Prisoner’s Dilemma

To model a p2p system by means of game theory, we usc the Generalized Pris-
oner’s Dilemma (GPD) that includes two players who interact once in a one-shot
game, as described in [17]. Unlike the original Prisoner’s Dilemma GPD includes
the social dilemma and the asymmetry of interests. In particular, cach player i
follows a behaviorel strategy by having the choice to cooperate(C;) or defect(D;)
its opponent. Depending on their actions, cach payer receives onc of the follow-
ing payoffs: R; (the reward for mutual coopcration), S; (the sucker’s payoff),
T; (the temptation to defect), and P; (the punishment for mutual defection). In
our context one of the peers acts as provider (P) and the other as consumer (C).
The payofl matrix for both consumer and provider is shown in Figure 2(a). To
create a social dilemma, the payoffs must fulfill the following criteria:

~ Mutual cooperation among peers yields a higher payoff than mutual defec-
tion: Re + Rp > Pc + Pp

— Mutual cooperation yields a higher payoff than alternating cooperation-
denial cycles: Re + Rp > Sc +Tp and Rc + Rp > Sp + T¢

— In a one shot interaction, defcction dominates cooperation as the costs for
the service provisioning can be saved: Tp > Rp and Pp > Sp

Let 14 p denote the achieved payoff of a behavioral strategy A when interacting
with behavioral strategy B.

Definition 1. Strategy A is said to be dominant if for all B holds uaa > upja
and UA|B > up|B-

Under this definition, defection would be the dominant strategy for the
provider in the one-shot GPD game. Hence, cooperation will never take place
and the consumer will only have the choice between the payoffs S¢ and Pe.

5.2 Simulations

To assess the performance of our scheme, we have implemented a simulator
that corresponds to the above stated game theoretical model. We assume time
to be divided into slots, and each slot lasts long enough to allow each peer to
provide cxactly one service to a requesting consumer. The evaluative scenario
we utilize is a file-share application. The assignment of files and queries to peers
follows a Zipf distribution (& = 0.9). Each file is subdivided into equally sized
file segments (chunks) constituting services peers are sharing in the network.
Participants fall into two catcgories: obedient and dishonest. Obedient nodes



Payoff-Table Service Provider Payoff-Table Service Provider
General Form Cooperate Defect Simulations Provide Deny
Service Cooperate Rc/Rp Sc/Tp Service Request 2/-1 0/0
Consumer Defect T /Sy P/ Pp Conenmar | Don't Request 0/0 0/0
(a) Asymmetric payoff matrix (b) Payoff matrix used in simulations
Fig. 2.

follow the discriminator strategy §y;s., and their similarity threshold is set to
t = 0.7. The strategy of dishonest nodes will be varied as described later on.

In each slot, cach peer has the opportunity to simultancously act as service
provider and consumer. Based on the service a consumer is interested in, it
selects the most desired provider and sends a request. Each provider, on the
other hand, favours the most appropriate consumer from its upload queue that
enjoys a good standing and passes the similarity checks mentioned in Section
4.3. The behavioral strategy of a provider then defines the action (either C or
D) she will take by considering the reputation of both herself and the consumer.
Depending on how the provider acts, both the consumer and the provider will
receive a payofl from the matrix depicted in Fig. 2(b). This matrix satisfies the
inequalities stated in the previous scction. It is assumed that providing a service
incurs the same costs ¢ (—1) to all providers, and consumers receive the same
benefit b (+2), respectively. Finally, the reputation and trust vectors are updated
after cach time slot, and it is assumed that pcers can leave or join the system
with a probability of 5%.

5.3 Performance under Rational Attacks

In our first experiments, we assume that users do not break down the system
specifications (e.g. submit false reports), but try to exploit the generosity of obe-
dient nodes by means of two types of selfish attacks. We consider the first type as
trastors since these nodes acquire a good standing before turning into defectors.
The sccond type is represented by free-riders who never contribute themselves.
Accordingly, we equally divided the population in three groups: obedient peers,
free-riders §free = (D, D, D, D), and traitors 5ireix = (D, C, D, D).

Fig. 3(a) shows the achieved mean payoff of cach strategy per time slot. The
highest level of cooperation would be 1 indicating that all peers following the
respective strategy are contributing to the system and everyone is able to receive
a service. It can be scen that the discriminator strategy applied by obedient
nodes achieves the highest payoff over time. More precisely, our simulations
revealed that this strategy obtains a mean average payoff of 0.98, indicating
that nearly all obedicnt nodes continuously obtain services. In contrast, free-
riders are successfully blocked never receiving a service after the first time slot.
Traitors acquire a mean average payoff of 0.05. In particular, only 3%-6% of these
nodes are able to receive a service. This stems from the fact that traitors deny
to provide services after they have gencrated a positive standing. Accordingly,
they will be subsequently ignored by obedient pcers when acting in the role of
consumer in the next slot.
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Fig. 3. Simulation results for (a) rational attacks, (b-d) bad voters, and (e-f) colluders.

In conclusion, both types of attackers cannot gain ground in the system
as they achieve payofls close to zero. Obedient nodes, applying the dominant
strategy Suisc, self-organize themselves into a robust and cooperative group in
which non-contributors are efficiently detected and excluded.

5.4 [Effectiveness of Reputation Infrastructure

In the second set of simulations, we study the effectiveness of our reputation
infrastructure against malicious nodes falling into two categories: (z) bad voters
and (%) colluders. Bad voters follow the discriminator strategy Syuisc, but always
ratc cooperative providers as bad. Accordingly, they arc mainly interested in
lowering the providers’ recputation to encourage other participants to cxclusively
use their own services. Colluders, instead, form a malicious collective and provide
services to obedient nodes only with a probability of 20%. Moreover, they boost
the reputation values of all peers in the collective by submitting fake transactions.
To study these attacks, we assume that 30% of the population consist of malicious
nodes from either of both presented categories.



The results of the bad wvoter cxperiments are as follows. Fig. 3(b) depicts
the mean average payoff achieved by obedient nodes and bad voters. It can
be observed that obedient peers achieve the highest mean average payoff over
time amounting to 0.97 whilst that of the bad voters is closc to zcro. Fig. 3(c)
mcasures the serviee load share of both strategy types. This metric determines
in each time slot the fraction of pecrs that provided and were able to reccive a
service, subject to a distinct user group. It can be seen that nearly all obedient
peers are continuously able to receive a service whereas only 5-7% of the bad
voters arc supplied with data. To cxplain this, Fig.3(d) plots the mean ratio
of successful requests experienced by bad voters while varying the similarity
thresholds applied by obedient nodes. That is, this ratio measurcs how often a
bad voter was unrccognized when requesting a service by an obedient provider,
related to all send requests. For t = 0.7 on average 97% of all request carried out
by bad voters are detected when applying the similarity function. Accordingly,
bad voters are almost never served by obedient nodes.

The experiments with colluders strengthens our findings that the similarity-
based comparison of global trust vectors very efficiently detects nodes trying to
compromise the system. Fig. 3(e) plols the achieved payofls of both colluders
and obedient peers. As in our previous experiments, the discriminator strategy
clearly dominates the attacker stratcgy. Colluders arc quickly detected as the
trust vectors of both user groups highly differ from each other. In fact, the
determined overall similarity between the trust vectors of both users groups
is on average 0.23. Accordingly, obedient peers do not trust ratings submitted
by colluding peers but favour honest peers. To confirm this, Fig. 3(f) plots the
total amount of consumers that have been rejected by obedient providers after 50
transactions. At this point of time, nearly all malicious consumers are rcjected by
obedient providers, irrespective of the size of the malicious collective. Instead, the
number of rejects to obedient consumers is nearly zero in all simulated scenarios.

We conclude that the usage of the similarity function enables the system to
efficiently filter out spurious reports fromn malicious nodes. Moreover, bad voters
arc immediately punished when submitting false reports on obedient nodes; since
their global trust vectors very quickly deviate to the one of peers conforming to
system’s norm, they arc immediately rejected by these nodes.

6 Conclusion

This paper has investigated the correlations between p2p environments and coop-
eration in human society. Through this, a new reputation-based incentive scheme
has been designed, utilizing extremely limited binary reputation represcntations.
Alongside this, we have also proposed a fully decentralized reputation infrastruc-
ture capable of securely managing reputations and protecting against malicious
collusion and false reports. This approach was evaluated, through simulation,
showing that nearly all peers wishing to gain services must contribute to the
system, eliminating free-riding. It was further shown that malicious peers, solely
intcrested in disrupting the network, were also quickly ostracized.



There are a number of areas of future work. Firstly, dctailed overhead studies
are necessary to investigate the impact that utilizing such a scheme has on the
overall system. Further investigation into improving the infrastructure is also
planned to protect against extremely high levels of malicious users (> 50%) of
the replica set. Lastly, more detailed cvaluative scenarios will be performed to
investigate the reliability of the infrastructurc against bad voters, cspecially if
thesc nodes sclectively or randomly change their misbehavior per transaction.

Acknowledgement

The collaboration on this paper has been funded through the European Network
of Excellence CONTENT, FP6-0384239.

References

1. E. Adar, B. Huberman: Free riding on gnutella. First Monday (2000)
2. S. Saroiu, P. Gummadi, S. Gribble: A measurement study of p2p file sharing
systems. Technical report, Washington University (2002)
3. G. Harding: Tragedy of commons. Science (1968)
4. M. A. Nowak, K. Sigmund: Evolution of indirect reciprocity. Nature (2005)
5. O. Leimar, P. Hammerstein: Evolution of cooperation through indirect reciproca-
tion. Proc. R. Soc. Lond. (2001)
6. H. Othsuki, Y. Iwasa: How should we define goodness? - reputation dynamics in
indirect reciprocity. Journal of Theoretical Biology (2004)
7. Z. Zhang, S. Chen, M. Yoon: MARCH: A distributed incentive scheme for p2p
networks. In: INFOCOM. (2007)
8. Jakobsson et al.: A micro-payment scheme encouraging collaboration in multi-hop
cellular networks. Lecture Notes in Computer Science (2003)
9. Wilcox-O'Hearn: Experiences deploying a large-scale emergent network. In:
IPTPS. (2002)
10. B. Cohen: Incentives build robustness in bittorrent. Technical report (2003)
11. A. Habib, J. Chuang: Service differentiated peer selection: an incentive mechanism
for p2p media streaming. IEEE Transactions on Multimedia (2006)
12. M. Srivatsa, L. Xiong, L. Liu: Trustguard: countering vulnerabilities in reputation
management for decentralized overlay networks. In: WWW. (2005)
13. E. Damiani et al.: A reputation-based approach for choosing reliable resources in
peer-to-peer networks. In: CCS. (2002)
14. L. Xiong, L. Liu: Pecrtrust: Supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Trans. on Knowledge and Data Engineering. (2004)
15. S. Kamvar, M. Schlosser, H. Garcia-Molina: The cigentrust algorithm for reputa-
tion management in P2P networks. In: WWW. (2003)
16. S. Lee, R. Sherwood, B. Bhattacharjee: Cooperative peer groups in nice. In:
INFOCOM. (2003)
17. M. Feldman, K. Lai, I. Stoica, J. Chuang: Robust incentive techniques for p2p
networks. In: CECOMM. (2004)
18. E. Eftstathiou, P. Francgoudis, G. Polyzos: Stimulating participation in wireless
community networks. In: INFOCOM. (2006)
19. M. A. Nowak, K. Sigmund: Evolution of indirect reciprocity by image scoring.
Nature (1998)
20. 1. Stoica et al.: Chord: A scalable p2p lookup service for internet applications. In:
SIGCOMM. (2001)



VGWORT

Meldung Wissenschaft

Ihre Daten

Die unten angegebenen Informationen wurden am 07.01.2009 um 09:18 zum Webserver
Ubertragen.

Karteinummer 865889

Geburtsdatum 31.07.1956

Anrede Herr

Akademischer Grad Prof. Dr.

Vorname Nachname
Strasse Hausnummer
PLZ und Ort

Land

Telefon

Telefax

Email

Ralf Steinmetz

Philipp-Maerz-Str. 15

64342 Seeheim-Jugenheim
DEUTSCHLAND

06257 / 868297

06257 / 868298
ralf.steinmetz@kom.tu-darmstadt.de

Meldungsart: Buch-Beitrag (Druckfassung)

Titel ISBN Eigenschaft Anzahl-Mitur [Umfang |Verlag, Erschein
heber Verlagsort  |ungsjahr

Third International Workshop on Self-Organizing | 9783540 | Mit-Autor/in 4 Miturheber | 22 Springer 2008

Systems (IWSOS 08): Cooperation in P2P 921561 LNCS,

Systems through Sociological Incentive Patterns Heidelberg

Seite 1/1






