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Abstract—Fork-Join (FJ) queuing models capture the dynam-
ics of system parallelization under synchronization constraints,
for example, for applications such as MapReduce, multipath
transmission and RAID systems. Arriving jobs are first split into
tasks and mapped to servers for execution, such that a job can
only leave the system when all of its tasks are executed.

In this paper, we provide computable stochastic bounds for
the waiting and response time distributions for heterogeneous FJ
systems under general parallelization benefit. Our main contri-
bution is a generalized mathematical framework for probabilistic
server scheduling strategies that are essentially characterized by
a probability distribution over the number of utilized servers,
and the optimization thereof. We highlight the trade-off between
the scaling benefit due to parallelization and the FJ inherent
synchronization penalty. Further, we provide optimal scheduling
strategies for arbitrary scaling regimes that map to different
levels of parallelization benefit. One notable insight obtained
from our results is that different applications with varying
parallelization benefits result in different optimal strategies.
Finally, we complement our analytical results by applying them
to various applications showing the optimality of the proposed
scheduling strategies.

I. INTRODUCTION

Fork-Join (FJ) queuing models naturally capture the dynam-

ics of system parallelization under synchronization constraints.

They have seen a rise of interest as a modeling tool in the

wake of massive improvement of the infrastructure for cloud

computing and large-scale data processing. The emergence

of parallel data processing frameworks such as MapReduce

[10], [27] and its implementation Hadoop [15] has significantly

contributed to the modern IT infrastructure.

Fig. 1 presents a MapReduce abstraction that closely re-

sembles an FJ system. Arriving jobs are first split into tasks

each of which is then mapped exactly to one work-conserving

server that executes the map operation. An optional combine

operation compresses the intermediate result to reduce the

amount of data that is transferred through the network. The

compression efficiency depends on the application and, in

particular, on the input the data size. A job finally leaves the

system when all of its tasks are executed.

In order to design better parallelized systems we require

tractable models that connect system dynamics to correspond-

ing key performance metrics. However, until today an exact

analysis of FJ queuing systems in a general setup remains

elusive [5], [7]. It is particularly hard to find closed form

expressions for the steady-state distributions of key quantities
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Fig. 1: MapReduce as Fork-Join system: The output size of

the combine-phase may not scale linearly with the input size.

in FJ systems such as the waiting and response times. In this

paper, we contribute computable bounds for heterogeneous FJ

systems under a fairly general setup. Our main contribution

is a generalized mathematical framework that allows the

optimization of probabilistic server scheduling strategies that

are shown to save server costs.

In this work, we model one of the main advantages of par-

allel systems, namely, the application specific parallelization

benefit. To this end, we use the notion of service time scaling

at each server of the FJ system. Since a job can only leave

the system when all of its tasks are executed, we observe

a naturally arising synchronization penalty in FJ systems. In

this paper, we analytically highlight this trade-off for arbitrary

parallelization benefit regimes. We also show the impact of

heterogenous servers on this trade-off.

Since in large pools of cloud resources, or, in general, in

many parallelized systems, jobs are not mapped to all available

resources, and given the performance trade-off mentioned

above, it is important to select the number of utilized servers

from a given pool of available ones in an informed way. In

the context of FJ systems, we define a scheduling strategy

to be a probabilistic strategy of server selection. Clearly,

a deterministic strategy is hence a degenerate case. In this

work, we formalize scheduling strategies in FJ systems, derive

corresponding stochastic bounds on the waiting and response

times, and minimize them to provide optimal strategies under

arbitrary application specific parallelization benefits.

Our key contributions in this paper include: (1) Computable

stochastic bounds for the steady-state distributions of the

waiting and response times for a broad class of heterogeneous
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FJ systems for various scaling regimes.1 (2) A generalized

mathematical framework for scheduling strategies that high-

lights the trade-off between parallelization benefit and the syn-

chronization penalty, and enables finding optimal scheduling

strategies for arbitrary scaling regimes. (3) Application of our

model to different scenarios showing their efficiency.

We organize the paper with a view to developing the con-

cepts gradually and naturally, and to conveying the intuitions.

Starting from the simplest case, we build up to the most

general one. The remainder of the paper is structured as

follows: Sect. II lays the mathematical foundation of our

model of heterogeneous FJ systems. In Sect. III, we introduce

scheduling in FJ systems. Our main discussion on application

specific scaling and scheduling under arbitrary scaling regimes

is given in Sect. IV. In Sect. V, we consider concrete applica-

tions of our model and show corresponding findings. Finally,

we discuss related work in Sect. VI and then conclude the

paper with a short discussion in Sect. VII.

II. HETEROGENEOUS FORK-JOIN QUEUING SYSTEMS

This section introduces FJ systems and provides stochastic

bounds on the steady state waiting and response time distri-

butions for a general heterogeneous setting. We denote the set

of natural numbers by N. Let N0 ≔ N ∪ {0}. For an event A,

1(A) is its indicator function.

A. System description

Consider a single stage FJ queuing system with N parallel

servers as depicted in Fig. 1. The servers are indexed on the set

[N] ≔ {1, 2, . . . , N}. Jobs arrive at the input station according

to some point process with inter-arrival time Ti between the i-

th and (i+1)-th job, i ∈ N. In the basic model a job is split into

N tasks each of which is assigned to exactly one server. The

service time for the task of job i at the n-th server is denoted

by the random variable Xn,i . We shall assume independence of

the families {Xn,i} and {Ti} throughout the course of this work.

For lack of space, we only consider work-conserving servers

in this paper. We assume that the families {Xn,i} and {Ti}

admit finite moment generating function (MGF) and Laplace

transform, defined as αn(θ) ≔ E[eθXn,1 ], β(θ) ≔ E[e−θT1 ],

respectively, for some θ > 0 and for all n ∈ [N]. We also

assume the job arrival process is a renewal process.

B. Waiting and response times for heterogeneous FJ Systems

In an FJ queuing system the waiting time Wj is defined

as 0 for j = 1 and max{0, supk∈[j−1]{supn∈[N ]{
∑k

i=1 Xn, j−i −
∑k

i=1 Tj−i}}}, for j > 1 [30]. Intuitively a job is considered to

be waiting until its last task starts being serviced. The waiting

time for the first job is assumed to be zero. Similarly the

response time Rj of job j is defined as maxn∈[N ] Xn,1 for

j = 1 and supk∈[j−1]∪{0}{supn∈[N ]{
∑k

i=0 Xn, j−i −
∑k

i=1 Tj−i}}

for j > 1. In order to get steady state representations of

the above two random quantities, we require the stability

condition maxn∈[N ] E[Xn,1] < E[T1]. Then, by stationarity of

1We will use the terms scaling and parallelization benefit interchangeably.

the system, we have the following steady state representations

of the waiting time W and the response time R:

W =D sup
k∈N0

{ sup
n∈[N ]

{

k
∑

i=1

Xn,i −

k
∑

i=1

Ti}},

R =D sup
k∈N0

{ sup
n∈[N ]

{

k
∑

i=0

Xn,i −

k
∑

i=1

Ti}},

(1)

where =D denotes equality in distribution. Now, we provide

our first result giving stochastic bounds on the tail probabilities

of W and R upon which we build the rest of the paper.

Theorem 1. Consider an FJ system with N parallel work-

conserving servers fed by renewal job arrivals with inter-

arrival times Ti , for i ∈ N. Assuming iid service times Xn,i

and pairwise independence of the servers, the steady state

waiting and response time distributions are bounded by

P(W ≥ σ) ≤ exp
(

−θ̃σ
)

∑

n∈[N ]

exp
(

−(θn − θ̃)σ
)

,

P(R ≥ σ) ≤ exp
(

−θ̃σ
)

∑

n∈[N ]

αn(θn) exp
(

−(θn − θ̃)σ
)

,

where θn is the positive solution of αn(x)β(x) = 1 for n ∈ [N]

and θ̃ ≔ minn∈[N ] θn.

The key steps involved in the proof of the above theorem

are: 1) constructing separate martingales for each of the

servers; and 2) applying Doob’s sub- and supermartingale

inequalities (see [3]) to arrive at the bounds. The detailed

proof is provided in [20]. Note that the stability condition

guarantees the existence of θn > 0 such that αn(θn)β(θn) = 1

for all n ∈ [N] (see [7], [28]). Hence, θ̃ > 0 is well defined.

Example: Hedging using revocable cloud resources. We

consider a mixed cloud service consisting of both highly

guaranteed and revocable resources. This service could be

supplied by infrastructure providers such as Amazon EC2 [1],

or by a virtual provider on top using, e.g., on-demand or

revocable spot market machines [32].

Consider an application of parallel computation under syn-

chronization such as MapReduce [1] or Spark [2] requiring N

machines. In this example, we consider the case of exchanging

on-demand machines with spot machines to save costs. In gen-

eral, for a fixed budget the user obtains faster spot machines

in comparison to on-demand machines. The price difference

arises naturally since spot machines are at risk of revocation

[32]. We abstract the characteristics of these two classes of

machines (on-demand and spot) through different job ser-

vice time distributions. Through revocation and application

checkpointing procedures [32] that are associated with spot

machines, we generally model the tail of the corresponding

job service time distributions to decay slower than in the case

of on-demand machines. For illustration we assume that the

tail of the job service times decays exponentially in case of

spot machines while in the case of on-demand machines we

model the service times by a uniform distribution. Note that

the following argument only requires that the tail of the service

times decays slower for spot machines.
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Fig. 2: Example of a heterogeneous FJ system. (Left) Waiting time performance in a MapReduce cloud scenario with N = 2

partially volatile servers. One server is on an average faster representing a revocable checkpointed spot server with an exponential

tail of service time. The second server provides on average slower service with uniformly distributed service times representing

an on-demand server with stronger guarantees. The bound is calculated using Thm. 1. CCDF denotes the complementary

cumulative distribution function. (Middle) The FJ system is constrained by the (on an average) faster spot server due to its

larger higher moments. This is apparent in the MGF condition αn(x)β(x) = 1. Observe that the constraining decay rate is given

by θ̃ ≔ minn∈[N ] θn. (Right) A system that switches between spot and on-demand servers with π being the fraction of time

where on-demand servers are used. Observe the improvement in the decay rate θ with increasing π. Simulation parameters:

spot exponential service rate µ = 1, inter-arrival exponential rate λ = 0.9 and uniform service time over [0.001, 2.009].

Fig. 2 (left) shows the waiting time distribution in the case

of exchanging an on-demand machine by an - on an average

faster - spot machine. At first sight this seems to be a good

idea, however, looking at Fig. 2 (middle) we clearly see that

the system is constrained by the spot machine which has lower

average service time, however, a thicker tail. The figure on

the right shows the utility of trading an on-demand machine

with a spot one. While a greater usage of the on-demand

machine incurs greater cost, it also increases the decay rate

of the waiting and response times, θ which in turn leads to

monetary saving due to faster job execution times.

III. SCHEDULING TASKS IN HETEROGENEOUS FJ SYSTEMS

In this section, we study basic scheduling mechanisms that

decide on the number of servers to be used from a pool of

available servers2. Since in large pools of cloud resources

(in general for parallelized systems) an arriving job is not

scheduled on all available resources, we consider for each

server if it is selected to execute a task of an arriving job

or not. Specifically, when a job arrives we consider that

each server n is selected with a probability πn. This server

selection probability πn can be used to model different aspects

of parallelized systems, such as the server failure rate in

cloud computing facilities, a quality of service differentiation

parameter for different applications, and a tuning parameter

to control the degree of replication. Hence, different πn may

exist for different classes of users. Mathematically, the revised

task service times X̃n,i are defined as Xn,i with probability

πn and 0 with probability 1 − πn. The MGF of X̃n,i is

given by α∗
n(θ) = (1 − πn) + πnαn(θ). The stability condition

maxn∈[N ] E[Xn,i] < E[T1] ensures the existence of the decay

rate θn > 0 from Thm. 1 for each n ∈ [N] such that

α∗
n(θn)β(θn) = 1. Define θ̃ ≔ minn∈[N ] θn > 0. We retain

2Note that our notion of scheduling differs from traditional scheduling
algorithms such as the Shortest-Remaining-Processing-Time-first (SRPT).

the same mathematical setup as before except for X being

replaced by X̃ .

Theorem 2. Consider an FJ system with N parallel work-

conserving servers fed by renewal job arrivals with inter-

arrival times Ti , for i ∈ N. The probability that the n-th server

is selected at the arrival of a job is πn. Assuming iid service

times Xn,i and pairwise independence of the servers, the steady

state waiting and response time distributions are bounded by

P(W ≥ σ) ≤ exp
(

−θ̃σ
)

∑

n∈[N ]

exp
(

−(θn − θ̃)σ
)

,

P(R ≥ σ) ≤ exp
(

−θ̃σ
)

∑

n∈[N ]

αn(θn) exp
(

−(θn − θ̃)σ
)

,

where θn is the positive solution of α∗
n(x)β(x) = 1, for n ∈

[N] and θ̃ ≔ minn∈[N ] θn.

The proof is provided in [20].

Example: Mixed server pool with different availability.

Consider a pool of heterogeneous servers that are available

according to some probability πi . For simplicity, we consider

only three heterogeneous servers used for parallel processing.

Note that this scenario can be easily generalized to N servers

using Thm. 2. For the sake of simplicity, we assume that the

task service times are exponentially distributed with server

specific rates µi and that jobs arrive according to some renewal

process with exponentially distributed inter-arrival times with

parameter λ. Note that the probability πi also signifies the

fraction of time server i is used, hence, it is directly related

to the computation cost in case of time priced resources.

Fig. 3 shows the change in the mean and the percentile

of the waiting time due to the addition of a server with a

selection probability πi to a system of two permanently used

servers each with πj = 1. For example, the lowest curve in

Fig. 3 (left) shows the increase in the average waiting time if

the slowest server is added with increasing probability πi .
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Fig. 3: Impact of the degree of usage of a server on the mean

(left) and the 99.9-th percentile (right) of the steady-state wait-

ing times. We consider a pool of three heterogeneous servers

(fast, medium, slow), where tasks are always scheduled on two

servers and the third server is included with probability πi . Pa-

rameters: service exponential rates (µ1, µ2, µ3) = (1.5, 1.25, 1)

and inter-arrival exponential rate λ = 0.5.

Optimal Strategy. It can be shown that the bound in Thm. 2

is an increasing function of the number of servers N and that

the decay rate θ̃ can be maximized, i.e., the bound can be

minimized by choosing only the the strongest server.

IV. SCHEDULING UNDER APPLICATION SPECIFIC SCALING

In this section, we analyze scheduling in FJ systems under

application specific workloads. We build on the fact that dif-

ferent applications receive different gains from parallelization

that lies in the nature of the application itself. Consider for

example a Monte-Carlo simulation and a video transcoding

application. In the first case, the gain from parallelization is

strong and apparent, while in the second case, the gain from

parallelization may vary depending on different factors such

as the dependency between video macroblocks [9], [24]. We

capture these varying gains using the notion of scaled service

times. Moreover, in Fork-Join systems (e.g. MapReduce) there

is a synchronization price that increases with the number

of servers N [5], [30]. We make the case that given these

two opposing forces, the scheduling strategy that chooses the

number of utilized servers in an FJ system can be optimized

to minimize the waiting and response times in the system.

We begin with the initial case of homogeneous servers before

discussing the more general case of heterogeneous servers.

A. Homogeneous Servers - Linear scaling

The first natural scaling that we analyze is what we call

linear scaling3. This is motivated by examples of FJ systems

where incoming jobs are equally divided among the servers.

Consider an FJ system with N parallel, identical servers fed

by renewal job arrivals with inter-arrival times Ti . We choose

the servers probabilistically and once chosen, stick to them

for a long time. This allows us to write down steady-state

representations conditional on the chosen set. Let the random

variable S ∼ fS ∈ P([N], 2[N ]) denote the number of servers

chosen to split an incoming job into, where P([N], 2[N ]) is

3Linear scaling has been introduced in [31] for a fixed number of homo-
geneous servers N without considering scheduling strategies.

the class of all probability distributions on ([N], 2[N ])4. Let

the service times at the n-th server Xn,i be iid for all i ∈ N

and n ∈ [N]. Suppose the unscaled service time at each server

is distributed as X , i.e., Xn,i | {S = 1} =D X for some X with

MGF α(x). We model the reduction of the average amount of

work to be performed by each server when we use multiple

servers using the following scaling of service times

Xn,i | {S = s} =D
X

s
. (2)

Now, conditional on the given number of used servers {S =

s} for some s ∈ [N], the steady-state waiting times W and

the response times R can be represented as in (1) with [N]

replaced by [s]. We have the following result.

Theorem 3. Consider a stable FJ system with N parallel

work-conserving servers and renewal job arrivals with inter-

arrival times Ti , for i ∈ N. Let S ∼ fS ∈ P([N], 2[N ])

denote the number of servers chosen to split an incoming job

into. Let the unscaled service times X and the inter-arrival

times T be exponentially distributed with parameters µ and

λ, respectively. For service times Xn,i at the n-th server that

are scaled as in (2) independently for all n ∈ [S], i ∈ N0, the

steady state waiting and response times are bounded as

P(W ≥ σ) ≤ eλσE[Se−µσS] ,

P(R ≥ σ) ≤
eλσ

ρ
E[S2e−µσS] ,

where ρ = λ
µ

is the unscaled utilization level and the optimal

strategy with respect to the bound for the waiting time is

Sopt ∼ fopt = arg min
fS ∈P([N ],2[N ])

E[Se−µσS].

The proof is provided in [20]. For a given choice of the dis-

tribution of S, which we call a strategy, the bounds in Thm. 3

can be computed exactly, for it involves only a summation of

finitely many terms. Note that the optimization is essentially

over a probability N-simplex ∆N ≔ {(p1, p2, . . . , pN ) ∈

[0, 1]N |
∑N

k=1 pk = 1}.

Interpretation of the server selection strategy: A strategy

can be interpreted in two ways: (i) it actively arises through

users’ selection of different numbers of servers to utilize, or

(ii) it passively arises through a variable number of provided

servers that are price volatile, e.g., spot instances at a given

budget. In the following, we mainly take the former as an

example for strategy derivations.

Note that different strategies lead to varying performance

bounds, e.g., consider the case where we select the number

of used servers uniformly at random from the pool of N

servers, i.e., P(S = s) = (1/N)1(s ∈ [N]). Then, for

a > 0, E[Se−aS] = e−a

N (1−e−a )
[ 1−e−(N+1)a

(1−e−a )
− (N + 1)e−aN ], and

E[S2e−aS] = e−2a

N (1−e−a )
[2

(1−e−(N+1)a )

(1−e−a )2
−

2(N+1)e−Na−(1−e−(N+1)a )
(1−e−a )

−

(N + 1)(Ne−(N−1)a
+ e−aN )]. Setting a = µσ, closed-form

4We use the symbol 2A to denote the power set of a set A.



expressions for the bounds in Thm. 3 are obtained. The

uniform distribution allows little control over the number of

selected servers. To control the average number of utilized

servers E[S] we employ what we call a Binomial strategy,

i.e., we let S follow a truncated binomial distribution on [N]

with parameters N and p ∈ (0, 1],

P(S = s) =

(N
s

)

psqN−s

1 − qN
1(s ∈ [N]),

writing q ≔ 1 − p. With abuse of notation, we write

S ∼ Binomial(N, p). Given the total number of available

servers N ∈ N, the binomial strategy allows us to vary p

to control the desired number of on average utilized servers

Np/(1 − qN ).

Computing the expectations in Thm. 3 for S ∼

Binomial(N, p), we get the following bounds

P(W ≥ σ) ≤ Ne−θσ[
p

1 − qN
(pe−µσ + q)N−1] (3)

P(R ≥ σ) ≤
Ne−θσ

ρ
[

p

1 − qN
(Npe−µσ + q)(pe−µσ + q)N−2].

The proof is provided in [20].

Optimizing the Binomial strategy: Our next goal is to

minimize the waiting times given a binomial strategy for server

selection. Precisely, given N available servers we look for p

that minimizes the right hand side of (3) at some percentile σ,

e.g., the 99.9-th percentile. First, we rewrite the right hand

side of (3) as Ne−θσ
[

(ǫq + 1 − ǫ)N−1/
∑N−1

k=0 qk
]

where we

define ǫ ≔ 1 − e−µσ . Next, we define ψ : [0, 1) → R+ as

ψ(q) ≔ (ǫq+1−ǫ)N−1/
∑N−1

k=0 qk and study its behavior. Taking

derivative with respect to q, we get

d

dq
ψ(q) =

(ǫq + 1 − ǫ)N−2

(
∑N−1

k=0 qk)2

N−2
∑

k=0

(Nǫ − 1 − k)qk .

Since (ǫq+1−ǫ)N−2/(
∑N−1

k=0 qk)2 > 0, the sign of the derivative

is dictated by sign of the polynomial Q(q) ≔
∑N−2

k=0 (Nǫ − 1−

k)qk . Note that the coefficients {Nǫ − 1 − k}k∈{0}∪[N−2] of

the polynomial are monotonically decreasing, implying there

is only one change of sign of the coefficients so that by

Descartes’ rule of signs, there is at most one real root of

Q(q) = 0. Consequently, the same holds true for d
dx
ψ(x).

Now, observe that Q(0) = Nǫ − 1 > 0 if ǫ > 1/N .

On the other hand, Q(1) = N(N − 1)(ǫ − 1/2) > 0 if

ǫ > 1/2 ⇐⇒ σ > (1/µ) ln(2). This condition on the 99.9-

th percentile of the waiting time holds except for corner cases

with nearly no queuing. This gives us a sufficient condition for
d
dx
ψ(x) > 0 implying that ψ(q) is an increasing function of q

on ǫ > 1/2. In other words, the tail bound is a decreasing

function of p. Therefore, the optimal strategy would be to

set popt = 1 and use all N available servers to make the

most of the scaling benefit. Our analytic arguments are also

numerically validated using simulations, e.g., Fig. 5.

Optimization under budget constraint: In the interesting

scenario of an application with a budget constraint on the

average number of servers it uses, the above reduces to a

constrained optimization problem. Precisely, if we have a

budget constraint of the form E[S] ≤ S∗, the optimization

problem can be stated as

min Ne−θσ[
p

1 − qN
(pe−µσ + q)N−1] s. t.

Np

1 − qN
≤ S∗,

leading to p∗ = sup{p ∈ (0, 1] |
∑N−1

k=0 (1 − p)k ≥ N
S∗ } so

that fopt = Binomial(N, p∗), In general, the given bound can

always be numerically optimized for any σ.

Generalization to Power series strategies: To obtain bounds

in the more general setup of a power series strategy, we assume

P(S = s) ≔
asκ

s

ζ(κ)
1(s ∈ N), (4)

where ζ(κ) ≔
∑

k∈N ak κ
k < ∞ for some κ > 0 and

ak ≥ 0 ∀k ∈ N. We denote this distribution by Pow(κ, ζ)

and the corresponding bounds on the waiting and response

time distributions in Thm. 3 evaluate to

P(W ≥ σ) ≤ eλσ
κe−µσζ ′(κe−µσ)

ζ(κ)
,

P(R ≥ σ) ≤
eλσ

ρ

κe−µσ

ζ(κ)
[κe−µσζ ′′(κe−µσ) + ζ ′(κe−µσ)].

The proof is provided in [20]. For a given form of ζ , the

strategy can be optimized to minimize the waiting times. We

skip this optimization due to the lack of space. Please note

that the above is the most general result of this kind.

B. Homogeneous Servers - Partial scaling

In the previous subsection we considered linear scaling of

the form (2) that models a perfect work division over s utilized

servers in the sense of E[Xn,i] = E[X]/s. In this section, we

analyze the general case of application specific scaling, i.e.,

where the parallelization benefit due to using more servers

depends on the application itself. Two prominent examples are:

(i) MapReduce scenarios where the servers have to separately

calculate a state before starting the task executions, and (ii)

parallelized video transcoding, where some involved decoding

operations have a diminishing return on parallelization [9],

[24].

Mathematically, we assume that for a certain application

with scaling coefficient ϕ ∈ [0, 1], the following scaling down

of service times holds,

Xn,i | {S = s} =D
X

sϕ
. (5)

Given {S = s}, the steady-state waiting times W and the

response times R have the same representation as in (1) where

we need to replace N with s. Now, we present our bounds in

the partial scaling regime.

Theorem 4. Consider a stable FJ system with N parallel

work-conserving servers and renewal job arrivals with inter-

arrival times Ti , for i ∈ N. Let the random variable S ∼

fS ∈ P([N], 2[N ]) denote the number of servers chosen to

split an incoming job into. Let the unscaled service times X

and the inter-arrival times T be exponentially distributed with
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Fig. 4: The impact of the scheduling strategy (given by

probability p) together with the parallelization benefit (given

by increasing ϕ) on the mean waiting time in given FJ systems.

Simulation parameters: N = 10 servers, (Left) low utilization:

λ = 0.1. (Right) high utilization: λ = 0.9.

parameters µ and λ, respectively. For service times Xn,i at the

n-th server that are scaled as in (5) for some ϕ ∈ [0, 1] the

steady state waiting and response times are bounded as

P(W ≥ σ) ≤ eλσE[S exp
(

−µσSϕ
)

],

P(R ≥ σ) ≤
eλσ

ρ
E[S2 exp

(

−µσSϕ
)

],

where ρ = λ
µ

is the unscaled utilization level. The optimal

strategy with respect to the bound for the waiting time is

Sopt ∼ fopt = arg min
fS ∈P([N ],2[N ])

E[Se−µσSϕ

].

The proof is provided in [20].

Insights into partial parallelization benefit: Fig. 4 conveys

multiple insights into scheduling strategies under different

application specific scaling ϕ. It depicts the mean waiting

time in a given FJ system for different scheduling strategies

given by the Binomial probability p for various parallelization

benefits given by the coefficient ϕ. The first insight from

Fig. 4 is the trade-off between the FJ inherent synchronization

penalty and the parallelization benefit due to scaled service

times. For a given scheduling strategy in an FJ system, i.e.,

the probability p, we observe a decrease in the mean waiting

time with increasing scaling benefit ϕ. Second, for low paral-

lelization benefit ϕ, the synchronization penalty predominates

leading to an increase in mean waiting times. We note that

this phenomenon also depends on the utilization. Finally, for

high parallelization benefit ϕ, we observe a decay of the mean

waiting times with p, i.e., essentially increasing the average

number of utilized servers Np/(1−qN ). We observe a general

diminishing behavior with p. Hence, for larger ϕ substantial

savings in server cost can be obtained by sacrificing a little

in terms of the average waiting time. Fig. 5 shows a similar

behavior for the percentiles of the waiting time distribution.

Remarkably, we find that for any fixed stochastic strategy,

i.e., p ∈ (0, 1] under no parallelization benefit, the percentiles

of the waiting times grow as O(log E[S]). In case of no

stochastic scheduling, i.e., p = 1, we recover the behavior

of O(log N) known from [5], [30].
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Fig. 5: The impact of the scheduling strategy on the waiting

time percentiles. Simulation parameters: N = 10, λ = 0.9,

parallelization benefit: (a) ϕ = 0 (b) ϕ = 0.2.

Optimal strategy under partial scaling: The prime motive of

the analysis above is to gain analytic insights into the impact

of the chosen number of servers on the waiting times for an

application with a given scaling ϕ in a fixed FJ system. In

particular, given a ϕ ∈ [0, 1], we find the optimal stochastic

scheduling strategy by minimizing the bound obtained in

Thm. 4. Observe that as ϕ → 0, the scaling benefit diminishes

to zero yielding the unscaled case from Sect. II. Further, as

ϕ → 1, we get greater scaling benefit. The optimal strategy,

therefore, would be to choose all the servers if the scaling

benefit outweighs the synchronization cost, and to choose only

the strongest server if it does not. However, this depends on

the parallelization benefit ϕ specific to the given application.

C. Heterogeneous Servers - Hierarchical Model

In this section, we generalize our scaling discussion to

the heterogeneous case, building on the analytic intuitions

gained in the previous section. We argue that the average

service times at different servers are not identical, but rather

follow some suitable probability distribution (see Fig. 6).

Here, we assume a randomly drawn server has an exponential

service rate with parameter µ where µ itself is drawn from

an underlying hierarchical distribution fµ. We present the

following result for such a setup, assuming the strict stability

maxn∈[N ] E[Xn,1] < E[T1].

Theorem 5. Consider an FJ system with N parallel work-

conserving servers fed by renewal job arrivals with iid expo-

nentially distributed inter-arrival times Ti with parameter λ,

for i ∈ N. Let the random variable S ∼ fS ∈ P([N], 2[N ])

denote the number of servers chosen to split an incoming job

into and the unscaled service time Xn at the n-th server be

exponentially distributed with parameter µn ∼ fµ For service

times Xn,i at the n-th server that are scaled as

Xn,i | {S = s} =D
Xn

sϕ
,

independently for all n ∈ [s], i ∈ N0, ϕ ∈ [0, 1], the steady

state waiting and response times are bounded as

P(W ≥ σ) ≤ eλσE[S exp
(

− min
n∈[S]

µnσSϕ
)

],

P(R ≥ σ) ≤
eλσ

λ
E[Sϕ(

∑

n∈[S]

µn) exp
(

− min
n∈[S]

µnσSϕ
)

].



The optimal strategy with respect to the bound above for the

waiting time is given by

Sopt ∼ fopt = arg min
fS ∈P([N ],2[N ])

E[S exp
(

− min
n∈[S]

µnσSϕ
)

].

The proof is provided in [20].

Example: A two-class system: Consider the case where

there are only two types of servers in the system, fast and

slow. In a cloud computing infrastructure, these two types

would correspond to different monetary prices. Suppose the

exponential service rates of the two types of servers are κ1

and κ2, respectively, and the arrival rate is λ with λ < κ1 < κ2.

Denote the probability that a randomly drawn server is of type-

1, i.e., has exponential service rate κ1, by π. Hence, the service

rate distribution is given by

fµ(x) ≔ π1(x=κ1)(1 − π)1(x=κ2). (6)

Given n random samples µ1, µ2, . . . , µn from the above distri-

bution, we require the first order statistic of the sample Yn ≔

mini∈[n] µi to compute the bounds in Thm. 5. The distribution

of Yn is given by P(Yn = κ1) = 1−(1−π)n = 1−P(Y = κ2), such

that its MGF is E[eaY ] = exp
(

aκ1

)

−(exp
(

aκ1

)

−exp
(

aκ2

)

)(1−

π)n, whence we can compute the bounds obtained in Thm. 5

for different choices of distributions of the number of used

servers S. In particular, when S ∼ Binomial(N, p) and we

receive linear scaling ϕ = 1, the upper bounds on the tail

probabilities can be explicitly written as

P(W ≥ σ) ≤ eλσ
Np

1 − qN
b1(σ)[1 − (1 − π)(

c1(σ) − c2(σ)

b1(σ)
)],

where bi(σ) ≔ exp
(

−σκi
)

(p exp
(

−σκi
)

+ q)N−1 and ci(σ) ≔

exp
(

−σκi
)

(p(1 − π) exp
(

−σκi
)

+ q)N−1 for i = 1, 2.

While the above example only considers two types of

servers, it is worth mentioning that it can easily be extended

to take into account finitely many types of servers.

The hierarchical hyper-parameter model: In view of the

stability of the system, we take fµ to be a truncated exponential

with (hyper-) parameter µ0, truncated at λ. That is, we take

fµ(x) ≔ µ0 exp
(

−µ0(x − λ)
)

1(x > λ). (7)

Given n random samples µ1, µ2, . . . , µn from the above distri-

bution, the first order statistic of the sample Yn ≔ mini∈[n] µi
has a truncated exponential distribution with parameter nµ0,

truncated at λ. The MGF of Yn is given as

E[eaYn ] =
nµ0

nµ0 − a
exp

(

aλ
)

.

Taking the same approach as in Sect. IV-B, we can compute

the waiting and response time bounds from Thm. 5 for

different choices of distributions of S. In particular for the

linear scaling case, i.e., ϕ = 1 and when S ∼ Binomial(N, p),

the upper bounds on the tail probabilities can be explicitly

found as

P(W ≥ σ) ≤
Npµ0

(1 − qN )(µ0 + σ)
(pe−σλ

+ q)N−1.

fµ

µ1 µ2 · · · µs

{S = s}

Fig. 6: The hierarchical model for the heterogeneous FJ

systems. Conditional on {S = s}, the average service rates

are drawn from a hierarchical distribution fµ.
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(b) MPTCP as FJ Application

Fig. 7: (Left) Deterministic vs. stochastic scheduling strategy

for an application with specific ϕ in a heterogeneous FJ

system. Thm. 5 shows that, in general, either strategy can

be superior. (Right) The response time decreases with an

increasing binomial probability, i.e., with increasing average

number of Multipath TCP subflows.

The proof is provided in [20].

Heterogeneous FJ systems - Three forces: As shown above

the hierarchical model extends our findings in the previous sec-

tions to a wide setting providing insights and lending greater

applicability. Thm. 5 shows that (i) the first order statistic

Ys ≔ mini∈[s] µi is decisive for the overall performance of the

system, in addition, to the opposing forces from Sect. IV-A,

i.e., (ii) scaling of service times at each server due to the

parallelization, and (iii) the synchronization penalty at the

output. In fact, the heterogeneous case provides less scaling

benefit than the homogeneous case due to Ys . This impact can

be directly seen from the position of Ys in the exponent in

Thm. 5. The optimal strategy given all the relevant parameter

values is obtained, as before, by optimizing the upper bound

provided in Theorem 5.

V. EVALUATION OF APPLICATION SPECIFIC SCHEDULING

IN FORK-JOIN SYSTEMS

In this section, we provide evaluations for two exemplary

Fork-Join scenarios, namely, (i) a comparison of determin-

istic and stochastic scheduling strategies, and (ii) stochastic

scheduling results for the transport protocol Multipath TCP.

We consider partial as well as linear scaling benefit as given

in (5) and (2).

Evaluation of deterministic and stochastic strategies: In

the following, we compare the average waiting times in a

heterogeneous FJ system that uses a binomial scheduling

strategy with one using a corresponding deterministic strategy.
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Fig. 8: Network transfer evaluation setup: Multipath TCP splits

jobs on multiple subflows.

Our aim is to show the benefit of Thm. 5. We consider

renewal job arrivals with exponentially distributed inter-arrival

times with parameter λ = 0.1 at the ingress of an FJ system

with N = 5 servers each of which can be in a fast or a

slow state with probability 0.5. Hence, the service times are

exponentially distributed with an average of µ = 1 in the first

state, and µ = 0.5 in the second. We assume an application

with a weak parallelization benefit ϕ = 0.2. The rationale

here is to let the system switch between a regime where

the synchronization cost outweighs the scaling benefit, and

another regime where the opposite holds true. Given a pool

of N available servers, Fig. 7a compares the mean waiting

time under a deterministic strategy that uses 1 ≤ S′ ≤ N

servers to a stochastic strategy that uses an average number of

servers E[S] = S′. While this example shows that the stochastic

strategy can be superior to a comparable deterministic one, we

know that in general the superiority of either strategy depends

on the number of available servers N , the application specific

parallelization benefit ϕ and the utilization of the FJ system.

This strengthens our arguments that for a known application

that runs on a given FJ system Thm. 5 provides the optimal

scheduling strategy.

Number of Subflows with Multipath TCP: We evaluate the

binomial strategy for a network data transfer scenario with

linear scaling, in which arriving jobs (datasets) of varying

sizes are transmitted. Today’s networks often provide several

disjoint paths, e.g., for ECMP-based load balancing in data-

center networks. The scheduling strategy chooses the number

of utilized network paths. For a concrete evaluation, we use

the Multipath TCP (MPTCP) transport protocol as Fork-

Join system [13]. Multipath TCP splits the data on multiple

subflows and joins them at the receiver side to ensure in-order

data transfer for one logical TCP connection (see Fig. 8).

For the measurements, we use the MPTCP Linux kernel

implementation [29] and Mininet to emulate topologies with

disjoints paths. Fig. 7b shows the response time given a

binomial strategy, where the response time decreases with

increasing binomial probability. Clearly, in this case the higher

number of subflows overwhelms the synchronization penalty.

Remarkably, we observe diminishing returns in terms of

response time with increasing p, which directly translates to

the average number of subflows.

VI. RELATED WORK

In this section, we review related work on the Fork-Join

queuing systems and their applications. First inequalities for

the stationary waiting time distribution in GI/G/k queues are

shown in [22]. Martingale techniques have been used in

queuing theory, in particular, for providing exponential upper

bounds by means of maximal inequalities in [8], [11] and

later on in [28]. The authors of [28] propose a characteri-

zation of queuing systems by bounding suitable martingale

constructions, which allows embedding this queuing system

characterization into the realm of stochastic network calculus.

An exact analysis of Fork-Join systems with more than

two servers in a general setup remains elusive [5], [7], for

it is hard to find closed-form expressions for the steady-state

distributions. Several works derive exact analytical results for

special cases. The authors of [21] obtain transient and steady-

state solutions of the FJ queue in terms of virtual waiting

times. The special case of an FJ system with two servers

having exponential service times under Poissonian job arrivals

is studied in [12]. Further, a multitude of useful approxima-

tions [18], [23], [25], [33] and bounds [5], [6], [19], [30],

[31] are available in the literature. In [34], the authors study

the scalability of a general FJ system with blocking, i.e., they

study how the throughput of a general FJ system with blocking

servers behaves as the number of nodes increases to infinity

while the processing speed and buffer space of each node stay

unchanged. Another interesting study of limiting behavior is

done in [4] where the authors study FJ networks with non-

exchangeable tasks under a heavy traffic regime and show

asymptotic equivalence between this network and its corre-

sponding assembly network with exchangeable tasks. From the

perspective of choosing task assignment policies in distributed

server systems, the authors of [14] study various policies

and suggest different optimal policies in different situations.

Similarly, the work in [16] seeks to quantify the benefits of

splitting a task into different queues. It must be noted that the

underlying premises in these works are quite dissimilar among

themselves and from ours. We consider the works [5], [31] to

be the closest to ours. While the basic instruments in deriving

bounds in [31] are suitably constructed martingales, as they are

in this work, the authors of [31] do not consider the notion of

scheduling with respect to application specific scaling and only

look at homogeneous servers. Further, [5] provides computable

bounds for the expected response times in FJ systems under

renewal Poissonian arrival and exponential service times. Their

methodology differs from ours as they construct a tractable

system to derive the bounds. We, on the contrary, concentrate

on bounding the waiting time distributions and use these

bounds to gain insights into application specific parallelization

benefit and scheduling strategies therefrom.

Several contributions have been made to analyze the per-

formance of applications that can be modeled by FJ systems

such as MapReduce [10], [35]. Performance optimization

problems that arise for MapReduce systems are surveyed in

[15], [27]. In [26], the authors discuss different scheduling

strategies regarding Hadoop MapReduce. Related work also

considers the performance and pricing of EC2 instances such

as on-demand instances (reliable, expensive) or spot instances

(volatile, inexpensive). While there has been a number of

articles studying spot pricing, mostly taking the provider’s



viewpoint such as [17], [36], the authors of [37] take into

account the user’s standpoint too and explores bidding strate-

gies analytically. These works can feed into our performance

model as they essentially relate the obtained computing power,

hence the service time distribution, to the monetary cost of

computation. For instance, our model can thus be used to

analyze a parallelized system where the number of utilized

servers is modulated by the price curve of spot instances.

VII. CONCLUSIONS

In this paper we provide stochastic bounds on queuing per-

formance metrics for heterogeneous Fork-Join systems under

arbitrary level of parallelization benefit. Specifically, using a

matching martingale construction we derive bounds on the

waiting and response time distributions in this system. We

model the application specific parallelization benefit in a given

FJ system as a scaling parameter that affects the task service

times and analytically show the impact of heterogeneity on this

benefit. We highlight a fundamental trade-off between the par-

allelization benefit and the FJ intrinsic synchronization penalty.

Finally, we propose optimal stochastic scheduling strategies

in FJ systems for varying application specific parallelization

benefits. We conclude our work with a simulation study that

evaluates stochastic scheduling strategies in a Multipath TCP

scenario while optimizing the number of used paths to improve

the system response time.
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